用户名: 密码: 验证码:
哈尔滨市松北区城市建设浸没影响评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该项目针对水库蓄水后的实际水位,通过水文地质测绘调查、钻探、水文地质试验、室内土工实验、类比分析等手段准确查明研究区的地质边界条件,确定其天然渗流场、浸没区一定范围内各岩土层的渗透系数,取得准确可靠的试验计算参数。在充分收集利用已有的地质资料和本次勘测钻孔资料的基础上,利用GMS(地下水流模拟系统)软件中SOLID模块,采用钻孔间插值法,建立研究区含水系统的三维立体模型,考虑到各堆积层在区域上分布的不均匀性及其沉积年代的一致性,对部分层位进行了概化。
     根据数学模型对本研究区进行了近、远期地下水位预报,由表层土的岩性及分布特征,按地下水位埋深,对研究区内可能产生的浸没按近、远期进行范围划分,提出防治措施,为区内工程建设防护设计提供科学依据。
Songbei District of Harbin is located on the north bank of the Songhuajiang River in Harbin reaches. The water level for Harbin reaches will be kept on 116 m after Dadingzishan Navigation Reservoir, which is under construction at downstream, begins to store water. The level will be 6 m higher than that in dry season in the past, resulting in the backing up of groundwater in Songbei District and immersion problem in Songbei District .So it is necessary to investigate the hydrogeological conditions, calculate the back-up water level, find the critical depth, determinate the immersion scope, conduct immersion assessment and put forward the control measures for immersion hazard in order to provide scientific base for construction design in the district.The overall tendency of the district is high northern part and low southern part, with an alluvial topographic origin type and the shape types of Songhuanjiang River high and low flood plains.The Prequaternary stratum in the area is grey or grey-black mudstone and fine siltstone of Nenjiang Group, Cretaceous System, overlaid by Quaternary grey or grey- white sand, gravelly sand and silt clay. Surface layer is yellow-brown silt clay underlying grey or grey-yellow fine sand , middle-coarse sand gravel intercalated thin silt clay in the high flood plain;1~4 m uncontinuous silt clay underlying yellow, grey or grey-brown middle-sized sand, gravel in the low flood plain.Groundwater type in the area is friable rock porous underground water stored in the aquifer forming by sand, gavel of Sheli Group, Epipleistocene and middle-coarse sand, middle sand of Holocene. The aquifer is characteristic by coarse granule, big capacity, open top and close bottom with 20m-40m thickness and 15d/m- 56d/m permeability coefficient. The bottom of the area is Cretaceous System mudstone as confining bed.The area is divided into three water abundance areas:1. Very abundance area (individual well yield >5000m~3/d)2. Abundance area (individual well yield 3000 m~3/d -5000m~3/d)3. Relative abundance area (individual well yield 1000 m~3/d -3000m~3/d)Water circulation zoning is very clear in the area e.g., river water setup-stagnation zone along the river bank;discharge zone with flood filtration and rainfall penetration in the flooded area;evaporation-discharge zone with rainfall penetration within 2km in normal and rainy years.Groundwater level is shallow and water table fluctuates with seasons in the area. Along with the rainfall, groundwater table goes up and reaches highest level in rainy season;then the water table goes down gradually since rainfall decreases and river water level declines after rainy season. Until rainy season of next year, groundwater fluctuation enters next circulation.Based on the existing geological data and drill data conducted in this investigation in the area, by using SOLID module of GMS software and interpolating method between the drills, three dimensional modal is established. Considering the regional uncontinuity of alluvial layers and the uniformity of geological sedimentation, part of strata is generalized.According to groundwater fluctuation, surface soil structure, dispersion, permeability and their relations with capillary action, groundwater critical depth is calculated by following formula:
    Hcr=Hk+AHWhere: Her......immersion groundwater critical depth (m);Hi;......height of capillary rise (m );AH......safe superelevation. For farmland the value and root depth of vegetationadopt 0.5m by experience;for construction adopt 2.0m depending on foundation depth and soil quality.Height of capillary rise is determined by on-the-spot investigation, indoor experiment and empirical values. They are 50m for silt clay, 1.0m for silt fine sand. Therefore the critical depth in the area is as follows: Farmland area, silt clay Her=2.50m, silt and fine sand Hcr= 1.50m,-Construction area ,siltclay Hcr=3.50m, silt and fine sand Hcr=3.00m,> In accordance with the lithologic and distribution character of surface soils, and groundwater level depth, the area can be divided into immersion area, transitional area and no-immersion area.Immersion scope for existing extraction quantity (in the year 2010) ,short-term extraction quantity (in the year 2015) and long-term extraction quantity (in the year 2020) is delineated according to the groundwater level after backing up, groundwater critical depth, lithologic character in aeration zone and consistently considered as construction land.In immersion area the following influence will occur:1. The surface soils will appear swampiness due to too wet or become saline soil because of strong evaporation and concentration. In this case not only original mechanical property of the soils will change but also chemical composition of groundwater will be influenced, resulting in a high degree of mineralization and stronger groundwater corrosive ability to construction.2. Water content of rock body above the groundwater table increases and the rock body under the groundwater table is hydrolyzed and softened. Soluble materials in the rock body are solved and structure of rock body is destroyed, giving a rise to unequal subsidence, decreased bearing capacity and causing construction inclination, cracking and tension rupture for ground and underground pipes.3. Due to groundwater table is raised and foundation of construction will be floated up construction will be out of balance acted by floating force.4. The area is a seasonal frozen area with 1.95m highest frozen depth. Influenced by immersion, water content increases and water in the rock body will move and be concentrated forming intercalated ice layer or ice cone and making the foundation frost upheaval and ground surface uplift .Rock body in frozen situation has a high strength and low compressibility. Once it is defrosting shear and compressive strength will decrease greatly, leading to foundation subsidence and construction cracking, out of balance. Road thawing damage will happen for road foundation after defrosting and destroy road surface.
    Overall, some countermeasures are put forward to control immersion harms.1. Combing with the first phase design for Songbei Qianjin Area and the second phase design for Qianjin liman, original ground surface should be raised. According to predicting results of existing groundwater flow conditions, when ground surface is raised to the elevation of 117.5m, the whole area will become transitional area. Within the groundwater contour of 115.5m, ground surface needs only to be filled to the elevation of 117.0—117.5m.For road foundation sand should be filled under the bottom so as to stop capillary rise.2. It is suggested that pipe foundation should be used for high buildings and water proof treatment should be taken for underground construction.3. Combing with surface water and urban drainage, some ditches should be dug in order to drain water and at the some time lower groundwater level and beautify urban landscape.
引文
1.黑龙江省第二水文工程地质队.哈尔滨幅水文地质普查勘探报告[M].1/20万 1980-1981年.
    2.黑龙江省第二水文工程地质队.哈尔滨江北地区城市供水水文地质初步勘探告[M].1/5万 1984-1985年.
    3.黑龙江省水文地质工程地质勘察院、哈尔滨市城市水资源管理办公室.哈尔滨市前进开发区水源地勘探报告[M].1/1万 1993—1994.
    4.黑龙江省水利水电勘测设计研究院.松花江干流哈尔滨段前进、松浦、外贸防洪堤工程地质勘察[M].1998—2001.
    5.黑龙江省水利水电勘测设计研究院.滨洲滨北铁路桥扩孔河道控制工程工程地质勘察报告[M].2002.
    6.哈尔滨市城市水资源管理办公室.2000年—2003年地下水位统测资料[M].
    7.水利水电出版社.水利水电工程地质手册[M].
    8.地质出版社.水文工程地质手册[M].
    9.郭见扬,谭周地等.中小型水利水电工程地质(第二版).水利电力出版社.1995.
    10.地下水壅水与水库渗透水文地质计算.地质出版社,1956.
    11.钱学溥.作图法求解库岸地下水壅高值[J].水文地质工程地质,2005 Vol.32 NO.1 P.85-88.
    12.杨青春,卢文喜,马红云.Visual Modflow在吉林省西部地下水数值模拟中的应用[J].2005 Vol.32 No.3 P.67-69
    13.迟宝明,王志刚,林岚等.松辽流域水资源现状与地下水开发利用分析[J].2005 Vol.32 No.3 P.70-73
    14.贾金生,田冰,刘昌明.Visual MODFLOW在地下水模拟中的应用--以河北省栾城县为例河北农业大学学报 2003 Vol.26 No.2 P.71-78
    15.刘昌明,何希吾.中国21世纪水问题方略[M].北京:科学出版社,2001.165-167.
    16.陈梦熊.中国水文地质环境地质问题研究[M].北京:地震出版社,1998.
    17.王文科,李俊亭.地下水流数值模拟的发展与展望[J].西北地质,1995,16 (4):52-56.
    18.李颖.水资源系统中地下水系统数学模型研究[J].世界地质,1998,17(2):41-46.
    19.薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1999(5):1-3.
