用户名: 密码: 验证码:
废弃黄河水下三角洲海床变化水槽试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过设计物理模型试验研究了废弃黄河水下三角洲海床变化情况。利用小水槽试验与实测资料结合的方法研究了黄河口海岸侵蚀机理;通过大水槽试验研究了海底沙波发育和移动规律以及粉土在波浪作用下孔压响应的相关情况。
     1976年黄河尾闾改道清水沟后,三角洲北部钓口流路叶瓣正在发生剧烈的侵蚀,据此设计了小水槽物理模型试验。结果表明,三角洲废弃初期,三角洲前缘海床在波浪作用下易于发生液化破坏,导致早期滑坡灾害现象多发。冲淤平衡后,存在冲淤平衡点(带),实验计算结果为:三角洲冲淤平衡带上部冲刷了1143.5 cm2,下部淤积了558 cm2,淤积量大约为冲刷量的一半。波浪长期作用将导致三角洲沉积的软弱层发生巨大变化,造成其流变或蠕变,对河口三角洲的工程稳定性造成重大影响。随着试验的进行,波浪持续作用下在三角洲下部底床形成了非常明显的沙波,通过试验分析可得出,波浪可以掀起海底的泥沙,使其悬浮再沉积,在波浪的传播过程中形成沙波或沙丘,并且平缓广阔的砂质海底有利于沙波或沙丘的形成。形成的沙波或沙丘对海底管道或航运会产生非常不利的影响。由于小水槽试验规模和时间的限制,不能用其进一步研究沙波和海床粉土变化的详细情况,所以专门设计了研究沙波和底床粉土变化的大水槽试验。
     依据多年现场观测资料的平均值按照一定比例缩小后,设计大水槽物理模型试验来研究海底沙波发育机理和移动规律。用三种不同粒径的砂铺于水槽试验区,然后依次施加不同大小的波浪和流,共计试验13组。对影响沙波发育的各个参数,波浪、流速、底床泥沙粒径以及底床特性等进行分析和研究。得出水体振荡运动在沙波发育过程中起着极为重要作用的认识;通过对13组试验现象的观测研究和试验数据的系统分析,从泥沙起动角度去分析沙波形成,利用沙波移动公式去解释沙波进一步发育机理。用波流共同作用下的剪切力及摩阻流速替代日本学者Shinohara建立的计算沙波移动速度公式中的相应参数,利用试验实测数据验证分析带入的可行性,把计算结果与在试验中实际测量的沙波移动速度作比较,发现吻合性较好,得出在水动力不是太复杂的情况下,这样的带入计算有一定实用价值。
     利用大水槽试验结果,从波浪和水流作用下粉土中孔压变化角度分析粉土在波浪作用下的液化破坏机理;通过对孔压变化以及分布曲线的研究,考虑超孔压随时间的累积和消散效应,分析液化可能的影响深度。在讨论底床的工程不稳定性时,分析了海底土体对波浪周期性荷载的动力响应。并且从孔压累积消散和土体结构方面分析了波浪和水流作用下海底粉质土液化的原因,并进一步阐述其工程特性和工程应用性。
The diversification in seabad of abandoned Yellow River subaqueous delta are investigated by designing the physical model test in the paper. The erosion mechanism of the Yellow River estuary is studied by utilizing the integratement of the little flume experimentation and information measured in the field. The disciplinarian of the sandwave development and movement are studied through big flume experiment, and the relevant circumstances of pore water pressure changes in silt under the wave action is also analysed in the large flume test.
     The severe erosion has been occurred in the lobe of Diaokou River distributary in the north of the Yellow River delta, since the Yellow River was artificially diverted in the Qingshuigou River distributary flowing into the sea in May 1976, and the little flume experiment was designed on the basis of the in-situ changes. The results show that in the early age of the delta abandoned, the delta front seabad is rapidly eroded because the terrestrial sediment is no longer deposited, and the phenomenon of liquefaction destroy occurs in the subaqueous delta front seabad under the wave action, leading to a lot of disaster of the fauits and subaqueous landslides in the early period. After the erosion-accumulation equilibrium stage, the area changes determined by comparing the final profiles at the end of the experiment with initial profiles, indicate that the amounts of erosion and accretion at either side of the cingulum point are 1143.5 cm2 and 558 cm2, respectively. The soft stratum of the delta deposition deforms greatly with the long time wave action, and the rheological diversification will occur and the phenomenon of diapir is likely to take place under certain conditions, if the soft stratum has enough thickness and acreage, which are destructive to the offshore engineering facilities and engineering stability in the estuary delta. With the flume experiment carried out for a long period, the very obvious sandwave comes into being in the low part of the delta seabad with the sustained wave action. Through the experimental analysis, the seabad sediment is resuspended by waves and then accumulates again, so the sandwave forms in the course of the spread of the wave, in addition, the silty seabed with the broad flat is favorable to the sandwave formation. The sandwave formed on the seabad is enormously destructive to the seabad pipeline and maritime transport. Due to the restrictions of the experimental scale and time of the little flume, the further study on the detail circumstances of the transformation of sandwave and seabad silt are not carried out, the large flume is designed specially to investigated the sandwave and seabad silt.
