用户名: 密码: 验证码:
青藏东缘地壳形变特征及龙门山地区深部动力机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏东缘地区在印度-欧亚板块碰撞挤压和青藏高原物质东向移动双重作用的影响下,形成了独特的地貌特征和构造运动形式,汶川Ms8.0地震的发生,使该地区成为国内外地学研究的热点。
     本文以青藏高原东缘地壳形变与动力学机制为研究对象,以龙门山断裂带及汶川地震区域为重点靶区,首先在总结前人研究基础上,结合多期GPS和水准资料,对东缘地壳形变特征进行了细致分析,通过水平和垂直方向速率的比较,深入探索了各次级块体吸收内部形变方式的差异;其次结合地震波层析成像资料,详细描述了青藏东缘地区的深部地壳结构特征,揭示了该区域上地壳形变与深部地壳结构之间的关系;最后以龙门山地区的深部动力机制为研究重点,通过大地测量反演对龙门山断裂带的滑动速率及深部构造特征进行了分析研究,并结合汶川地震的同震形变及余震分布,从大地测量、地质、重力、地震、地壳深部探测等多个角度对龙门山的深部构造形式及汶川地震的成因做了深入探讨,提出了合理的动力机制模型。论文主要工作及创新点包含以下几个方面:
     1、综合多期GPS和水准资料,进一步细化了对青藏东缘三维地壳形变特征的描述;基于最小二乘配置模型,对次级块体的整体运动趋势及内部应变率场进行了细致分析;并通过水平与垂直速率剖面的比较,对青藏东缘各次级块体吸收内部形变方式的差异进行了深入探讨;
     2、利用地震波层析成像技术,详细分析了青藏东缘地区70km深度内的地壳结构特征,发现青藏东缘地壳隆升区与深部地壳低速体的分布有较好的对应关系,验证了该区域内上地壳形变受到下地壳低速体运动影响的观点;
     3、基于负位错理论,借助粒子群算法对龙门山断裂带三维滑动速率和深部构造特征进行了反演分析,提出了龙门山断裂带滑动速率的分段性理论;并在以往研究的基础上,对其深部构造特征做了定量分析,准确描述了其深部的倾角、闭锁深度等断层参数的量值;
     4、在上述研究成果的基础上,结合汶川地震的同震形变及余震分布特征,提出了龙门山地区的深部动力机制模型;认为龙门山断裂带南段的逆冲倾滑运动主要由于四川盆地的阻挡,深部地壳的低速体积聚抬升而造成的,汶川地震的成因也是受到这种深部物质活动的影响。
     5、针对贡嘎山地区特殊的地形特征及隆升速率,从板块挤压、深部地壳结构及地壳表面河流侵蚀等多个因素入手,对其构造运动机理做了初步探讨,为深入分析该区域的深部动力机制提供新的研究思路。
Under the double influences of India-Eurasian plate collision and the eastward movement of the Qinghai Tibet Plateau, the peculiar geomorphic feature and tectonic movement have been come into existence in eastern Tibet margin. The occurrence of Wenchuan Ms8.0Earthquake makes this area the hot spot of geo science study both at home and abroad.
     The following paper researches the crustal deformation and dynamical mechanics in eastern Tibet margin with the Longmen Shan fault and the seismic region of Wenchuan as the researching priority. Firstly, after summarizing the former researches and combining the GPS and leveling data, the paper meticulously analyzes crustal deformation in eastern Tibet margin. It further explores the different patterns of various secondary blocks in absorbing the interior deformation through the comparison of horizontal and vertical rates. Secondly, the paper describes in details the characteristics of deep crustal structure in eastern Tibet margin, and demonstrates the relationships of upper crustal deformation and deep crustal structure after combining seismic tomography image materials. Finally, the paper, with the deep dynamical mechanics in Longmen Shan area as researching priority, inverts the sliding rate and analyzes the deep structure in Longmen Shan fault zone through geodetic survey. Meanwhile, the paper, combining co-seismic deformation and aftershocks distribution in Wenchuan, explores in depth the deep structure pattern of Longmen Shan fault and the causes leading to Wenchuan Earthquake through such perspectives as geodetic survey, geology, gravity and crustal deep exploration, and puts forward the reasonable dynamical mechanics model. The innovation points are as follows:
     1. Synthesizing multi-period GPS and leveling data, the paper further refines the description of3D crustal deformation characteristics in eastern Tibet margin. On the basis of least square collocation model, the paper meticulously analyzes the general movement and the interior strain rate field of the secondary blocks. Through comparing the profiles of horizontal and vertical rates, the paper discusses in depth the different patterns of various secondary blocks in absorbing interior deformation in eastern Tibet margin.
