用户名: 密码: 验证码:
川西坳陷中段须家河组储层流体特征与天然气成藏
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川西坳陷位于四川盆地西北部,是晚三叠世以来形成的前陆盆地。川西坳陷中段须家河组具有超深、超压、超晚期构造的地质特征。生储盖有机配置构成上下两个含气系统。川西坳陷中段须家河组发育多个古构造和古今叠合型圈闭,烃源岩厚度大、展布广、丰度高、类型好、生烃强度大、供烃时间长,盖层突破压力高、分布稳定,成藏条件优越,是寻找大中型气田十分有利的地区。由于须家河组致密砂岩发育,属低孔低渗储层,气水关系复杂,天然气成藏过程与气水分布规律一直困扰着油气地质工作者。本文以地质流体为主线,通过研究川西坳陷须家河组致密砂岩储层特征、水岩作用、地层水化学、动力学特征,分析天然气运聚、成藏机制,结合具体构造特征,预测研究区天然气有利聚集区带,对指导川西坳陷致密砂岩储层天然气勘探,具有重要的理论和实践意义。通过本次研究主要取得以下成果认识:
     (1)川西坳陷须家河组储层孔隙类型主要是溶蚀粒间孔隙,其次是溶蚀粒内孔隙。其中,主要储集层须二段孔隙度和渗透率较小,孔隙结构较须四段差。须二段和须四段储层内由于微裂缝发育,出现“低孔高渗”现象。晚三叠世末和中侏罗世—早白垩世末是自生石英包裹体和方解石胶结物形成最多的两个阶段,同时也是储层致密化进程较快的两个阶段。
     (2)川西坳陷须家河组地层水化学垂向上具有明显的分带性,水化学剖面从上到下分为四个单元,泥岩压实排水-粘土矿物脱水淡化带(A带);渗滤浓缩为主,伴随越流浓缩带(B带);泥岩压实排水-粘土矿物脱水淡化带(C带);深部越流浓缩带(D带)。平面上具有明显的分区性,成都凹陷须二段地层水矿化度较低,安县—鸭子河—大邑断褶带、孝泉—丰谷构造带、知新场—龙保梁构造带等构造高部位须二段地层水越流浓缩,矿化度较高。
     (3)通过对比包裹体液相阴阳离子、现今及古地层水碳氧同位素和氢氧同位素特征,认为须家河组地层水在演化过程中,以同生地层水成因为主,局部地区混有大气降水和深部热液。
     (4)川西坳陷须家河组普遍发育超压,压力系数在1.09~2.30之间。须下盆的压力系数均值小于须上盆的压力系数均值。超压形成原因主要为快速沉积作用、构造挤压作用和生烃增压作用。
     (5)中燕山期以来,安县—鸭子河—大邑构造带、孝泉—丰谷构造带、知新场—龙宝梁构造带的部分地区须二段和须四段长期位于越流泄水区,是天然气聚集的有利区带。
     (6)根据川西坳陷须家河组气藏形成地质条件、储层致密特征,结合流体活动规律,提出须家河组气藏“前期边致密边成藏,后期裂缝发育成藏”的成藏模式。天然气成藏后,构造运动、泥岩压实排水和储层致密化均可导致气藏贫化。
     (7)孝泉—新场—合兴场地区是川西坳陷须家河组最有利的天然气聚集带。大邑地区、鸭子河地区、成都凹陷、丰谷地区、孝泉—丰谷构造带北斜坡等地区,相对有利于天然气聚集、成藏。龙门山前缘推覆带须家河组受大气水下渗淋滤氧化影响,天然气保存条件遭受破坏,不利于天然气成藏、保存。
The Western Sichuan Depression is located in northwest part of Sichuan Basin. It is a foreland basin, since later Triassic. The geological characteristics of Xujiahe Formation are deep buried, overpressure and later structures, in the middle of Western Sichuan Depression. The top and bottom gas systems are formed in upper Triassic. There are many palaeostructural traps and palaeo and present structural superimposed traps in Xujiahe Formation. The hydrocarbon source rocks of upper Triassic are characterized by large thickness, wide distribution, high abundance, high abundance, ideal type, great hydrocarbon generating strength and long-term hydrocarbon supply. The caprocks are characterized by high breakthrough pressure and stable distribution. Because of the superior reservoir forming condition, the Xujiahe Formation is favorable for forming medium to large scale gas fields. Because of the general densification reservoirs and complicated gas-water relationship, the gas accumulation mechanism and gas-water distribution are confused to petroleum geologists. In this study, geofluids are the mainline. Based on the physical properties, water-rock interaction, hydrogeochemistry and hydrodynamics of Xujiahe Formation reservoirs, gas accumulation mechanism is researched. Combined with structural characteristics, the favorable targets of gas reservoirs in Xujiahe Formation are proposed for future exploration. It has important theoretical and practical significance. The main contents of this dissertation are as follows:
     (1) The main pore type of Xujiahe Formation reservoirs is dissolution intergranuler pore, and the second is dissolution intragranular pore. The pore structure, porosity and permeability of Xujiahe Formation reservoirs are tested. The results show that the pore structure of T3x2is poor and porosity and permeability of T3x2is low. Due to microcrack developed, the phenomenon of low porosity high permeability exists in T3x2and T3x4reservoirs. The fluid inclusions in authigenic Quartz and calcite cement most formed at the end of Late Triassic and from Middle Jurassic to the end of early Cretaceous. And these periods are the rapid phases of reservoir tightening.