     Scaled down according to the average value of observational data in the field for many years, the physical model of large flume test is designed to investigated the development mechanism and mobile disciplinarian of the seabad sandwave. The silt with three different median size is laid in the flume experimental zone, then the different wave and current are brought to bear in proper order, a total of 13 test groups are carried out. The various parameters that influence sandwave development, e.g. wave, current velocity, sediment particle size in the seabad and the seabad characteristic, are investigated and analysed. The investigative outcomes indicate that the oscillatory movement of water body plays an important role during the process of the sandwave development; through the observational study to the experimental phenomenon of 13 test groups and the systematic analysis to the experimental data, the sandwave development is analysed from the role of start-up of sediment, in addition, the further development mechanism is explained taking advantage of the formula of sandwave movement. The shear stress and the friction shear velocity that are in the combined effect of wave-current is applied to replace the corresponding parameters in the formula of the sandwave mobile velocity, and the mobile formula is established by Japanese scholars Shinohara, the experimental data is used to validate feasibility of the replacement. Then, the comparison between the calculated outcomes and the the sandwave mobile velocity of the actual measurement in experimental process, and the results indicate that the anastomose is better, thus, the conclusion could be drawn that such fungible calculation has a certain degree of practical application value when the hydrodynamic circumstances are not very complex.
     The mechanism of liquefaction damage by waves about the silt is analysed from the role of the changes of the pore water pressure under the wave and current action, making use of the results of the large flume experiment; by means of investigating the changes of the pore water pressure and distribution curve, the cumulative and discutient effect of the excess pore water pressure is taken into account, then, the possibly influencing depth of the liquefaction is analysed. The dynamic response of the seabed soil to seasonal load is analysed in discussing the engineering instability of the seabad. Besides, the liquefaction causation of the silty clay under the wave and current action from the role of the cumulation and abreaction of the pore water pressure as well as the soil structure, and the engineering characteristics and application are further elaborated.
引文
[1]李广雪,刘守全,黄河三角洲北部海底刺穿初步研究[J].中国科学:D辑, 1999, 29(4):379-384.
    [2]李广雪,庄克琳,姜玉池,黄河三角洲沉积体的工程不稳定性[J].海洋地质与第四纪地质,2000,20(2):21-26.
    [3]陈卫民,杨作升.现代长江、黄河河口水下三角洲不稳定性的对比研究[J].青岛海洋大学学报,2001, 31(2):219-255.
    [4]王爱华,业治铮.现代黄河三角洲的结构、发育过程和形成模式[J].海洋地质与第四纪地质,1990,10(1):1-12.
    [5]李光天,符文侠.我国海岸侵蚀及其危害[J].海洋环境科学,1992,11(1):53-58.
    [6]季子修.中国海岸侵蚀特点与侵蚀加剧原因分析[J].自然灾害学报,1996,5(2):65-75.
    [7]张裕华.中国海岸侵蚀危害及其防治[J].灾害学,1996,11(3):15-21.
    [8]陈吉余,沈焕庭,徐海根.三峡工程对长江河El盐水入侵和侵蚀堆积过程影响的初步分析[c].长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社,1987:350-368.
    [9]季子修,蒋自巽,朱季文,等.海平面上升对长江三角洲和苏北滨海平原海岸侵蚀的可能影响[J].地理学报,1993,48(6):516-526.
    [10]王兆印,程东升,刘成.人类活动对典型三角洲演变的影响[J].泥沙研究,2005,6 :76-81.
    [11]李平,朱大奎,波浪在黄河三角洲形成中的作用[J].海洋地质与第四纪地质. 1997,17(2):39-45.
    [12]李平,黄河水下三角洲表层沉积物对应分析[J].海洋科学.1997,4:37-47.
    [13]王琦,Bornhold等,黄河水下三角洲动力沉积特征[J].中国科学B辑,1992,21(6):559-565.
    [14]王艳红.废黄河三角洲海岸侵蚀过程中的变异特征及整体防护研究[D].南京师范大学优秀博士论文,2006.
    [15]陈吉余,陈沈良,等.中国河口海岸面临的挑战[J].海洋地质动态,2002,18(1):1-5
    [16]张士华.黄河三角洲岸线变迁和保护措施的研究[J].海洋科学,2003,27(10):28-32.
    [17]沈焕庭,胡刚.河口海岸侵蚀研究进展[J].华东师范大学学报(自然科学版),2006,6(6): 1-8.