     2. With the seismic tomography image technology, the paper, after analyzing the crustal structure characteristics at the depth of70km in eastern Tibet margin, finds out that the crustal uplifting area and the distribution of crustal low-speed body are better corresponded, which testifies the point of view that the crustal deformation in this area is influenced by crustal low-velocity body movement.
     3. On the basis of negative dislocation theory, the paper, after inverting and analyzing the3D sliding rate and the deep structure characteristics in Longmen Shan fault with the method of PSO algorithm, puts forward the stage theory to the sliding rate of Longmen Shan fault. Meanwhile, on the basis of the previous researches, the paper analyzes quantitatively its deep structure characteristics, and accurately describes such fault parameter as its deep dip angle and interlock depth.
     4. On the basis of the above researches and combining the coseismic deformation and aftershocks distribution of Wenchuan earthquake, the paper puts forward the deep dynamical mechanics of Longmen Shan region, which believes that the reverse-dip slip movement in the southern part of Longmen Shan fault is mainly caused by the blockage of Sichuan Basin and the uplifting of deep crustal low-velocity body accumulation, and the causes leading to Wenchuan earthquake is also under the influence of this deep substance movement.
     5. To the peculiar topographic feature and uplifting rate of Gongga Mountain area, the paper primarily discusses its tectonic movement mechanics through such factors as plate extrusion, deep crustal structure and the erosion of the crustal river, which offers new researching train of thought for further analyzing the deep dynamical mechanics in this area.
引文
[1]吴珍汉,叶培盛,胡道功,等.青藏高原腹地的地壳变形与构造地貌形成演化过程[M].北京:地质出版社,2003,1-26
    [2]肖序常,姜枚,等.中国西部岩石圈三维结构及演化[M].北京:地质出版社,2008,1-20
    [3]Royden L.H., Burchfiel B.C. Hilst R.D. The Geological Evolution of the Tibetan Plateau[J].Science,2008,v.321,p.1054-1059
    [4]Yin A.& Harrison.T.M.. Geologic evolution of the Himalaya—Tibetan orogen. Annu. Rev. Earth planet Sci..2000,28,211-280
    [5]Rapine. R., Tilmann F., West M.,Ni J.,et al.. Crustal structure of northern and southern Tibet from surface wave dispersion analysis. J.Geophys.Res.2003,108,B22120, doi: 10.11029/2001/B000445
    [6]Xu L, Rondenay S.& van der Hilst, R D. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Inter. 2007,165,176-193
    [7]Yao H., Behein C.& van der Hilst, R. D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis. Ⅱ. Crustal and upper-mantle structure. 2008,Geophys. J. Int.2008,173,205-219
    [8]李廷栋.中国岩石圈的基本特征.地学前缘.2010,17(3):1-13
    [9]傅容珊,李力刚,黄建华,等.青藏高原隆升过程的三阶段模式.地球物理学报,1999,42(5):619-126
    [10]王勇,许厚泽.青藏高原印度板块向欧亚大陆俯冲速率的研究——GPS观测资料的反演结果.地球物理学报,2003,46(2):185-190
    [11]Molnar P, Tapponnier P, Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science,1975,189:419-426
    [12]England P, Molnar P. Active Deformation of Asia:From Kinematics to Dynamics. Science,1997,278:647-650
    [13]Armijo R, Tapponnier, Mercier J L, et al. Quaternary Extension in Southern Tibet:Field Observations and Tectonic Implication. J.Geophys. Res.,1986,91:13803-13872
    [14]孙建中,杨少敏.用GPS资料揭示现今中国大陆构造[J].大地测量与地球动力学, 2005,25(3):75-80