     (2) The hydrogeochemistry characteristics of the Xujiahe Formation water are very complicated. From above to below,4hydrogeochemical units are divided. They are freshening water belt of the mudstone compaction-released water and dehydration of clay minerals water (belt A), the belt main is infiltration-concentrated water, following is leakage-concentrate water (belt B), freshening water belt of the mudstone compaction-released water and dehydration of clay minerals water (belt C), the deep leakage-concentrate water belt (belt D). In lateral direction, hydrogeochemistry characteristics are zoning. The salinity of T3x2formation water in Chengdu sag is low; while, the salinity of T3x2formation water in Anxian-Yazihe-Dayi tectonic area, Xiaoquan-Fenggu tectonic area and Zhixinchang-Longbaoliang tectonic area are high.
     (3) Based on the research of fluid anion and cation of inclusions, the carbon, oxygen and hydrogen isotopes of paleo and present formation water, the origin of formation water is contemporaneous formation water affected by paleo-atmospheric water and deep f hydrothermal, in the formation water evolution process.
     (4) The overpressure is very common in Xujiahe Formation in Western Sichuan Depression. The pressure coefficient is from1.09to2.30. And the pressure coefficient of bottom part is less than that of top part. The reasons of overpressure are rapid sedimentary, tectonic compression and hydrocarbon-generating prcssurization.
     (5) From middle Yanshanian, Anxian-Yazihe-Dayi tectonic area, Xiaoquan-Fenggu tectonic area and Zhixinchang-Longbaoliang tectonic area Xujiahe Formation reservoirs are cross-formational flow areas, which are favorable for forming gas fields.
     (6) A model of the Xujiahe Formation gas accumulation is presented. Gas accumulation is synchronization with sandstone densification in earlier stage; gas accumulation restarts after cracks formed in later stage. In the process of sandstone densification, tectonic movements, mudstone compaction-released water and authigenic minerals formation can result in gas leakage.
     (7) Xiaoquan-Xinchang-Hexingchang areas are the most favorable for forming gas fields. Dayi area, Yazihe area, most part of Chengdu sag, Fenggu area, south part of Zitong sag are favorable for forming gas fields. Because of infiltration area of meteoric water in the front thrust system of Longmen Mountain, the gas preservation is massively deformed. Thus, it is not favorable for forming gas fields in the front thrust system of Longmen Mountain.
引文
Ajdukiewicz J. M., Lander R. H. Sandstone reservoir quality prediction:The state of the art [J]. AAPG Bulletin.2010,94(8):1083-1091.
    Bachu S., Underschultz J. R. Hydrogeology of Formation Waters, Northeastern Alberta Basin [J]. AAPG Bulletin.1993,77(10):1745-1768.
    Bachu S.. Synthesis and model of formation water flow, Alberta basin, Canada [J]. AAPG Bulletin. 1995,79(8):1159-1178.
    Baques V., Trave A., Roca E., et al. Geofluid behaviour in successive extensional and compressional events:a case study from the southwestern end of the Valles-Penedes Fault (Catalan Coastal Ranges, NE Spain) [J]. Petroleum Geoscience.2012,18 (1):17-31.
    Berg R. R., Demis W. D., Mitsdarffer A. R. Hydrodynamic effects on Mission Canyon (Mississippian) oil accumulations. Billings Nose area, North Dakota [J]. AAPG Bulletin. 1994,78(4):501-518.
    Bethke C. M., Reed J. D., Oltz, D. F. Long-range petroleum migration in the Illinois basin [J]. AAPG Bulletin.1991,75(5):925-945.
    Birkle P., Aragon J. J. R., Portugal E., et al. Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico [J]. AAPG Bulletin.2002,86(3):457-484.
    Bjorlykke K. Fluid flow in sedimentary basins [J]. Sedimentary Geology.1993,86(1-2):137-158.
    Bloch S, Lander R. H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability [J]. AAPG Bulletin.2002,86(2):301-328.
    Bottinga Y. Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water [J]. The Journal of Physical Chemistry.1968,72(3): 800-808.
    Burley S.D., Mullis J., Matter A. Timing diagenesis in the Tartan Reservoir (UK North Sea): constraints from combined cathodoluminescence microscopy and fluid inclusion studies [J]. Marine and Petroleum Geology.1989,6(2):98-104, IN1-IN4,105-120.
    Cama J., Ganor J. The effects of organic acids on the dissolution of silicate minerals:a case study of oxalate catalysis of kaolinite dissolution [J]. Geochimica et Cosmochimica Acta.2006, 70(9):2191-2209.
    Cello G., Tondi E., Micarelli L., et al. Fault zone fabrics and geofluid properties as indicators of rock deformation modes [J]. Journal of Geodynamics.2001,32:543-565.
    Chapman R. E. Effects of Oil and Gas Accumulation on Water Movement:Geologic notes [J]. AAPG Bulletin.1982,66(3):368-374.
    Chen S. F., Wilson C. J. L. Emplacement of the Longmenshan thrust-nappe belt along the eastern margin of the Tibetan Plateau [J] Journal of Structural Geology.1996,18(4):413-430.
    Clayton R. N., O'Neil J. R., Mayeda T. K. Oxygen isotope exchange between quartz and water [J]. Journal of Geophysical Research.1972,77(17):3057-3067.
    Connolly C. A., Walter L. M., Baadsgaard H., et al. Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin. II. Isotope systematics and water mixing [J]. Applied Geochemistry.1990,5(4):397-413.
    Eadington P. J., Hamilton P. J., Bai G. P. Fluid history analysis:a new concept for prospect evaluation [J]. The APEA Journal.1991,31(1):282-294.
    Franks S. G., Forester R. W. Relationships Among Secondary Porosity, Pore-Fluid Chemistry and Carbon Dioxide, Texas Gulf Coast:Part 1. Concepts and Principles [C]. AAPG Special Volumes:M 37:Clastic Diagenesis.1984:63-79.