    [18]程义吉.黄河河口研究与治理实践,第一版[M].郑州:黄河水利出版社, 2001, 37-104.
    [19]李广雪,成国栋,魏合龙,潘为刚,任于灿,丁东,周永青,赵杰仁.现代黄河口区流场切变带[J].科学通报,1994(39(10)): 928-932.
    [20]李九发,时伟荣,沈焕庭.长江河口最大浑浊带的泥沙特性和输移规律[J].地理研究, 1994(13(1)):51-59.
    [21]李广雪.黄河入海泥沙扩散与河海相互作用[J].海洋地质与第四纪地质, 1999(19(3)):1-10.
    [22]沈焕庭,贺松林,茅志昌,李九发.中国河口最大浑浊带刍议[J].泥沙研究, 2001(1):23-29.
    [23]陈吉余.中国河口海岸研究回顾与展望[J].华东师范大学学报(自然科学版),1996(1):1-5.
    [24]孙效功,杨作升,陈彰榕.现行黄河口海域泥沙冲淤的定量计算及其规律探讨[J].海洋学报,1993(15(1)):129-136.
    [25]高涛,李广雪,史经昊,废弃黄河三角洲侵蚀机理的试验研究[J],海洋地质动态2009,25(3):11-17.
    [26]孙效功,杨作升.利用输沙量预测现代黄河三角洲的面积增长[J].海洋与湖沼,1995(26(1)):76-82.
    [27]张琦,杨作升,陆念祖,等,黄河口水下底坡不稳定的水动力机制探讨[J].海洋学报,1992,14(3),133-141.
    [28]林振宏,杨作升.现代黄河水下三角洲底坡的不稳定性[J].海洋地质与第四纪地质, 1995, 15(3): 11-22.
    [29]李安龙,杨荣民,曹立华,等.近代黄河水下三角洲底坡土体的差异侵蚀及土工特性[J].青岛海洋大学学报,2001,31(3):435-440.
    [30]李安龙,杨荣民,林霖,等.波浪加载下海底土质特性变化的研究[J].青岛海洋大学学报,2003,33(1):101-106.
    [31]冯秀丽,林霖,庄振业,潘树春.现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间的关系[J].海岸工程,1999(4):1-7.
    [32]冯秀丽,沈渭铨,等.现代黄河水下三角洲埕北地区晚更新世纪及全新世纪地层的物理力学性质[J].海洋与湖沼通报, 1990,3:12-19.
    [33]冯秀丽,沈渭铨,杨荣民,等.现代黄河水下三角洲砂土液化模型[J].青岛海洋大学学报,1995,25(2):221-228.
    [34]冯秀丽,叶银灿,马艳霞,林霖.动荷载作用下海洋粉土的孔压响应及其动强度[J].青岛海洋大学学报,2002,32(3):429-433.
    [35]冯秀丽,庄振业,林霖,等.现代黄河水下三角洲软土稳定性定量分析[J].海岸工程,2000,19(1):50~53.
    [36]陈卫民.黄河三角洲刁口流路岸段岸线的近期演化规律[J].青岛海洋大学学报, 1993, 23(增刊):52-60.
    [37]陈卫民等.黄河口水下底坡微地貌及其成因探讨[J].青岛海洋大学学报, 1992.1,22(1):71-81.
    [38]陈卫民曾卓英,高分辨率的声波探测在浅海工程中的应用[J].海岸工程,1992,11(3):15-24.
    [39]陈卫民,杨作升,D. B. Prior,等.老黄河口水下底坡不稳定性的研究[A].广州国际海洋工程地质讨论会文选[C].北京:地质出版社,1994. 237-249.
    [40]陈卫民,杨作升,D.B.Prior,等.黄河口水下底坡微地貌及其成因探讨[J].青岛海洋大学学报,1992,22(1):71-80.
    [41]陈卫民,杨作升,Prior D B等,老黄河口水下底坡不稳定性的研究,河口沉积动力学研究文集(一)黄河口水下底坡不稳定性:20~35.
    [41]成国栋,薛春汀.黄河三角洲沉积地质学[M].北京:地质出版社,1997:172-263.
    [42]冯秀丽,沈渭铨,等.海洋工程地质专论[M]. 2006:105-129.
    [43]陈小英,陈沈良,等.黄河三角洲海岸剖面类型与演变规律[J].海洋科学进展,2005,23(4):438-445.
    [44]陈静,冯秀丽,林霖.波浪作用下粉土中的孔压响应及其在粉土海床稳定性评价中的应用[J]海洋科学,2006,30(3):1-5.
    [45]杨少丽,沈渭铨,杨作升.波浪作用下海底粉砂液化的机理分析[J].岩土工程学报,1995,17(4):28-37.
    [46]陈沈良,张国安,谷国传.黄河三角洲海岸强侵蚀机理及治理对策[J].水利学报,2004,7:1-7.