    [15]张培震,沈正康,王敏,等.青藏高原及其周边先进构造变形的运动学[J].地震地质,2004,26(3):367-377
    [16]熊熊,刘孙君,许厚泽.青藏高原地壳东_西向拉张及力学机制.武汉大学学报.信息科学版,2003,28(特刊):150-154
    [17]Molnar P, Chen W P. Focal Depth and Fault Plane Solutions of Earthquakes Under the Tibetan Plateau. J.Geophys. Res.,1983,88:1180-1195
    [18]Liu H S. Geophysical Basis for Crustal Deformation Under the Tibetan Plateau. Phys. Earth Planet. Inter.,1985,41:170-185
    [19]赖锡安,黄立人,徐菊生,等.中国大陆现今地壳运动[M].北京:地震出版社,2004,137-140
    [20]许才军,申文斌,晁定波,等.地球物理大地测量学原理与方法[M].武汉:武汉大学出版社,2006,
    [21]许才军.青藏高原地壳运动模型与构造应力场[M].北京:测绘出版社,2001,7-11
    [22]许才军,张朝玉.地壳形变测量与数据处理.武汉:武汉大学出版社,2009,29-31
    [23]Hardy.R.L. The application of multi-quadric equations and point mass anomaly models to crustal movement studies[J],NOAA Technical Report NGS 76,NGS 11,1978
    [24]陶本藻,王新洲,于正林,等.用于垂直形变模型的多面函数拟合法的实验研究[J].地壳形变与地震,1992,12(1):1-13
    [25]王文利,陈士银,董鸿闻,等.利用多面函数拟合中国陆地垂直运动速率图[J].测绘通报,2002,8:6-8
    [26]刘经南,施闯,姚宜斌,等.多面函数拟合法及其在建立中国地壳平面运动速度场模型中的应用研究[J].武汉大学学报·信息科学版,2001,26(6):501-503
    [27]江在森.中国西部大地形变监测与地震预测[M].北京:地震出版社,2001,17-20
    [28]张贵钢,刘同文,杨志强,等.多面函数模型在地壳形变拟合中的应用研究[J].测绘科学,2011,
    [29]石耀霖,朱守彪.用GPS位移资料计算应变方法的讨论[M].大地测量与地球动力学,2006,26(1):1-7
    [30]刘序俨,黄声明,梁全强.旋转椭球面上的应变与转动张量表达[J].地震学报,2007,29(3):240-249
    [31]武艳强.高性能计算与GPS地壳形变信息提取[D].北京:中国地震局地震预测研究所,2008,25-30
    [32]李延兴,黄碱,胡新康,等.板内块体的刚性弹塑性运动模型与中国大陆主要块体的应变状态[J].地震学报,2001,23(6):565-572
    [33]石耀霖,朱守彪.利用GPS观测资料划分现今地壳活动块体的方法[J].大地测量与地球动力学,2004,24(2):1-5
    [34]陶本藻.自由网平差与形变分析[M].武汉:武汉测绘科技大学出版社,2001,170-172
    [35]高锡铭.位移矢量的矢量球函数表达[J].地壳形变与地震,1994,16-20
    [36]武艳强,江在森,杨国华,等.用球谐函数整体解算GPS应变场方法研究[J].大地测量与地球动力学,2009,29(6):68-73
    [37]李延兴、李智,张静华.中国大陆及周边地区的水平应变场[J].地球物理学报,2004,47(2):222-231
    [38]崔希璋,等.广‘义测量平差[M].武汉:武汉测绘科技大学出版社.2000,50-56
    [39]Gamal S.El-Fiky,Teruyuki Kato. Continuous distribution of the horizontal strain in the Tohoku district, Japan, predicted by least-squares collocation[J]. Geodynamics.1999, 27:213-236
    [40]江在森,刘经南.应用最小二乘配置建立地壳运动速度场与应变场法.2010.2010,53(5)-1109-1117
    [41]江在森,马宗晋,张希,等.青藏块体东北缘水平应变场与构造变形分析[J].地震地质,2001,23(3):337-345
    [42]林茂炳,吴山.龙门山推覆构造变形特征[J].成都地质学院院报,1991,18(1):46-55
    [43]李建彪,甘卫军,冉永康,等.青藏东部构造块体的运动学及形变特征分析[J].西北地震学报,2006,28(2):97-103
    [44]An Yin, T Mark Harrison. Geologic Evolution of the Himalayan-Tibet Orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211-280
    [45]滕吉文,张中杰,杨顶辉,等.青藏高原地体划分的地球物理标志研究[J].地球物理学报,1996,39(5):629-641
    [46]Z.Chen, B.C.Burchfiel, Y.Liu,et al.. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J. Geophys. Res. Vol 105, No.B7,16,215-16,227
    [47]Clark, M., and L.H.Royden. Fluid topography and a weak lower crust beneath the eastern margin of the Tibetan Plateau[J].Geology,2000,Vol.28,no.8,p:703-706
    [48]马宗晋,陈鑫连,叶叔华,等.中国大陆现今地壳运动的GPS研究.科学通报,2001,26(13):1118-1120
    [49]牛之俊,马宗晋,陈鑫连,等.中国地壳运动观测网络.大地测量与地球动力学,2002,22(3):88-93
    [50]王敏,沈正康,牛之俊,等.现今中国大陆地壳运动与活动块体模型.中国科学(D辑),33(增刊):21-33
    [51]牛之俊,王敏,孙汉荣,等.中国大陆现今地壳运动速度场的最新观测结果[J].科学通报,2005,50(8):839-840
    [52]Weijun Gan, Peizhen Zhang, Zhengkang Shen, et al..Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements [J]. J.Geophy. Res.,2007,Vol.112,B08416,doi:10.1029/2005JB004120
    [53]Qi Wang, Pei-Zhen Zhang, Freymueller J.T... Present-day crustal deformation in China constrained by Global Positioning System measurements [J]. Science,2001, 294(5542):574-577.
