用户名: 密码: 验证码:
鄂尔多斯白垩系盆地北区地下水可更新能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文依托于中国地质调查项目“鄂尔多斯白垩系地下水盆地地下水化学演化与水循环研究”(12120103302-ZT2)。以盆地北区为主要研究区,在分析其水文地质结构的基础上,系统地研究了区域地下水化学分布特征和天然水体同位素组成特征,从水化学和同位素的角度揭示了区域地下水循环规律。从地下水补给条件、含水介质的性质和区域地下水循环模式等方面定性分析了研究区地下水可更新能力。推求了计算地下水更新速率的指数-活塞流模型、线性模型和线性-活塞流模型,并首次对地下水更新速率计算中的~(14)C输入浓度进行了模型校正。最终依据地下水更新速率并结合前期定性分析,对盆地北区地下水可更新能力进行了定量评价。上述研究查明了研究区地下水可更新能力,为区域地下水资源的合理开发利用和科学管理提供了依据,有助于推动鄂尔多斯盆地能源化工基地的建设,促进当地经济的可持续发展。
Ordos basin is the important energy sources and chemical industry base of China,which plays an important role in the realization of Western Developing Strategy. Butdue to the arid and semiarid climate, the contradiction between the water resourcessupplyand demandis veryobvious. Thenorthern areaof Ordos Cretaceous Basinis themain water supply of this area in the future, where the water resources are abundantrelatively. As we all known, the groundwater renewablity is the important basis ofevaluatingthegroundwaterresourcesandestablishingthereasonabledevelopingpatternof groundwater resources. So that it is needful to studythe groundwater renewabilityinthenorthernarea.
     This thesis is on the basis of Chinese geological investigating project“Groundwater chemical evolution and water circulation research in Ordos CretaceousGroundwaterBasin(”12120103302-ZT2).Basedonthegeologicalandhydrogeologicalconditions of northern area, this paper first analyzes the characteristics of geochemicaldistribution and the isotopic composition of natural waters, what is used to illustrate thelaw of groundwater circulation. Then it evaluates the groundwater renewablity ofnorthern area by renewal rate as the index. This work doesn’t only find out thegroundwater renewablityof northern area, which is the basis of groundwater reasonabledevelopment and scientific management, but also explores some problems in thecalculation of renewal rate. Therefore this study is significant in practice and theory.Andthemainachievementsofthispaperareasfollows:
     1、The distribution characteristics of the groundwater chemistry. Because ofthe impacts of landform, rock characters, rock facies and groundwater circulation, thevaluesofTDS、Cl-、SO42--、K++Na+、Ca2+andMg2+aregenerallyhighinthewestofstudyareawhilelowintheeast.
     In horizontal dimension, divided by Yanchi-Sishililiang surface watershed, the concentrations ofTDS andmainions are generallylowintheeast,andthe groundwateris mostlyHCO3type water. So there is no classical horizontal distributionlaw here. Butin the west, the concentrations of TDS and main ions rise slowly from the surfacewatershed to west and northwest, with the changes of chemical types which aregenerally from HCO3type water to SO4·Cl one. There is an obvious distribution law inhorizontaldimensionalongtheflowlineofgroundwater.
     In vertical dimension, the concentrations of TDS and main ions rise with theincreasing depth of groundwater especially in Molinhe-Yanhaizi groundwater systemand Yanchi-Dousituhe groundwater system, while the area of HCO3type water reducesobviously. The TDS distributes with the characteristics of shallowmedial>deep nearthedownstream of MolinheRiverandDosituheRiver.Forvertical distribution,thegroundwaterchemistryis homogenousnear the surface watershed and in Wulanmulunhe-Wudinghe groundwater system. ButinYanchi-DousituhegroundwatersystemandMolinhe-Yanhaizigroundwatersystem,itshowsthedelaminatingcharacteristicstoacertainextent.
     2、Theisotopiccompositionofnaturalwaters.Theisotopicresearchfindsouttherelationships of“3-types water”transformation in the study area. Both surface waterand groundwater are originated from precipitation. It is proved that groundwater isrechargedbyprecipitation,butsurfacewaterisgenerallyrechargedfromgroundwater.And the composition of ?D and ?18O in groundwater in the east ofYanchi-Sishililiang surface watershed is more enriched than the west. In verticaldimension, ?D and ?18O in shallow groundwater is more enriched than medial and deepgroundwater. The isotopic composition of groundwater in vertical dimension ishomogenous near the surface watershed and in the east, but it shows a littledelaminatingcharacteristicinthewest.