    [47]左书华,李九发,陈沈良,等.河口三角洲海岸侵蚀及防护措施浅析[J].中国地质灾害与防治学报,2006,17(4):97-109.
    [48]李安龙,李广雪,等.黄河三角洲废弃叶瓣海岸侵蚀与岸线演化[J].地理学报,2004,59(5):371-378.
    [49]刘勇,李广雪,等.黄河废弃三角洲海底冲淤演变规律研究[J].海洋地质与第四纪地质,2002,23(3):27-35.
    [50]鹿洪友,李广雪.黄河三角洲埕岛地区近年海底冲淤规律及水深预测[J].长安大学学报(地球科学版),2003,25(1):57-62.
    [51]周永青.黄河三角洲北部海岸水下岸坡蚀退过程及主要特征[J].海洋地质与第四纪地质,1998,18(3):79-85.
    [52]杨子赓.海洋地质学[M]. 2004:269-305.
    [53]师长兴,尤联元,李炳元.黄河三角洲沉积物的自然固结压实过程及其影响[J].地理科学, 2003(2):27-39.
    [54]吴建政,马立柱.黄河三角洲浅海插桩工程地基稳定性分析[J].海洋地质与第四纪地质, 1996,17(2):39-45.
    [55]杨作升, G. H. kellor,陆念祖,等.现行黄河口水下三角洲海底形貌及不稳定性[J].青岛海洋大学学报, 1990,20(1):7-21.
    [56]杨作升,陈卫民,Prior D B.黄河口水下滑坡体系[J].海洋与湖沼,1994,25(6):573~580.
    [57]杨作升,王涛主编.埕岛油田勘探开发海洋环境[M].青岛海洋大学出版社,1993,83-372.
    [58]叶银灿,来向华,杭州湾粉质土动强度特性研究[J].海洋科学,2003,27(2):56-59.
    [59]许国辉,曹雪晴,常瑞芳,等.黄河口水下三角洲塌陷凹坑地貌形成机制探讨[J].海洋地质与第四纪地质,2000年(增刊):66~70.
    [60]许国辉,常瑞芳,李安龙,等.波浪作用下粘质粉砂底床性态变化的试验研究[J].黄渤海海洋,2000,18(1):19~26.
    [61]许国辉,贾永刚,郑建国,等.黄河水下三角洲塌陷凹坑构造形成的水槽试验研究[J].海洋地质与第四纪地质,2004,24(3):37-40.
    [62]陈先德.黄河水文[M].第一版.郑州:黄河水利出版社,1996.
    [63]庞家珍,姜明星.黄河河口演变(Ⅰ)—(一)河口水文特征[J].海洋湖沼通报,2003(3):1-13.
    [64]李殿魁,杨玉珍,程义吉,顾玉荷,杨作升,焦益龄,曹文洪等.延长黄河口清水沟流路行水年限的研究[M].第一版.郑州:黄河水利出版社,2002.
    [65]黄河水利委员会.黄河河口地区治理开发概况, 2003.
    [66]陈述彭.论黄河三角洲持续发展能力[J].科技导报,2006,5:47-51.
    [67]李九发,时伟荣,沈焕庭.长江河口最大浑浊带的泥沙特性和输移规律[J].地理研究, 1994(13(1)):51-59.
    [68]王永红,沈焕庭.河口海岸环境沉积速率研究方法[J].海洋地质与第四纪地质, 2002(22(2)):115-120.
    [69]张莉莉,李九发,吴华林,沈焕庭.长江河口拦门沙冲淤变化过程研究[J].华东师范大学学报(自然科学版),2002(2):73-80.
    [70]康兴伦,王品爱,袁毅,朱校斌,李培泉,纪正训.黄河口海域沉积速率的研究[J].海洋科学,1988(5):25-30.
    [71]曹立华,徐继尚,李广雪,吴金龙,苏天赞.胶州湾湾口海底沙波地形地貌特征及其活动性研究[J].海洋地质与第四纪地质.2006,26(4):15-21.
    [72]程和琴,李茂田,周天愉,薛元忠.长江口水下高分辨率微地貌及运动特征[J].海洋工程,2002,20(2):91-95.
    [73]程和琴,李茂田. 1998长江全流域特大洪水期河口区床面泥沙运动特征[J].泥沙研究,2002,2(1):36-41.
    [74]程和琴,时钟,Kostaschuk R,董礼先.长江口南支一南港沙波的稳定域[J].海洋与湖沼,2004,35(3):214-220.
    [75]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983,188-189.
    [76]王尚毅,李大鸣.南海珠江口盆地陆架斜坡及大陆坡海底沙波动态分析[J].海洋学报,1994,16(6):122-132.