    Grauls D. Overpressures:causal mechanisms, conventional and hydromechanical approaches [J]. Oil& Gas Science and Technology,1999,54(6):667-678.
    Hanor J. S., Mcintosh J. C. Diverse origins and timing of formation of basinal brines in the Gulf of Mexico sedimentary basin [J]. Geofluids.2007,7(2):227-237.
    Hanor J. S., Mercer J. A. Spatial variations in the salinity of pore waters in northern deep water Gulf of Mexico sediments:implications for pathways and mechanisms of solute transport [J]. Geofluids.2010,10(1-2):83-93.
    Hao Fang, Li Sitian, Gong Zaisheng, et al. Thermal Regime, Interreservoir Compositional Heterogeneities, and Reservoir-Filling History of the Dongfang Gas Field, Yinggehai Basin, South China Sea:Evidence for Episodic Fluid Injections in Overpressured Basins? [J]. AAPG Bulletin,2000,84(5):607-626.
    Holka, G. J., Kyserb T. K., Chipley D., et al. Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits [J]. Journal of Geochemical Exploration. 2003,80(2-3):297-320.
    Houseknecht D. W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones [J]. AAPG Bulletin.1987,71(6):633-642.
    Hubbert M. K. The theory of ground-water motion [J]. Journal of Geology.1940,48:783-944.
    Hubbert M. K. Entrapment of petroleum under hydrodynamic conditions [J]. AAPG Bulletin. 1953,37(8):1954-2026.
    Jenkin G. R. T., Craw D., Fallick, A. E. Stable isotope and fluid inclusion evidence for meteoric fluid penetration into an active mountain belt; Alpine Schist, New Zealand [J]. Journal of Metamorphic Geology.1994,12(4):429-444.
    Jia D., Wei G. Q., Chen Z. X., et al. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China:New insights from hydrocarbon exploration [J]. AAPG Bulletin.2006,90(9):1425-1447.
    Keer I. V., Muchez Ph., Viaene W. Clay mineralogical variations and evolutions in sandstone sequences near coal seam and shales in the Westphalian the Campine Basin (NE Belgium) [J]. Clay Minerals.1998,33(1):159-169.
    Kerkhof A. M. V. D., Hein U. F. Fluid inclusion petrography [J]. Lithos.2001,55(1-4):27-47.
    Kharaka Y. K., Lundegard P. D., Ambats G., ct al. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils [J]. Applied Geochemistry.1993,8(4):317-324.
    Land L. S., Prezbindowski D. R. The origin and evolution of saline formation water, Lower Cretaceous carbonates, south-central Texas, U.S.A [J]. Journal of Hydrology.1981,54(1-3): 51-74.
    Lander R.H., Walderhaug O. Porosity prediction through simulation of sandstone compaction and quartz cementation [J]. AAPG Bulletin.1999,83(3):433-449.
    Lanson B., Beaufort D., Berger G., Bauer A., et al. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones:a review [J]. Clay Minerals.2002,37(1):1-22.
    Law B. E. Basin-centered gas systems [J]. AAPG Bulletin.2002,86(11):1891-1919.
    Lawrence, S. R., Cornford, C. Basin geofluids [J]. Basin research.1995,7(1):1-7.
    Li K., Cai C., He H., et al. Origin of palaeo-waters in the Ordovician carbonates inTahe oilfield, Tarim Basin:constraints from fluid inclusionsand Sr, C and O isotopes [J]. Geofluids.2011, 11(1):71-86.
    Losh S., Walter L., Meulbroek P., et al. Reservoir fluids and their migration into the South Eugene Island Block 330 reservoirs, offshore Louisiana [J]. AAPG Bulletin.2002,86(8):1463-1488.
    Lundegard P. D., Land L. S., Galloway W. E., et al. Problem of secondary porosity:Frio Formation (Oligocene), Texas Gulf Coast [J]. Geology.1984,12(7):399-402.
    Lundegard P. D., Land L. S. Carbon dioxide and organic acids:their role in porosity enhancement and cementation, paleogene of the Texas Gulf Coast [J]. The Society of Economic Paleontologists and Mineralogists (SEPM).1986,38:129-146.
    Midtbo R. E. A., Rykkje J. M., Ramm M. Deep burial diagenesis and reservoir quality along the eastern flank of the Viking Graben:evidence for illitization and quartz cementation after hydrocarbon emplacement [J]. Clay Minerals.2000,35(1):231-241.
    Morad S. K., Al-Ramadan K. The impact of diagenesis on the heterogeneity of sandstone reservoirs:a review of the role of depositional facies and sequence stratigraphy[J].AAPG Bulletin.2010,94(8):1267-1309.
    O'Neil J. R., Clayton R. N., Mayeda T. K. Oxygen isotope fractionation in divalent metal carbonates [J]. The Journal of Chemical Physics.1969,51(12):5547-5558.
    Paxton S. T., Szabo J. O., Calver C. S., et al. Preservation of primary porosity in deeply buried sandstones:a new play concept from the Cretaceous Tuscaloosa sandstone of Louisiana (abs.) [J]. AAPG Bulletin.1990,74(5):737.
    Paxton S. T, Szabo J. O., Ajdukiewicz J M. et al. Construction of anintergranular compaction curve for evaluating and predictingcompaction and porosity loss in rigid grained sandstone reservoirs[J]. AAPG Bulletin.2002,86(12):2047-2067.