    [54]King R. W., Shen F., Burchfiel B.C.,et al.. Geodetic measurement of crustal motion in southeast China[J].Geology,1997,25(3):179-182
    [55]刘宇平,陈智梁,唐文清,等.青藏高原东部及周边现时地壳运动[J].沉积与特提斯地质,2003,23(4):1-7
    [56]张永志,王卫东,魏玉明,等.利用GPS资料反演祁连山断层的三维滑动速率[J].大地测量与地球动力学,2006,26(1):31-35
    [57]甘卫军,程朋根,周德敏,等.青藏高原东北缘主要活动断裂带GPS加密观测及结果分析[J].地震地质,2005,27(2):177-187.
    [58]郭进京,韩文峰,李雪峰.西秦岭新生代以来地质构造过程对青藏高原隆升和变形的约束[J].地学前缘.2009,16(6).
    [59]Pan B T, Gao H S, Li B Y, et al. Step-like landforms and uplift of the Qinghai-Xizang Plateau[J]. Quaternary Sciences,2004(1):50-58.
    [60]杨晓平,冯希杰,等,龙门山断裂带北段第四纪活动的地质地貌证据[J].地震地质,2008,3(3):644-654
    [61]张培震,王敏,等,GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,2003,10,特刊:81-91
    [62]马保起,苏刚,等,利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,2005,27(2):235-241
    [63]李勇,周荣军,青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J].第四纪研究,26(1):40-51
    [64]徐锡伟,闻学泽,陈桂华,等.巴彦喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J].中国科学D辑:地球科学,2008,529-542
    [65]张培震,徐锡伟,闻学泽,等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,2008,51(4):1066-1073
    [66]向宏发,徐锡伟,虢顺民,等.丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义[J].地震地质,2002,24(2):188-198
    [67]刘经南,施闯,许才军等.利用局域复测GPS网研究中国大陆块体现今地壳运动速度场.武汉大学学报·信息科学版,2001,26(3):189-195
    [68]王琪,张培震,牛之俊等.中国大陆现今地壳运动和构造变形.中国科学(D辑),2001,31(7);529-536
    [69]王敏,张祖胜,许明元等.2000国家GPS大地控制网的数据处理和精度评估.地球物理学报,2005,48(4):817-823
    [70]Van Der Woerd J P, Tapponnier F J, Ryerson, et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26 Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys J Int,2002,148: 356-388
    [71]Kirby E, Harkins N, Wang E N, et al. Slip rate gradients along the eastern Kunlun fault. Tectonics,2007,26:TC2010
    [72]Zhang P Z, Peter M, Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh fault, northern margin of the Tibetan Plateau. Tectonics,2007,26:TC5010
    [73]张培震.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J].中国科学(D辑):地球科学,2008,38(9):1041-1056
    [74]冉勇康,陈立春,程建武,等.安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为.中国科学D辑:地球科学,2008,38(5):543—554
    [75]杨挺,张建军.复测水准网动态平差方法的研究[J].测绘通报,1998,3:2-5
    [76]江在森,巩守文.水准监测网的分段速率整体平差.武汉测绘科技大学学报[J].1994,19(2):157-162
    [77]秦珊兰.西秦岭构造带现今地壳运动与变形[D].西安:长安大学,2010
    [78]王庆良,崔笃信,王文萍,等,川西地区现今垂直地壳运动研究[J].中国科学D辑:地球科学.200838(5):598-610
    [79]马宏生,张国民,闻学则,等.川滇地区三维P波速度结构反演与构造分析[J].地球科学,2008,33(5):591-602
    [80]王椿镛,W.D.Moomey,王溪莉,等.川滇地区地壳上地幔三维速度结构研究[J].地震学报,2002,24(1):1-16
    [81]朱介寿.汶川地震的岩石圈深部结构与动力学背景[J].成都理工大学学报(自然科学版),2008,35(4):348-356