    20.吴剑峰,朱学愚.由MODFLOW浅谈地下水流数值模拟软件的发展趋势[J].工程勘察,2000(2):12-15.
    21.薛禹群,朱学愚.地下水动力学[M].北京:地质出版社,1979.237-272.
    22.湖南省水利电力勘测设计院.中小型水库工程地质[M].北京:科学出版社,1978.191-194.
    23.魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状与发展趋势[J].重庆大学学报(自然科学版),2000(10):50-52.
    24.武强,董东林.水资源评价的可视化专业软件(Visual MODFLOW)与应用潜力[J].水文地质工程地质,1999(5):21-23.
    25.何杉.Processing MODFLOW软件在地下水污染防治中的应用[J].1999,57(3):16-18.
    26.栾城县水政水资源综合管理办公室.石家庄市栾城县水资源开发利用现状调查报告[R].1993.
    27.唐益群,叶为民.地下水资源概论[M].上海:同济大学出版社,1998.
    28.孙纳正.地下水流的数学模型和数值方法[M].北京:地质出版社,1981.42-56.
    29.陈劲松,万力.MODFLOW中不同方程组求解方法差异分析[J].工程勘 察,2002,(2):25-32.
    30. Meyer P D, Valocchi A J, Ashby S F, et al. A numerical investigation of conjugate gradient method as applied to three-dimensional groundwater flow problems in randomly heterogeneous porous media [J]. Water Resources Research, 1989, 25(6): 1440-1446.
    31.FH卡明斯基(著),北京地质学院(译).地下水动力学原理[M].北京:地质出版社,1956.131-157.
    32.波波夫,电力工业部水力发电建设总局(译).水力发电建设工程地质勘察[M].北京:电力工业出版社,1956.221-224.
    33.斯卡巴拉诺维奇,单基源(译).水文地质计算[M].北京:中国工业出版社,1964.105-123.
    34. Mcdonald M G, Harbaugh A W. MODFLOW[R]. U. S. Geological Survey, 1988.
    35.张晓伦.Modflow在地下水资源评价中的应用.[J]2005 Vol.17 No.2 P.92-93西部探矿工程.
    36.孙蓉琳,等.数值模拟技术在基坑降水中的应用[J].岩石力学与工程学报,2003,22(增1).
    37.李文跃,等.Visual Modflow在大庆龙西地区地下水数值模拟中的应用[J].世界地质,2003,22(2).
    38.王智,高瑾,等.MODFLOW在三工河流域地下水资源评价中的应用[J].新疆农业大学学报,2002,25(4).
    39.贾金生,田冰,等.Visual MODFLOW在地下水模拟中的应用[J].河北农业大学学报,2003,4.
    40.房佩贤,卫中鼎,廖资生.专门水文地质学[M].北京:地质出版社,1996.
    41.陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1996.
    42.陈崇希,唐仲华.地下水流动问题数值方法[M].武汉:中国地质大学出版 社,1990.
    43.薛禹群,吴吉春.地下水数值模拟在我国—回顾与展望.水文地质工程地质,199 7(4):20~21.
    44.林学钰,廖资生.水文地质基础在地下水模型研究中的重要性.水文地质工程地质,1992(1):6
    45.陈明佑.我对使用数值法的一些看法.水文地质工程地质,1992(3).
    46. Meyer P D, Valocchi A J, Ashby S F, et al. A numerical investigation of conjugate gradient method as applied to three-dimensional groundwater flow problems in randomly heterogeneous porous media [J]. Water Resources Research, 1989, 25(6): 1440-1446.
    47. Meyer, PD, Valocchi, AJ, Ashby, SF, and Saylor, PE, 1989, A numerical. investigation of the conjugate gradient method … groundwater flow problems in randomly heterogeneous porous media: Water. Resources Research, vol., 25, no. 6.
    48. McDonald, M. G. and A. W. Harbaugh. 1988. A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations of the U. S. Geol. Surv. Chapter Al, Book 6.
    49. Verga, R. S., 1962, Matrix iterative analysis. Prentice Hall, Englewood Cliffs, N. J., 322p.
    50. Andersen, P. F. 1988. PREMOD (a Preprocessor for MODFLOW). GeoTrans, Inc., Reston, VA.
    51. Domenico, P. A. and F. W. Schwartz. 1990. Physical and Chemical Hydrogeology. John Wiley & Sons, New York. 824 pp.
    52. Ferris, J. G., D. B. Knowles, R. H. Brown, and R. W. Stallman. 1962. Theory of.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700