    Payne D. F., Tuncay K., Park A., et al. A reaction-transport-mechanical approach to modeling the interrelationships among gas generation, overpressuring, and fracturing:implications for the upper cretaceous natural gas reservoirs of the Piceance Basin, Colorado [J]. AAPG Bulletin. 2000,84(4):545-565.
    Peevlera J., Fayekb M., Misra, K. C, et al. Sulfur isotope microanalysis of sphalerite by SIMS: constraints on the genesis of Mississippi valley-type mineralization, from the Mascot-Jefferson City district. East Tennessee [J]. Journal of Geochemical Exploration. 2003,80(2-3):277-296
    Rossi C, Goldstein R. H., Ceriani A.,et al. Fluid inclusions record thermal and fluid evolution in reservoir sandstones, Khatatba formation. Western Desert, Egypt:a case for fluid injection [J]. AAPG Bulletin.2002,86(10):1773-1799.
    Scherer M. Parameters influencing porosity in sand-stone:A model for sandstone porosity prediction [J]. AAPG Bulletin.1987,71 (5):485-491.
    Stueber A. M., Walter L. M. Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois basin, USA [J]. Geochimica et Cosmochimica Acta. 1991,55(1):309-325.
    Stueber A. M., Saller A. H. Ishida, H. Origin, migration, and mixing of brines in the Permian basin: geochemical Evidence from the Eastern Central Basin Platform, Texas[J]. AAPG Bulletin. 1998,82(9):1652-1672.
    Surdam R. C., Crossey L. J., Hagen E. S., et al. Organic-in organic internation and sandstone diagenesis [J]. AAPG Bulletin.1989,73(1):1-23.
    Szabo J. O., Paxton S. T. Intergranular volume (IGV) decline curves for evaluating and predicting compaction and porosity loss in sandstones (abs.)[J] AAPG Bulletin.1991,75(3):678.
    Taylor K G, Gawthorpe R L, Curtis C D, et al. Carbonate cementation in a sequence-stratigraphic framework:Upper Cretaceous sandstones, Book Cliffs, Utah-Colorado [J]. Journal of Sedimentary Research.2000,70(2):360-372.
    Toth J. Cross-formational gravity-flow of groundwater:A mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration). In: Roberts W H, Cordell R J eds. Problems of petroleum migration [C]. AAPG Studies in Geology,1980,10:121-167.
    Toth J. Petroleum hydrogeology:A new basic in exploration [J]. World Oil.1987,205(3):48-50.
    Varsanyi I., Kovacs L.O. Origin, chemical and isotopic evolution of formation water in geopressured zones in the Pannonian Basin, Hungary [J]. Chemical Geology.2009, 264(1-4):187-196.
    Walderhaug O. Precipitation rates for quartz cement in sandstones determined by fluid-inclusion microthermometry and temperature-history modeling [J]. Journal of Sedimentary Research. 1994,64A(2):324-333.
    Wilkinson M., Milliken K. L., Haszeldine R. S. Systematic destruction of K-feldspar in deeply buried rift and passive margin sandstones [J]. Journal of the Geological Society.2001, 158(4):675-683.
    Wilson A., Ruppel C. Salt tectonics and shallow subseafloor fluid convection:models of coupled fluid-heat-salt transport [J]. Geofluids.2007,7(4):377-386.
    Yong L., Allen P. A., Densmore A. L., et al. Evolution of the Longmen Shan foreland basin (western Sichuan, China) during the Late Triassic Indosinian orogeny [J]. Basin Research. 2003,15(1):117-138.
    Zeng L. B. Micro fracturing in the upper Triassic Sichuan basin tight-gas sandstones:tectonic, overpressure, and diagenetic origins [J]. AAPG Bulletin.2010,94(12):1811-1825.
    Zhang Y., Gable C.W., Zyvoloski G.A., et al. Hydrogeochemistry and gas compositions of the Uinta Basin:A regional-scale overview [J]. AAPG Bulletin.2009,93(8):1087-1118.
    蔡春芳,梅博文,马亭,等.塔里木盆地油田水的成因与演化[J].地质论评.1997,43(6):650-657.
    蔡希源.深层致密砂岩气藏天然气富集规律与勘探关键技术—以四川盆地川西坳陷须家河组天然气勘探为例[J].石油与天然气地质.2010,31(6):707-714.
    曹烈,安凤山,王信.川西坳陷须家河组气藏与古构造关系[J].石油与天然气地质.2005,26(2):224-229.
    曹烈,沈忠民,安凤山.川西坳陷须家河组古圈闭类型及识别技术[J].石油学报.2006,27(4):45-49.
    常象春,张金亮.油气成藏动力学:涵义、方法与展望[J].海洋地质动态.2003,19(2):18-25.
    陈冬霞,黄小惠,李林涛,等.川西坳陷上三叠统烃源岩排烃特征与排烃史[J].天然气工业.2010,30(5):41-45.
    陈冬霞,庞雄奇,杨克明,等.川西坳陷中段上三叠统须二段致密砂岩孔隙度演化史[J ].吉林大学学报(地球科学版).2012,42(增刊1):42-51.
    陈红汉,李思田.活动热流体与成藏、成矿动力学研究进展[J].地学前缘(中国地质大学,北京).1996,3(3-4):259-262.
    陈红汉,张启明,施继锡.琼东南盆地含烃热流体活动的流体包裹体证据[J].中国科学D辑:地球科学.1997,27(4):343-348.
    陈红汉.油气成藏年代学研究进展[J].石油与天然气地质.2007,28(2):143-149.
    陈荣书,何千里,何生,等.渤中油区地下流体动力学特征[J].石油学报.1993,14(3):20-29.