    [82]钟锴,徐鸣洁,王良书,等.川滇地区重力场特征与地壳变形研究[J].高校地质学报,2005,11(1):111-117
    [83]赵国泽,陈小斌,王立凤,等.青藏高原东边缘地壳“管流”层的电磁探测证据[J].科学通报,2008,53(1):1-6
    [84]贺日政,高锐,郑洪伟,等.地震波速层析成像方法研究进展[J].地质学报,2010,84(6):840-846
    [85]Engdahl E R, Rob van der Hilst, Raymond Buland. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination[J]. Bull. Seism. Soc. Am.,1998,88(3):722-743
    [86]程先琼.地震层析成像与地幔对流研究[D].成都理工大学:博士论文,2004,10-16
    [87]吴建平,黄媛,张天中,等.汶川Ms8.0级地震余震分布及周边区域P波三维速度结构研究[J].地球物理学报,2009,52(2):320-328
    [88]Zhao D, Akira Hasegawa, Hiroo Kanamori. Deep structure of Japan subduction zones as derived from local, regional, and teleseismic events[J]. J. Geophys. Res.,1994, Vol.99,No.Bll, p:22,313-22,329
    [89]Zhao D, Akira Hasegawa, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J. Geophys. Res.,1992,97:19909-19928
    [90]王谦身,滕吉文,张永谦,等.龙门山断裂系及邻区地壳重力均衡效应与汶川地震[J]. 地球物理学进展,2008,23(6):1664-1670
    [91]Backus, G..,Gilbert F. Numerical application of a formalism for geophysical inverse problems. Geophys. J. Roy. Astron. Soc.,1976,13,247-276
    [92]Backus,G.., Gilbert F. The resolving power of gross earth data. Geophys. J. Roy. Astron. Soc.,1968,16169-16205
    [93]Baekus,G, Gilbert F. Uniqueness in the inversion of inaccurate gross earth data. Phil Trans.R.Soc.London Ser.,1970, A226,123-192
    [94]Tarantola, A. and B.Valette. Generalized nonlinear inverse problem solved using the least squares criterion [J].Reviews of Geophusics and Space Physics,1982, Vlo.20, No.2:219-232
    [95]姚姚.地球物理反演基本理论与应用[M].武汉:中国地质大学出版社,2002,2-10
    [96]Steketee J.A.,On Volterra's dislocation in a semi-infinite elastic medium[J].Can.J.Phys, 1958,36:192-205
    [97]Okada Y. Surface deformation due to shear and tensile faults in a half space[J]. Bull.Seismol.Soc.Am.,1985,75:1135-1154
    [98]Okada Y. Internal Deformation due to shear and tensile faults in a half-space[J].BSSA,1992,82:1018-1040
    [99]Okubo S. Potential and gravity changes raised by point dislocations[J].Geophys. J. Int. 1991,105:573-586
    [100]Okubo S. Gravity and potential changes due to shear and tensile faults in a half-space[J]. J.Geophys.Res.1992,97:7137-7144
    [101]伍吉仓,许才军.利用GPS资料反演华北块体运动的负位错模型参数[J].武汉大学学报·信息科学版,2002,27(4):352-357
    [102]伍吉仓,邓康伟,陈永奇.板块内部层状负位错模型及其反演[J].武汉大学学报·信息科学版,2003,28(6):671-674
    [103]Zhang Xi, Jiang Zai-sen, Wang Qi, et al.. Inversion for negative dislocation on elastic block boundaries in the northeastern margin of Qinghai-Xizang block and prediction for strong earthquake location[J].ACTA SEISMOLOGICA SINICA,2005,Vol.18 No.6:666-677