    [77]吴建政,胡日军,朱龙海,马芳,刘剑伦.南海北部海底沙波研究[J].中国海洋大学学报,2006,36(6):1019-1023.
    [78]赵月霞,刘保华,李西双,吴金龙,苏天赞.胶州湾湾口海底沙波地形地貌特征及其活动性研究[J].海洋与湖沼,2006,37(5):464-471.
    [79]刘振夏.中国陆架潮流沉积研究新进展[J].地球科学进展,1996,11(4):414-416.
    [80]陈彰榕.现行黄河拦门沙的形态与演化[J].青岛海洋大学学报. 1997,27(4):539-545.
    [81]李永植.论近代黄河三角洲的发育特征及其分类意义[J].海洋地质与第四纪地质,1993,13:71-79.
    [82]高抒.废黄河口海岸侵蚀与对策[J].海岸工程,1989,8(1):37-42.
    [83]夏东兴.海南东方岸外海底沙波活动性研究[J].黄渤海海洋,2001,19(1):17-24.
    [84]庞家珍,司书亭.黄河河口演变I.近代历史变迁[J].海洋与湖沼, 1979(10(2)):136-141.
    [85]白玉川,罗纪生.明渠层流失稳与沙纹成因机理研究[J].应用数学和力学, 2002,23(3):254-268.
    [86]边淑华,夏东兴,陈义兰等.胶州湾口海底沙波的类型、特征及发育影响因素[J].中国海洋大学学报, 2006,36(2):327-330.
    [87]蒋昌波,白玉川,赵子丹,江诗群.明渠沙纹形成的试验研究[J].长沙交通学院学报, 2002,18(4):45-48.
    [88]詹义正,余明辉,邓金运等.沙波波高随水流强度变化规律的探讨[J].武汉大学学报(工学版), 2006,39(6):10-13.
    [89]窦国仁.再论泥沙起动流速[J].泥沙研究,1999,(6):5-9.
    [90]陈沈良,张国安,谷国传.黄河三角洲海岸强侵蚀机理及治理对策[J].水利学报,2004(7):1-7
    [91]任于灿,董万,现代黄河三角洲地貌特征[J].海洋地质与第四纪地质.1987,7(增刊):19-28.
    [92] LOICZ(Land-Ocean Interactions in the Coastal Zone).1996.LOICZ Newsletter No.1, http://www.nioz.nl/loicz/.
    [93] LOICZ(Land-Ocean Interactions in the Coastal Zone),2003.LOICZ Future–Beyond 2002, http://www.nioz.nl/loicz/firstpages/LOICZFuturesV10.PDF.
    [94] http://www.china-cbn.com/《第一财经日报》
    [95] Qin Yunshan, Li Fan, Study on the influence of sediment loads discharged from Huanghe River on sedimentation in Bohai Sea. In: Proceedings international symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea, Hangzhou China. 1983, 1:91-101
    [96] Bornhold D B, Yang Z S, Keller G H and Prior D B, et al., Sedimentary framework of the modern Huanghe(Yellow River) delta, Geo-marine Letters. 1986, 6:77-83.
    [97] Wright L D, Wiseman W J., Marine disersal and deposition of Yellow River silts by gravity-driven under flows, Nature. 1988, 332: 629-632.
    [98] Wright L D, Wiserman W J., Processes of marine disersal and deposition of suspended silts off the modern mouth of the Huanghe( the Yellow River).Continental Shelf Research.1990, 10(1):1-40.
    [99] Qian Y., Ye Q., Zhou W., Variation of water discharge and sediment discharge, evolution ofriver bed of the main channel of the Huanghe. Publ. House China Construction Material Industry, Beijing, 1993, 230 pp. (in Chinese).
    [100] Saito Y., Yang Z S., Hori K., The Huanghe (Yellow River) and Changjiang(Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology, 2001, 41: 219- 231.
    [101] Milliman,J.D.and Syvitski,J.P.M.Geomorphic/Tectonic Control of Sediment Dischargeto the Ocean:The Importance of Small Mountainous Rivers.The Journal of Geology, 1992(100):525-544.
    [102] Hay A E,Wilson D. Rotary sidescan images of nearshore bedform evolution during a storm. MarineGeology.1994,119:57-65.
    [103] Zedel L, Hay A E,Cabrera R,Lohrmann A. Performance of a single-beam Pulse-to-Pulse coherent Doppler Profiler. Journal of oceanic Engineering. 1996, 21:290-297.
    [104] Thorne P D,Hardeastle P J. Acoustic measurements of suspended sediments in turbulent currents and comparison with in-situ samples. Journal of the Acoustical society of America.1997,101(5):2603-2614.
    [105] Thosteson E D,Hanes D M. A Simplified method for determining sediment size and concentration from multiple frequency acoustic baekscatter measurements. Journal of the Acoustical society of Ameriea. 1998,104(2):820-830.