    陈昭国.四川盆地川西坳陷深盆气探讨[J].石油实验地质.2005,27(1):32-38.
    达江,宋岩,陈开远,等.沉积盆地流体势的研究[J].中国西部油气地质.2006,2(4):385-389.
    戴金星.中国天然气地质学(卷二)[M].北京:石油工业出版社,1996:205.
    戴金星,黄士鹏,刘岩,等.中国天然气勘探开发60年的重大进展[J].石油与天然气地质.2010,31(6):689-698.
    戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发.2012,39(3):257-264.
    邓康龄,余福林.川西坳陷的复合构造与油气关系[J].石油与天然气地质.2005,26(2):214-219.
    邓秀芹,刘新社,李士祥.鄂尔多斯盆地三叠系延长组超低渗透储层致密史与油藏成藏史[J].石油与天然气地质.2009,30(2):156-161.
    董晓霞,梅廉夫,全永旺.致密砂岩气藏的类型和勘探前景[J].天然气地球科学.2007,18(3):351-355.
    董贞环.四川盆地西部须家河组致密砂岩成岩作用与孔隙演化模式[J].岩相古地理.1994,14(2):33-41.
    杜敏,汪三谷,万茂霞,等.四川盆地上三叠统须家河组天然气地球化学特征及成因类型判识[J].天然气勘探与开发.2007,30(2):26-29.
    谷江锐,刘岩.国外致密砂岩气藏储层研究现状和发展趋势[J].国外油田工程.2009,25(7):1-5.
    郭迎春,庞雄奇,陈冬霞,等.川西坳陷中段陆相地层压力演化及其成藏意义[J].石油勘探与开发,2012,39(4):426-433.
    郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化[M].北京:地质出版社,1996.
    国家能源局.致密砂岩气地质评价方法[S].北京:石油工业出版社,2011.
    何鲤.四川盆地上三叠统地震地层划分对比方案[J].石油与天然气地质.1989,10(4):439-446.
    何鲤,段勇,罗潇,等.川西坳陷上三叠统层序地层划分新方案[J].天然气工业.2007,27(2):6-11.
    何鲤,刘莉萍,罗潇,等.川西龙门山推覆构造特征及有利油气勘探区块预测[J].石油试验地质.2007,29(3):247-252.
    何鲤,李梅,熊亮,等.再谈四川盆地上三叠统层序地层划分方案[J].天然气工业.2011,31(6):28-33.
    何志国,王信,黎从军,等.川西坳陷碎屑岩超压储层与油气关系研究[J].天然气勘探与开发.2001,24(4):6-15.
    胡明毅,李士祥,魏国齐,等.川西前陆盆地上三叠统须家河组沉积体系及演化特征[J].石油天然气学报.2008,30(5):5-10.
    胡宗全,尹伟,伍新和,等.中国中西部四大盆地碎屑岩油气成藏体系及其分布规律[J].石油与天然气地质.2012,33(4):561-570.
    黄思静,杨俊杰,张文正.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报.1995,13(1):7-17.
    黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例[J].地球科学—中国地质大学学报.2003,28(4):419-424.
    黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏.2007,19(3):7-13.
    黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学.2009,38(5):498-506.
    姜福杰,庞雄奇,武丽.致密砂岩气藏成藏过程中的地质门限及其控气机理[J].石油学报.2010,31(1):49-54.
    姜在兴,田继军,陈桂菊,等.川西前陆盆地上三叠统沉积特征[J].古地理学报.2007,9(2):143-154.
    金爱民,尚长健,朱蓉,等.桂中坳陷及周缘地下水化学-动力学特征与油气保存[J].中国矿业大学学报.2011a,40(5):758-765.
    金爱民,尚长健,李梅,等.桂中坳陷现今水文地质地球化学与油气保存[J].浙江大学学报(工学版).2011b,45(4):775-781.
    康永尚,郭黔杰.论油气成藏流体动力系统[J].地球科学—中国地质大学学报.1998,23(3):281-284.
    康永尚,王捷.流体动力系统与油气成藏作用[J].石油学报.1999,20(1):30-33.
    冷济高,杨克明,叶军,等.孝泉—丰谷构造带须家河组地层水成因分析[J].西南石油大学学报(自然科学版).2011,33(1):57-63.
    李纯泉,陈红汉,张希明,等.塔河油田奥陶系储层流体包裹体研究[J].石油学报.2005,26(1):42-46.
    李建忠,郭彬程,郑民,等.中国致密砂岩气主要类型、地质特征与资源潜力[J].天然气地球科学.2012,23(4):607-615.
    李林涛,陈冬霞,张建华,等.川西坳陷中段关键不整合面剥蚀厚度恢复及其地质意义[J].科技导报.2010,28(2):71-75.
    李林涛,朱光辉,熊亮.川西坳陷中部古隆起形成演化过程及其控油气作用[J].天然气勘探与开发.2012,35(3):5-8.
    李梅,金爱民,朱蓉,等.高邮凹陷古近系水动力作用与油气运聚机理[J].中国矿业大学学报.2012,41(3):460-468.
    李明诚.油气运移研究的现状与发展[J].石油勘探与开发.1994,21(2):1-6.
    李明诚.地壳中的热流体活动与油气运移[J].地学前缘(中国地质大学,北京).1995,2(3-4):155-162.
    李明诚,李剑,万玉金,等.沉积盆地中的流体[J].石油学报.2001,22(4):13-17.
    李明诚.油气运移基础理论与油气勘探[J].地球科学—中国地质大学学报.2004,29(4):379-383.
    李鹏春,刘春晓,张渊.塔中奥陶系地层水化学特征及其成因与演化[J].石油与天然气地质.2007,28(6):802-808.