    [104]张希,江在森,王琪,等.1999~2001年青藏块体东北缘地壳水平运动的非震反位 错模型及变形分析[J].地震学报,2003,25(4):374-372
    [105]Jackson D D, Matsu'ura M. A Bayesia Approach to Nonlinear Inversion[J]. J. Geophys. Res.,1985,90(B1):581-591
    [106]Murray, Mark H., Grant A. Marshall, Michael Lisowski, Ross S. Stein. The 1992 M=7 Cape Mendocino, California, earthquake:coseismic deformation at the south end of the Cascadia megathrust[J]. J. Geophys. Res.,1996,Vol.101,B8:17707-17725
    [107]陈兵,江在森,王双绪,等.利用非连续变型数值方法研究块体运动及其应力场初探[J].地壳形变与地震,2000,20(1):38-42
    [108]万永革,李鸿吉.京津唐地区速度结构和震源位置联合反演的遗传算法[J].地震地磁观测与研究,1996,17(3):57-66
    [109]于鹏,王家林,吴健生,等.重力与地震资料的模拟退火约束联合反演[J].地球物理学报,2007,50(2):529-538
    [110]李爽.大地测量联合反演的模式及算法研究[D].博士学位论文,武汉大学,2005,44-56
    [111]魏超,李小凡,张美根.基于量子蒙特卡罗的地球物理反演方法[J].地球物理学报,2008,51(5):1494-1503
    [112]许才军,李志才.轮回搜索-贝叶斯法及其在大地测量反演中的应用[J].武汉大学学报·信息科学版,2003,28(6):658-662
    [113]王文萍,王庆良.利用遗传算法和最小二乘联合反演共和地震位错参数[J].地震学报,1999,21(3):285-290
    [114]李爽,许才军,王新洲.一种求解约束条件下多变量非线性函数所有全局最优解的区间算法[J].武汉大学学报(理学版),2003,49(5):556-560
    [115]伍吉仓,陈永奇,许才军.活断层形变数据反演[J].测绘学报,2000,29(增刊):53-58
    [116]王家映.蒙特卡洛法[J].工程地球物理学报,2007,4(2):81-85
    [117]Klaus Mosegaard, Albert Tarantola. Monte Carlo sampling of solutions to inverse problems[J]. J. Geophys. Res.,1995,Vol.100, NO.,B7,p12,431-12447
    [118]刘杰,张永志,张秀霞,等.基于GPS数据的粒子群算法反演断层三维滑动速率[J].大地测量与地球动力学,2010,30(2):40-42
    [119]易远元,王家映.粒子群反演方法[J].工程地球物理学报,2009,6(4):385-389
    [120]唐文清,刘宇平,等.龙门山断裂构造带GPS研究[J].大地测量与地球动力学,2004,24 (3):57-60
    [121]马禽垣,等.中国岩石圈动力学地图集[M].中国地图出版社,1989
    [122]Wang Q L, Cui D X, Zhang X. Coseismic vertical deformation of the Ms8.0 Wenchuan earthquake from repeated levelings and its constraint on listric fault geometry. Earthquake Science,2009,22:595-602
    [123]Denghai Bai, Martyn J.Unsworth, Max A. Meju, et al.. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature geoscience,2010, doi: 10.1038/NGEO830
    [124]张贵钢,杨志强,王庆良.龙门山断裂带三维滑动速率反演及其分段性研究[J].大地测量与地球动力学,2011,31(1):5-8
    [125]独知行,欧吉坤,靳奉祥,等.联合反演模型中相对权比的优化反演[J].测绘学报,2003,32(1):15-19
    [126]许忠淮,汪素云,黄雨蕊,等.由多个小震推断的青甘和川滇地区地壳应力场的方向特征[J].地球物理学报,1987,30(5):476-486
    [127]程万正,阮祥,张永久.川滇次级地块震源机制解类型[J].地震学报,2006,28(6):561-572
    [128]张竹琪,张培震,王庆良.龙门山高倾角逆断层结构与孕震机制.地球物理学报,2010,53(9):2068~2082
    [129]Burchief,B,C., Chen, Z., Liu,Y., and Royden,L.H.. Tectonics of the Longmen Shan and adjacent regions:International Geology Review[J].1995,v.37,p.661-738
    [130]Judith H.,John H.S., Yann,K.. Structure setting of the 2008 Mw 7.9 Wenchuan, China, Earthquake [J]. Bulletin of Seismological Society of America,2010,Vol.100,No.5B,p 2713-2735