    [106] Qi Zhang. On the Mechanics of Submarine Slope Instability on the Mordern Huanghe Delta,China. Graduate Thesis in Louisiana State University. 1993.
    [107] Tokuo Yamamoto et al. On the Response of A Poro-Elastio Bed to Water Waves. Fluid Mechanics,1978,193-206.
    [108] Seed H B and Rahman M S. Wave Induced Pore Presure in Relation to Ocean Floor Stability of Cohesionless Soils. Marine Geotechnology,1978, 3(2):123-150.
    [109] Kenneth R. Demars et al. Measurement of Wave-Induced Pressures and Stresses in a Sand Bed. Marine Geotechnology,1983,6(1):29-58.
    [110] Rahman M S,Jaber W Y. A Simplifled Drained Analysis for Wave-Induced Liquefaction in Ocean Floor Sands. Soils and Foundations,1986,28 (3):57-68.
    [111] Chen Weimin., Zuosheng Yang. Study of subaqueous slope instability of the modern Changjiang River Delta. In:Proceddings of the 1993 PACON China symposion. Beijing:Ocean press. 1993,133-143.
    [112] Komar P D. Coastal erosion-underlying factors and human impacts. Shore&Beach 2000, 68(1),3-16.
    [113] Stanley D J. Nile delta:extreme case of sediment entrapment on a delta plain and consequent consequent coastal land loss. Marine Geology, 1996,129:189-195.
    [114] Omer Yuksek., Hizir Onsoy., Alin R. B. Coastal Erosion in eastern black sea region. Coastal Engineering, 1995, 26:225-239.
    [115] Yin Yanhong., Zhou Yongqing., Ding Dong. Evolution of modern Yellow River delta. Marine Science Bulletin, 2004, 23(2): 32-40.
    [116] Guangxue Li., Kelin Zhuang., Helong Wei. Sedimentation in the Yellow River delta. Part III. Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology, 2000, 168: 129-144.
    [117] Prior D B., Yang Z S., Bornhold B D. Active slope failure, sediment collapse and silt flows on the modern subqueous Huanghe Delta. Geo-Marine letter, 1986, 6(2):85~95.
    [118] Cheng, G.D. Framework and evolution of the modern YellowRiver delta. Mar. Geol. Quat. Geol, 1987, 7 (Suppl.): 7-18.
    [119] Li, G.X., Cheng, G.D., Li, S.Q. Evolution of the modern Yellow River delta coast. Mar. Geol. Quat. Geol, 1987, 7 ((Suppl.)): 81-89.
    [120] Chen Shenliang., Zhang Guoan., Chen Xiaoying. Coastal erosion feature and mechanism at feiyantan in the Yellow River delta. Marine Science Bulletin. 2006, 8(1),11-30.
    [121] Yang, Z.S., Wang, T. Marine environment in Chengdao oil Feild development, Qingdao Ocean University Press, Qingdao, China, 1993, (pp. 641-872).
    [122] A. Vijaya kumar., S. Neelamani., S. Narasimha Rao. Wave interaction with a submarine pipeline in clayey soil due to random waves. Ocean Engineering. 2005, 32:1517–1538.
    [123] Seed H B., Rahman M S. Wave Induced Pore Presure in Relation to Ocean Floor Stability of Cohesionless Soils. Marine Geotechnology. 1978, 3(2):123-150.
    [124] Glen R., Philip J., Peter S. Analytical technique for the interpretation of measured pore pressures in shallow marine sediments. proceedings of the eleventh international offshore and polar engineering conference. Stavange,Norway: Theinternational Society of Offshore and Polar Engineers, 2001, pp.469-475.
    [125] Prior, D.B., Suhayda, J.N., Lu, N.Z., Bornhold, B.D., Keller, G.H., Wiseman, W.J., Wright, L.D., Yang, Z.-S. Storm wave reactivation of a submarine landslide. Nature. 1989, 341: 47-50.
    [126] Houjie Wang., Zuosheng Yang., Yoshiki Saito., J. Paul Liu., Xiaoxia Sun., Yan Wang. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Global and Planetary Change. 2007, 57: 331-354.
    [127] Morgan J P. Mudlumps : diapiric structures in Mississippi delta sediments. In : Braunstein I , O’Brian G D , eds. Diapirism and Diapirs , Memoir 8. American Association of Petroleum Geologists , Tulsa , Oklahoma. 1968, 145-161.
    [128] Li Guangxue., Liu Shouquan., Jiang Yuchi. Primary study on the diaper in the north of the Yellow River delta. Science in China(Series D) , 1999, 42(2):153-160.
    [129] Li Ping., Zhu Dakui. The role of wave action on the formation of Yellow River delta. Marine Geology & Quaternary Geology. 1997, 17(2): 39-44.