    李嵘,张娣,朱丽霞.四川盆地川西坳陷须家河组砂岩致密化研究[J].石油实验地质.2011,33(3):274-281.
    李伟,秦胜飞,胡国艺.四川盆地须家河组水溶气的长距离侧向运移与聚集特征[J].天然气工业.2012,32(2):32-37.
    李易隆,贾爱林,何东博.致密砂岩有效储层形成的控制因素[J].石油学报.2013,34(1):71-82.
    李智武,刘树根,陈洪德,等.龙门山冲断带分段一分带性构造格局及其差异变形特征[J].成都理工大学学报(自然科学版).2008,35(4):440-544.
    李智武,刘树根,林杰,等.川西坳陷构造格局及其成因机制[J].成都理工大学学报(自然科学版).2009,36(6):645-653.
    林良彪,陈洪德,姜平,等.川西前陆盆地须家河组沉积相及岩相古地理演化[J].成都理工大学学报(自然科学版).2006,33(4):376-383.
    刘和甫,梁慧社,蔡立国,等.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报.1994,68(2):101-118.
    刘建明,叶杰,刘家军,等.盆地流体及成矿作用[J].矿物岩石地球化学通报.2000,19(2):85-94.
    刘金华,张世奇,孙耀庭,等.川西前陆盆地上三叠统须家河组地层的划分对比及沉积演化[J].地层学杂志.2007,31(2):190-196.
    刘金华,杨少春,张世奇,等.川西地区上三叠统须家河组前陆盆地可容空间变化特征与油气成藏研究[J].地质论评.2010,56(2):275-282.
    刘立,于均民,孙晓明,等.热对流成岩作用的基本特征与研究意义[J].地球科学进展.2000,15(1):583-585.
    刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993:167.
    刘树根,赵锡奎,罗志立,等.龙门山造山带-川西前陆盆地系统构造事件研究[J].成都理工学院学报.2001,28(3):221-230.
    刘树根,徐国盛,李巨初,等.龙门山造山带-川西前陆盆地系统的成山成盆成藏动力学[J].成都理工大学学报(自然科学版).2003,30(6):559-560.
    刘四兵,沈忠民,吕正祥,等.川西坳陷中段上三叠统须家河组二段原油裂解成因天然气发现及成藏模式初探[J].沉积学报.2012,30(2):385-391.
    刘正中,杨锦林,李华昌.川西新场气田地层水分布规律与对策[J].天然气工业.2005,25(2):33-35.
    楼章华,蔡希源,高瑞祺.松辽盆地流体历史与油气藏分析[M].贵阳:贵州科学技术出版社,1998.
    楼章华,金爱民,朱蓉,等.论松辽盆地地下水动力场的形成与演化[J].地质学报.2001,75(1):111-120.
    楼章华,姚炎明,金爱民,等.松辽盆地地下流体地球化学特征研究[J].矿物学报.2002,22(4):343-349..
    楼章华,金爱民,孙毛明,等.松辽盆地北部东区扶杨油层地下水动力场演化与油气藏形成[J].天然气工业.2003,23(2):6-9.
    楼章华,金爱民,田炜卓,等.论陆相含油气沉积盆地地下水动力场与油气运移、聚集[J].地质科学.2005,40(3):305-318.
    楼章华,金爱民,朱蓉,等.松辽盆地油田地下水化学场的垂直分带性与平面分区性[J].地质科学.2006,41(3):392-403.
    楼章华,朱蓉,金爱民,等.沉积盆地地下水与油气成藏—保存关系[J].地质学报.2009,83(8):1188-1194.
    楼章华,尚长健,姚根顺,等.桂中坳陷及周缘海相地层油气保存条件[J].石油学报.2011,32(3):432-441.
    卢焕章.流体不混溶性和流体包裹体[J].岩石学报.2011,27(5):1253-1261.
    罗啸泉,陈兰.川西坳陷形成演化及其与油气的关系[J].油气地质与采收率.2004,11(1):16-19.
    罗啸泉.四川盆地西部流体封存箱与天然气成藏的关系[J].特种油气藏.2005,12(6):18-21.
    吕正祥.川西孝泉构造上三叠统超致密储层演化特征[J].成都理工大学学报(自然科学版). 2005,32(1):22-26.
    吕正祥,刘四兵.川西须家河组超致密砂岩成岩作用与相对优质储层形成机制[J].岩石学报.2009,25(10):2373-2383.
    马立元,周总瑛.川西坳陷天然气资源潜力分析[J].天然气地球科学.2009,20(5):730-737.
    马新华,王涛,庞雄奇,等.深盆气藏的压力特征及成因机理[J].石油学报.2002,23(5):23-27.
    马永生,楼章华,郭彤楼,等.中国南方海相地层油气保存条件综合评价技术体系探讨[J].地质学报.2006,80(3):406-417.
    欧光习,李林强,孙玉梅.沉积盆地流体包裹体研究的理论与实践[J].矿物岩石地球化学学报.2006,25(1):1-11.
    潘立银,倪培,欧光习,等.油气包裹体在油气地质研究中的应用—概念、分类、形成机制及研究意义[J].矿物岩石地球化学通报.2006,25(1):19-27.
    庞雄奇,金之钧,姜振学,等.深盆气成藏门限及其物理模拟实验[J].天然气地球科学.2003,14(3):207-214.
    庞忠和.全体系地球化学模拟与水岩相互作用研究[J].地学前缘(中国地质大学,北京).1996,3(3-4):119-123.
    彭晓蕾,高玉巧,刘立.含油气盆地中热流体活动的流体包裹体依据[J].世界地质.2005,24(4):350-355,377.