     3、The characteristics of groundwater circulation. The tracing ofhydrochemistry and isotopes shows the characteristics of circulation that thegroundwater is recharged by precipitation near the surface watershed, and flow to theeastandwestofthestudyarea.TheareasneartheYanchi-SishililiangandXinzhaosumusurface watersheds are recharge areas. The areas near the eastern, western and northernboundaries are discharge areas. The groundwater flows from recharge area to dischargearea. In the east of Yanchi-Sishililiang surface watershed, the vertical circulation playsan important role in groundwater circulation, but in the west, the horizontal flow isinstead of vertical circulation. By constructing the circulation models of classical cross section, the groundwater circulation is concluded into three classes: local circulationsystem,mediumcirculationsystemandregionalcirculationsystem.
     4、The calculation of groundwater renewal rate. First, the EPM, LM and LPMfor calculating groundwater renewal rate are educed. Then the corrections of 14C inputconcentration are made. At last, according to the circulation model and flowcharacteristics of groundwater, the renewal rates of shallow groundwater are calculatedby3Hand14C,usingthemodelofwellmixedreservoir.Andtherenewalratesofmedialand deep groundwater are calculated by 14C, using the model of mixing in equalproportions.
     5、The evaluation of groundwater renewability. In terms of the groundwaterrenewalrate,theevaluationofrenewabilityinthethreelayersgroundwaterisperformed.Most renewal rates oftheshallowgroundwaterarelagerthan1.0%/a,whiletherenewalrates of medial groundwater are between 0.1 and 1.0%/a, and the renewal rates of deepgroundwater are less than 0.1%/a. The renewability of groundwater near the surfacewatershed and in the east is better than the west. In verticaldimension, the renewabilityin shallow and medial groundwater is better, which is suitable for developing on thebasis of reasonable evaluating. But the deep groundwater can’t be used ordinarilybecauseofits’weakrenewability.
引文
[1] 马致远,牛光亮,刘芳等.陕西渭北东部岩溶地下水强径流带的环境同位素证据及其可更新性评价[J].地质通报,2006,25(6):756-761.
    [2] 苏小四.同位素技术在黄河流域典型地区地下水可更新能力研究中的应用[D].长春:吉林大学,2002.
    [3] 侯光才,张茂省,王永和等.鄂尔多斯盆地地下水勘查实施项目总体设计[R].西安地质矿产研究所,2003.
    [4] 鄂尔多斯盆地地下水勘察报告(1999~2002)下册[R].西安地质矿产研究所,2002.
    [5] 王挨顺,谢从瑞,王永和等.鄂尔多斯盆地地层划分对比,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:77-90.
    [6] 侯光才,张茂省,王永和等.鄂尔多斯盆地地下水勘查综合调查评价2005年度工作方案[R].西安地质矿产研究所,2005.
    [7] 李云峰,徐中华,王玮等.鄂尔多斯白垩系自流水盆地地下水水化学形成规律研究,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:191-216.
    [8] 李云峰,王疆霞,王玮等.白于山地区白垩系地下水劣质成因探讨,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:244-248.
    [9] 董维红.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水 14C 年龄校正中的应用[D].长春:吉林大学,2005.
    [10]王延江,刘心彪.水化学及同位素在鄂尔多斯盆地地下水勘查中的应用[J].甘肃科技,2005,21(9):31-32.
    [11]杜龙明,郭三民,金有生等.鄂尔多斯盆地盐池-定边地区水化学场分布特征及形成机理,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:186-190.
    [12]候光才,王德潜,尹立河.鄂尔多斯盆地地下水系统结构分析及勘查思路,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:28-39.
    [13]孙永明,乔光东.鄂尔多斯白垩系自流水盆地地下水系统初步分析,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:52-70.
    [14]王德潜,刘祖植,尹立河等.鄂尔多斯盆地地下水系统初步分析,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:9-21.
    [15]李云峰,王玮,候光才等.鄂尔多斯白垩系自流水盆地深层地下水流动系统初步推断,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:104-110.
    [16]陶正平,崔旭东,周斌等.陇东盆地白垩系地下水补、径、排条件及循环特征,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:166-172.