    [130] LI Guangxue., Yue Shuhong., Zhao Dongbo., Sun Yingtao. Rapid deposition and dynamic processes in the modern Yellow River mouth. Marine Geology & Quaternary Geology. 2004, 24(3): 29-37.
    [131] Li, G.X., Wei, H.L., Yue, S.H., Cheng, Y.J., Han, Y.S. Sedimentation in the Yellow River delta, part II. Suspended sediment dispersal and deposition on the subaqueous delta. Mar. Geol. 1998b, 149: 113-131.
    [132] Yang Z S., Milliman J D., Galler J. Yellow River’s water and sediment discharge decreasing steadity.Eos Transactions. 1998, 79: 589-592.
    [133] Best J L. The Fluid Dynamics of Small-scale Alluvial Bed-forms. John Wiley&Sons. Chicbester. 1996, 67-125.
    [134] Harris P T, Sediment, bedforms and bedload transport pathways on the continental shelf adjacent to Tomes Strait, Australia-Papua New Guinea.Continental Shelf Research. 1988, 8(8):979-l003.
    [135] Katoh K, Kume H, Kuroki K et al. The development of sand waves and the maintenance of navigation channels in the Bisanseto Sea.Coastal Engineering’98.ACSE. Reston. 1998, VA:3490- 3502.
    [136] Ashley G M. Classification of large-scale subaqueous bed-forms :A new look at an oldproblem[J ]. Journal of Sedimentary Petrology. 1990,60 (1) :160 - 172.
    [137] Allen J R L. River bedforms: progress and problems In: Collison J D, Lewin J(Eds), Modern and Ancient Fluvial Systerms. International Association of Sedimentologists. Special Publication. 6. 1983, 19- 34.
    [138] Berne S. large subtidal Dunes. Gironde Estuaty. Journal of Sedimentary Petrology, 1983, 83(5):780-793.
    [139] Stride A H. Offshore Tidal Sands, Progresses and Deposite. New York: Chapman and Hall. 1982, 175-197.
    [140] Gilbert G K. transportation of Debris by Running Waters[R]. U S Geol. Surver prof. Paper. 1914.
    [141] Allen J R L. Simple models for the shape and symmetry of tidal sand waves : (2) Dynomically stable symmetrical equilibrium forms. Marine Geology ,1982,48: 51 -73.
    [142] Henningsa I, Lurina B, Vernemmenb C et al. On the behaviour of tidal current directions due to the presence of submarine sand waves. Marine Geology. 2000, 169: 57-68.
    [143] Knaapen M A F and Hulscher S J M H. Regeneration of sand waves after dredging. Coastal Engineering. 2002, 46:277-289.
    [144] Berne S. Castaing P, Dreten E L, et al. Morphology. Internal structure, and reversal of asymmetry of large subtidal dunes in the entrance to Gironde estuary(France) J Sedimentary Petrology. 1993, 63(5): 780 - 793.
    [145] Dalrynple R W, Knigght R J, Zaitlin B A, et al. Dynatnics and facies model of a macrotidal sand-bar complex, Cobequid Bay-salmon River Estuary(Bay of fundy). Sedimentology. 1990, 37: 577-612.
    [146] Kostaschhuk R A. Churk M A. Macroturbulence generated by dunes: Fraser River. Canada. Sedimentary Geology. 1993, 85: 25-37.
    [147] Harris P T. Riversal subtidal dune asymmetries caused by seasonally reversing wind-driven currents in Torres Strait, northestern Australia. Continental Shelf Research. 1991, 11: 577-612.
    [148] Zhenxia Liu. Dongxing Xia, et al. Holocene deposition system of tidal current in the eastern part of Bohai Sea. Science in China(Series E). 1994, 24(12): 1331-1338.
    [149] Yang C S. Sun J S. Tidalsand ridges on the East China Seashelf. In: De Boer P L, A VanGelder, Nio S D(eds). Tide-Influenced Sedimentary Environments and Facies. Reidel D Publication. 1988, 23-38.
    [150] Wang Shiqiang. White W R.. Alluvial Resistance in the Transition Regime. Hy. Div., ASCE. 1993, 199(6): 725-741.
    [151] Simons D B , Richardson E V. Resistance to flow in alluvial channels[C] . // Reineck , H. E. and Singh I B. Depositional Sedimentary Environments With Reference to Terrigenous Clastics. Berlin : Spring Verlag , 1973: 1962.
    [152] VoropayevI S I, McEachern G B, Boyer D L. Dynamics of sand ripples and burial/scouring of cobbles in oscillatory flow. Applied Ocean Research. 1999, 21:249-261.
    [153] Van den Berg J H, Van Gelder A. A new bedform stability diagram, with emphasis on the tran sition of ripples to plane bed in flows over fine sand and silt. In: Marzo M, Puidethbreas C eds. Alluvial Sedimentation. Intemational As sociation of Sedimenttologists, Special Publication. 1993, 17: 11-21.