    平宏伟,陈红汉,Regis Thi6ry.石油包裹体热动力学模拟古压力改进:饱和压力预测和体积校正[J].地球科学—中国地质大学学报.2013,38(1:):143-155.
    秦胜飞,邹才能,戴金星,等.塔里木盆地和田河气田水溶气成藏过程[J].石油勘探与开发.2006,33(3):282-288.
    沈照理,王焰新.水—岩相互作用研究的回顾与展望[J].地球科学.2002,27(2):127-133.
    沈忠民,潘中亮,吕正祥,等.川西坳陷中段须家河组天然气地球化学特征与气源追踪[J].成都理工大学学报(自然科学版).2009,36(3):225-230.
    沈忠民,宫亚军,刘四兵,等.川西坳陷须家河组地层水成因探讨[J].地质论评.2010,56(1):82-88.
    沈忠民,刘四兵,吕正祥,等.川西坳陷中段陆相地层水纵向变化特征及水—岩相互作用初探[J].沉积学报.2011,29(3):495-502.
    沈忠民,刘阳,刘四兵.川西坳陷中段喜山期剥蚀厚度恢复[J].物探化探计算技术.2011,33(2):189-194.
    宋岩,洪峰.四川盆地川西坳陷深盆气地质条件分析.石油勘探与开发.2001,28(2):11-14.
    苏永进,唐跃刚,张世华,等.川西坳陷上三叠统天然气成藏主控因素及形成模式[J].石油与天然气地质.2010,31(1):107-113.
    孙向阳,刘方愧.沉积盆地中地层水化学特征及其地质意义[J].天然气勘探与开发.2001,24(4):47-53.
    童晓光,郭彬程,李建忠,等.中美致密砂岩气成藏分布异同点比较研究与意义[J].中国工程科学.2012,14(6):9-15.
    王国芝,刘树根.海相碳酸盐岩区油气保存条件的古流体地球化学评价—以四川盆地中部下组合为例[J] 成都理工大学学报(自然科学版).2009,36(6):63 1-644.
    王金琪.安县构造运动[J].石油与天然气地质.1990,11(3):223-234.
    王金琪.龙门山印支运动主幂辨析-再论安县构造运动[J].四川地质学报.2003,23(2):65-69.
    王连进,叶加仁.沉积盆地超压形成机制述评[J].石油与天然气地质.2001,22(1):17-20.
    王鹏,李瑞,刘叶.川西坳陷陆相天然气勘探新思考[J].石油实验地质.2012,34(4):406-411.
    王琪,史基安,薛莲花,等.碎屑储集岩成岩演化过程中流体—岩石相互作用特征——以塔里木盆地西南坳陷地区为例[J].沉积学报.1999,17(4):584-590.
    王涛.中国深盆气田[M].北京:石油工业出版社,2002.
    王震亮.盆地流体动力学及油气运移研究进展[J].石油实验地质.2002,24(2):99-109.
    王震亮,孙明亮,张立宽,等.川西地区须家河组异常压力演化与天然气成藏模式[J].地球科学—中国地质大学学报.2004,29(4):433-439.
    王震亮,李耀华,张健.川西地区上三叠统异常流体压力的主要形成机制[J].石油与天然气地质.2007,28(1):43-50.
    吴铬,李华昌.川西坳陷孝泉—丰谷构造带须家河组气藏成藏机制研究[J].成都理工学院学报(自然科学版).2002,29(2):161-167.
    武晓春,庞雄奇,于兴河,等.水溶气资源富集的主控因素及其评价方法探讨[J].天然气地球科学.2003,14(5):416-421.
    向廷生,蔡春芳,付华娥.不同温度、羧酸溶液中长石溶解模拟实验[J].沉积学报.2004,22(4):597-602.
    谢润成,周文,晏宁平.致密低渗砂岩储层质量控制因素研究—以靖边气田盒8段为例[J].石油实验地质.2010,32(2):120-123,128.
    解习农,刘晓峰.超压盆地流体动力系统与油气运聚关系[J].矿物岩石地球化学通报.2000,19(2):103-108.
    解习农,李思田,刘晓峰.异常压力盆地流体动力学[M].武汉:中国地质大学出版社,2006.
    解习农,成建梅,孟元林.沉积盆地流体活动及其成岩响应[J].沉积学报.2009,27(5):863-871.
    徐国盛,刘中平.川西地区上三叠统地层古压力形成与演化的数值模拟[J].石油实验地质.1996,18(1):117-126.
    徐国盛,刘树根,等.四川盆地天然气成藏动力学[M].北京:地质出版社,2005.
    杨克明.川西坳陷油气资源现状及勘探潜力[J].石油与天然气地质.2003,24(4):322-326,331.
    杨克明,叶军,吕正祥.川西坳陷上三叠统须家河组天然气分布及成藏特征[J].石油与天然气地质.2004,25(5):208-213.
    杨克明,叶军,吕正祥.川西坳陷上三叠统成藏年代学特征[J].石油与天然气地质.2005,26(2):501-505.
    杨克明.川西坳陷须家河组天然气成藏模式探讨[J].石油与天然气地质.2006,27(6):786-793,803.
    杨威,魏国齐,李跃纲,等.川西地区须家河组二段储层发育的主控因素和致密化时间探讨[J].天然气地球科学.2008,19(6):796-800.
    杨长清,刘树根,曹波,等.龙门山造山带与川西前陆盆地耦合关系及其对油气成藏的控制[J].成都理工大学学报(自然科学版).2008,35(4):471-476.
    叶聪林,郑国东,赵军.油气储层中水岩作用研究现状[J].矿物岩石地球化学通报.2010,29(1):89-97.