    [17]王金生,王长申,滕彦国.地下水可持续开采量评价方法综述[J].水利学报,2006,37(5):525-533.
    [18]文东光.用环境同位素论区域地下水资源属性[J].地球科学,2002,27(2):141-147.
    [19]Ian D.Clark and Peter Fritz. Environmental Isotopes In Hydrogeology[M]. NewYork: Lewis Publisher,1997.
    [20]Zuber.A. Mathematical models for the interpretation of environmentalradioisotopes in groundwater systems. Handbook of Environmental IsotopeGeochemistry, 1986, Vol.2, Part B (Eds. P. Fritz and J.Ch. Fontes), Elsevier,Amsterdam:1-59.
    [21]Maloszewski,P. and Zuber,A. Lumped parameter models for the interpretation ofenvironmental tracer data In: Manual on Mathematical Models in IsotopeHydrogeology.IAEA-ECDOD-910,IAEA,Vienna,1996:9-58.
    [22]M.E.Campana and E.S.Simpson. Groundwater residence times and recharge rates usinga discrete-state compartment model and 14C data[J]. Journal ofHydrology,1984,72:171-185.
    [23]H.J.Simpson et al. Evaporation enrichment of deuterium and oygen-18 in aridirrigation zone[R].IAEA Technical Reports 1986,IAEA:241-255.
    [24]C.J.Barnes and G.B.Allison. Tracing of water movement in the unsaturated zoneusing stable isotopes of hydrogen and oxygen[J].Journal of Hydrology,1988,100:143-176.
    [25]E.M.Adar. Quantitative evaluation of flow systems, groundwater recharge andtransmssivities using environmental tracers. IAEA-TECDOC910 “Manual onmathematical models in isotope hydrogeology”,IAEA,VIENNA,1996.
    [26]Isam E. Amin and Michael E. Campana. A general lumped paramenter model for theinterpretation of tracer data and transit time calculation in hydrologic systems[J].Journal of Hydrology,1996,179:1-21.
    [27]Maloszewski, P.and Zuber, A. Principles and practice of calibration and validationof mathematical models for the interpretation of environmental tracer data[J].Advances in Water Resources,1993,16:173–190.
    [28]Zuber, A.and Maloszewski, P.Lumped parameter models. In:Mook, W.G. (Ed.),Environmental Isotopes in the Hydrological Cycle Principles and Applications.IAEA and UNESCO, Vienna,2000:5–35.
    [29]Kebede, Yves Travi,et al. Groundwater recharge, circulation and geochemicalevolution in the source region of the Blue Nile River, Ethiopia Seifu[J].AppliedGeochemistry,2005,20:1658–1676.
    [30]J. Mahlknecht, J. Ga′rfias-Solis et al. Geochemical and isotopic investigationson groundwater residence time and flow in the Independence Basin, Mexico[J].Journal of Hydrology,2006,324:283–300.
    [31]Thomas imbach. Deep groundwater circulation in the tectonically active area ofBursa northwest Anatolia,Turkey[J].Geothermics,1997,26(2):251-278.
    [32]顾慰祖,陆家驹,谢民等.乌兰布和沙漠北部地下水资源的环境同位素探讨[J].水科学进展,2002,13(3),:326-332.
    [33]苏小四,林学钰,廖资生等.黄河?18O、?D和3H的沿程变化特征及其影响因素研究[J].地球化学,2003,4:349-357.
    [34]苏小四,林学钰.银川平原地下水循环及其可更新能力评价的同位素证据[J].资源科学,2004,26(2):29-35.
    [35]宋献方,夏军,于静洁.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,2002,21(6):527-537.
    [36]张光辉,陈宗宇,费宇红等.海河流域平原地下水同位素年龄及其水化学区域分布特征[J].矿物岩石地球化学通报,2001,20(4):412-414.
    [37]张光辉,刘少玉,张翠云等.黑河流域地下水循环演化规律研究[J].中国地质,2004,31(3):289-293.
    [38]苏小四,林学钰.包头平原地下水水循环模式及其可更新能力的同位素研究[J].吉林大学学报(地球科学版),2003,33(4):503-529.
    [39]Gerhard Andres,Richard Egger. A new tritium interface method for determining therecharge rate of deep groundwater in the Bavarian Molasse basin[J].Journal ofHydrology, 1985,82(1-2):27-38.