    [154] Hill D F, Foda M A. Subharmonic resonance of short internal standing waves by progressive surface w aves. J. Fluid Mech. 1996, (321): 217-233.
    [155] Van Rijn L C. Sediment transport, part III: Bedforms and alluvial roughness. Journal of Hydraulic Engineering. 1984, ll0: 1733-1754.
    [155] Yalin M S. Mechanics of Sediment Transport[M]. Oxford England: Pergamon Press, 1972, 74-290.
    [157] Mengguo Li. Shengchang Wen. et al.Three-dimensional flow-salinity-sediment simulations of the Pearl River Estuary. Theme E, 2001 265-273.
    [158] Ye Yincan, Jin Changmao, Lei Zhiyan, et al. Bedform Morphologies of the Continental Shielf off Changjiang River Mouth and Their Environmental Conditions. Proceeding of SSCS, Beijing :China Ocean Press,1983, 762-774.
    [159] Kennedy J F. Macro F. Waves generated sediment ripples. Hydrody. Lab.kep. 1965, 88: 55.
    [160] Cartens M R. Neilan F M. Evolution of a dune bed under oscillatory flow. J Geophy. Res. 1967, 72(12): 3053-3059.
    [161] P. Nielsen. Dynamics and Geomery of Wave-generated Ripples. Journal of Geophysical Research. 1981, 86(7):271-386.
    [162] P. Nielsen. Suspended Sediment Concentrations Under Waves. Coastal Engineering. 1986,10:197-210.
    [163] Villard P V, Kostachuk R. The relation between shear velocity and suspended sediment concentration over dunes: Fraser Estuary, Canada. Marine Geology. 1998, 148: 71-81.
    [164] Bijker E W. Some considerations about scales for coastal models with movable beds. Report No. 50, Delft Hydraulics Laboratory. 1967, 142.
    [165] Bijker E W. Littoral Drift as Function of Waves and Current. Proc. 11th Conf. Coastal Engineering. 1968.
    [166] Swert D H. Coastal sediment transport: computation of longshore transport. Rep No 968. Delft Hydraulics Laboratory. 1976. 61.
    [167] Jonsson I G. Wave boundary layers and friction facturs Proc. 10th Coastal Engineering Conf. ASCE. 1966. 1:127-148.
    [168] Shinohara K. Tsubaki T. On the characteristics of Sand Waves Formed upon the Beds of the Open Channels and Rivers. Rep., Res. Inst. Applied, Kyushu Univ. Japan. 1959.7(25): 15-45.
    [169] Soulsby R. Dynamics of Marine Sands-Amanual for practical Applications. Thomas Telford, London, 1997, 1-249.
    [170] Williams A.T. and Lavalle C.D. Coastal landscape evaluation and photography, Journal of Coastal Research, 1990, 6(4):1011-1020.
    [171] Wang X.Y. and Ke X.K. Grain-size characteristics of sediments on the extant tidal flat along Jiangsu coast, China, Sedimentary Geology. 1997, 112: 105-122.
    [172] Fan Hui,Huang Haijun,Spatial-Temporal Changes of Tidal Flats in the Huanghe(Yellow) River Delta Using Landsat TM/ETM+Images. Journal of Geographical Sciences. 2004, 14(3):366-374.
    [173] Ikehara, k. and Y. Kinoshita. Distribution and origin of subaqueous dunes on the shelf of Japan.Marin Geology. 1994,120:75-87.
    [174] Mihael,E.F.et al. Sand waves on an epicontinental shelf: Northern Bering Sae.Marine Geology. 1981, 42:233-258.
    [175] Park, S. C. and S. D. Lee. Depositional patterns of sand ridges in tide-dominated shallow water environments:yellow sea coast and south sea of Korea. Marine Geology. 1994, 120:407-419.
    [176] Marsset,T. The Celtie Sea banks:an example of Sand bodyanalysis from very high resolutionseismie data. Marine Geology. 1990,158:89-109.
    [177] A.Valance. Formation of ripples over a sand bed submitted to a turbulent shear flow. THE EUROPEAN PHYSICAL JOURNAL B. 2005, (45),433-442.
    [178] Bagnold R A. Sedimentation: beaeh and near-Shore processes. In: HiLLMN(EdS). The Sea. New York. Wiley-Interseienee. 1963, 507-529.
    [179] Gadd P E, Lavell J W, Swift D J P. Estimates of Sand transport on the New York shelf using near-bottom current meterobservations. J Sedimentary Petrology. 1978, 48: 239-252.
    [180] Pattiaratehi C B, Collins M B. Sand transport under the combined influence of waves and tidal currents: an assessment of available formulae. Marine Geology. 1985, 67:83-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700