    叶加仁, 王连进, 邵荣.油气成藏动力学中的流体动力场[J].石油与天然气地质.1999,20(2):182-185.
    叶加仁,顾惠荣.势能理论与油气勘探[J].海洋石油.2001,(4):6-9.
    叶军.川西坳陷马鞍塘组—须二段天然气成矿系统烃源岩评价[J].天然气工业.2003;23(1):21-25.
    叶军,曾华盛.川西须家河组泥页岩气成藏条件与勘探潜力[J].天然气工业.2008,28(12):18-25.
    叶泰然,王信.川西坳陷中段丰谷构造须家河组二段致密砂岩储层油气预测方法研究[J]成都理工大学学报(自然科学版).2003,30(1):82-86.
    曾溅辉.台北凹陷地下水动力特征及其对油气运移和聚集的影响[J].沉积学报.2000,18(2):273-278.
    曾溅辉.沉积盆地中地质流体运动与油气成藏[J].海相油气地质.2005,10(1):37-42.
    曾溅辉,吴琼,杨海军,等.塔里木盆地塔中地区地层水化学特征及其石油地质意义[J].石油与天然气地质.2008,29(2):223-229.
    曾小英,张小青.川西坳陷中段须家河组四段钙屑砂岩气层的成因[J].沉积学报.2007,25(6):896-902.
    曾允孚,李勇.龙门山前陆盆地形成与演化[J].矿物岩石.1995,15(1):40-49.
    张厚福,方朝亮.盆地油气成藏动力学初探—21世纪油气地质勘探新理论探索[J].石油学报.2002,23(40):7-12.
    张健,李国辉,谢继容,等.四川盆地上三叠统划分对比研究[J].天然气工业.2006,26(1):12-15.
    张金川,金之钧,庞雄奇.深盆气成藏条件及其内部特征[J].石油实验地质.2000,22(3):210-214.
    张金川,金之钧.深盆气成藏机理及分布预测[M].北京:石油工业出版社,2005:5-9,82-83.
    张金川,刘丽芳,唐玄,等.川西坳陷根缘气藏异常地层压力[J].地学前缘(中国地质大学(北京);北京大学).2008,15(2):147-155.
    张金亮,常象春,王世谦.四川盆地上三叠统深盆气藏研究[J].石油学报.2002,23(3):27-33.
    张萌,黄思静,王麒翔,等.碎屑岩成岩过程中各种造岩矿物溶解特征的热力学模型[J].新疆地质.2006,24(2):187-191.
    张鼐,田作基,吴胜华,等.川西须家河组储层成岩演化[J].岩石学报.2008,24(9):2179-2184.
    张哨楠.致密天然气砂岩储层:成因和讨论[J].石油与天然气地质.2008,29(1):1-10,18.
    张哨楠.四川盆地西部须家河组砂岩储层成岩作用及致密时间讨论[J].矿物岩石.2009,29(4):33-38
    张义杰.准噶尔盆地水岩反应产物的地球化学特征[J].新疆石油地质.2002,23(6):482-484.
    张永旺,曾溅辉,张善文,等.长石溶解模拟实验研究综述[J].地质科技情报.2009,28(1):31-37.
    张枝焕,常象春,曾溅辉.水—岩相互作用研究及其在石油地质中的应用[J].地质科技情报.1998,17(3):69-74.
    张枝焕,胡文瑄,曾溅辉,等.东营凹陷下第三系流体-岩石相互作用研究[J].沉积学报.2000,18(4):560-567.
    张宗峰,查明,高长海.大港油田埕北断阶区地层水化学特征与油气成藏[J].石油与天然气地质.2009,30(3):268-274.
    赵文智,胡素云,王红军,等.中国中低丰度油气资源大型化成藏与分布[J].石油勘探与开发.2013,40(1):1-13.
    赵永胜,周文.川西坳陷须二气藏凝析水地球化学特征及成因初探[J].天然气地球科学.1995,6(1):30-33.
    郑和荣,尹伟,胡宗全,等.中国中西部碎屑岩领域油气富集主控因素与勘探方向[J].石油与天然气地质.2010,31(6):753-762.
    郑和荣.中国中西部四大盆地碎屑岩油气地质与勘探技术新进展[J].石油与天然气地质.2012,33(4):497-505.
    郑荣才,朱如凯,翟文亮,等.川西类前陆盆地晚三叠世须家河组构造演化及层序充填样式[J].中国地质.2008,35(2):246-255.
    郑荣才,戴朝成,朱如凯,等.四川类前陆盆地须家河组层序-岩相古地理特征[J].地质论评.2009,55(4):484-495.
    郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    周慧,郗爱华,熊益学,等.流体包裹体的研究进展[J].矿物学报.2013,33(1):92-100.
    朱焕来,曲希玉,刘立,等.C02流体-长石相互作用实验研究[J].吉林大学学报(地球科学版).2011,41(3):697-706.
    朱如凯,赵霞,刘柳红,等.四川盆地须家河组沉积体系与有利储集层分布[J].石油勘探与开发.2009a,36(1):46-55.
    朱如凯,邹才能,张鼐,等.致密砂岩气藏储层成岩流体演化与致密成因机理—以四川盆地上三叠统须家河组为例[J].中国科学D辑:地球科学.2009b,39(3):327-339.
    朱世发,朱筱敏,王一博,等.准噶尔盆地西北缘克百地区三叠系储层溶解作用特征及孔隙演化[J].沉积学报.2010,28(3):547-555.
    邹才能,陶士振,刘向.大油气区形成与分布[M].北京:科学出版社,2009:269-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700