    [40]M.E.Campana and D.A.Mahin. Model-derived estimates of groundwater mean ages,recharge rates,effective porosities and storage in a limestone aquifer[J].Journalof Hydrology,1985,76(3-4):247-264.
    [41]Maloszewski, P. and Zuber, A. Determining the turnover time of groundwater systemswith the aid of Environmental tracers, I. Models and their applicability[J].Journal of hydrology,1982,57:207-331.
    [42]D. Viville, B. Ladouche and T. Bariac. Isotope hydrological study of mean transittime in the granitic Strengbach catchment (Vosges massif, France): applicationof the FlowPC model with modified input function [ J ] .Hydrologicalprocesses,2006,20:1737-1751.
    [43]K.J.McGuire, D.R.DeWalle and W.J.Gburek. Evaluation of mean residence time insubsurface waters using oxygen-18 fluctuations during drought conditions in themid-Appalachians[J]. Journal of hydrology,2002,261:132-149.
    [44]马致远.应用EPM法确定地下岩溶水系统滞留时间及储水系数[J].工程勘察,2003,6:23-26.
    [45]Leduc,C.,et al. Comparison of recharge estimates for the two largest aquifers inNiger,based on hydrodynamic and isotopic data,IAHS Publ.2000,262:391-399.
    [46]Leduc,C.,et al. Estimation de la recharge de la nappe phreatique du ContinentalTerminal(Niamey, Niger)?partir des teneurs en tritium.C .R .S ci.Paris1996,323:599-605.
    [47]Le Gal La Salle,C., Marlin,C., Leduc,C.,et al. Renewal rate estimation ofgroundwater based on radioactive tracers( 3H,14C)in an unconfined aquifer in asemi-arid area, lullemeden Basin, Niger[J]. Journal of Hydrology,2001,254:145-156.
    [48]张光辉,聂振龙,谢悦波等.甘肃西部平原区地下水同位素特征及更新性[J].地质通报,2005,24(2):149-155.
    [49]陈宗宇.利用氚估算太行山前地下水更新速率[J].核技术,2006, 29(6):426-431.
    [50]聂振龙.黑河干流中游盆地地下水循环及更新性研究[D].北京:中国地质科学院,2004.
    [51]谢渊,王剑,李明辉等.鄂尔多斯白垩纪岩相古地理及其水文地质意义,鄂尔多斯盆地地下水资源与可持续利用[M].西安:陕西科学技术出版社,2004:149-165.
    [52]柳福田,苏小四,候光才等.CFCS 法在鄂尔多斯白垩系地下水盆地浅层地下水年龄研究中的应用[J].吉林大学学报(地球科学版),2007,37(2):298-302.
    [53]王恒纯.同位素水文地质概论[M].北京:地质出版社,1991.
    [54]Scott C.Doney,et al. A model function of the global bomb tritium distributioninprecipitation,1960~1986[J].Journal of Geophysical Research, 1992,97(C4):5481-5492.
    [55]Fontes,J.-Ch. Dating of groundwater. In: Gridebook on Nuclear Techniques inHydrology[R].Technical Reports Series No.91,IAEA,Vienna,1983.
    [56]Mook,W.G, Zuber.A, Maloszewski,P, et al.Environmental isotopes in thehydrological cycle[R]. Vienna: International Atomic Energy Agency,2002:135-142.
    [57]Stuiver,M., Braziunas,T.F., Becker,B.and Kromer, B. Climatic,solar oceanic andgeomagnetic influences on the late-glacial and Holocene at mospheric14 C/12C change[J]. Quat Res,1991,35:1-24
    [58]Vogel,J.C.Carbon-14 dating of groundwater[R]. Isotope Hydrology 1970, IAEAsymposium 129,1970,Vienna:225-239.
    [59]Tarmers,M.A.The validity of radiocarbon dates on groundwater[J].GeophysicalSurvey,1975, 2:217-239.
    [60]Fontes,J.-Ch., Ganier,j-M. Determination of the initial 14C activity of totaldissolved carbon: A review of exiting model and a new approach[J]. Water Resourcesresearch, 1979,15:399 -413.
    [61]Pearson, F.J. Use of C-13/C-12 ratios to correct radiocarbon ages of materialinitially diluted by limestone[R].In:Proceedings of the 6th InternationalConference on Radiocarbon and Tritium Dating, Pulman, Washinton,1965,357.
    [62]张人权.地下水资源特征及其开发利用[J].水文地质工程地质,2003,6:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700