    [131]徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-629
    [132]中国地震局监测预报司.汶川8.0级地震科学研究报告[M].北京:地震出版社,2009,p15-38
    [133]国家重大科学工程“中国地壳运动观测网络”项目组.GPS测定的2008年汶川MS8.0级地震的同震位移场[J].中国科学D辑:地球科学,2008,38(10):1195-1206
    [134]Qingliang Wang, Duxin Cui, Xi Zhang,et al.. Coseismic vertical deformation of the M_S8.0 Wenchuan earthquake from repeated levelings and its constraint on listric fault geometry[J]. Earthquake Science,2009,22:595-602
    [135]Guoxiang Liu, Jonathan Li, Zhu Xu, et al.. Surface deformation associated with the 2008 Ms8.0 earthquake from ALOS L-band SARinterferometry[J]. International Journal of Applied Earth Observation and Geoinformation,2010, doi:10.1016, p1-10
    [136]孙建宝,梁芳,沈正康,等.汶川Ms8.0地震InSAR形变观测及初步分析[J].地震地质,2008,30(3):789-795
    [137]屈春燕,宋小刚,张桂芳,等.汶川Ms8.0地震InSAR同震形变场特征分析[J].地震地质,2008,30(4):1076-1084
    [138]刘巧霞,朱介寿,曹俊兴,等.汶川Ms8.0级地震余震重新定位及其空间分布特征研究[J].第四纪研究,2010,30(4):736-744
    [139]黄媛,吴建平,张天中,等.汶川8.0级大地震及其余震序列重定位研究[J].中国科学D辑:地球科学,38(10):1242-1249
    [140]陈九辉,刘启元,李顺成,等.汶川Ms8.0地震余震序列重新定位及其地震构造研究[J].地球物理学报,2009,52(2):390-397
    [141]朱艾斓,徐锡伟,刁桂苓,等.汶川Ms8.0地震部分余震重新定位及地震构造初步分析[J].地震地质,2008,30(3):760-767
    [142]Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm: method and application to the Northern Hayward fault[J]. California. Bull. Seism. Soc. Am., 2000,90:1353-1368
    [143]Chun K Y, Henderson G A, Liu J S. Temporal changes in P wave attenuation in the Loma Prieta Rupture zone[J]. J. Geophys. Res.,2004,105(B3):112-133
    [144]刘劲松,K.Y. Chun, Gary A. Henderson,等.双差定位法在地震丛集精确定位中的应用[J].地球物理学进展,2007,22(1):137-141
    [145]杨智娴,陈运泰,郑月军.双差地震定位法在我国中西部地区地震精确定位中的应用[J].中国科学,2003,33(增刊):129-134
    [146]郭祥云,陈学忠,李艳娥.2008年5月12日四川汶川8.0级地震与部分余震的震源机制解[J].地震,2010,30(1):50-60
    [147]Chen H C, Yih M W, Tzay C, et al.. Relation of the 1999 Chi-Chi Earthquake in Taiwan[J].TAO,2000,11(3):581-590
    [148]V. Godard, J.Lave, J.Carcaillet, et al..Spatial distribution of denudation in eastern Tibet and regressive erosion of a plateau margins[J]. Tectonophysics,2010,49:253-274
    [149]徐杰,高祥林,周本刚,等.2008年汶川8.0级地震的发震构造:沿龙门山断裂带新生的地壳深部断裂[J].地学前缘,2010,17(5):117-127
    [150]林茂炳,苟宗海,吴山,等.龙门山地质考察指南[M].成都:成都科技大学出版社,1997,6-20
    [151]李勇,徐公达,周荣军,等.龙门山均衡重力异常及其对青藏高原东缘山脉地壳隆升的约束[J].地质通报,2005,24(12):1162-1168
    [152]Judith Hubbard, John H. Shaw. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M=7.9) earthquake[J].Nature,2009,v.458, p.194-197
    [153]王椿镛,王溪莉,苏伟,等.青藏高原东缘下地壳流动的地震学证据[J].四川地震,2006,4:1-4
    [154]蔡学林,曹家敏,朱介寿,等.龙门山岩石圈地壳三维结构及汶川大地震成因浅析[J].成都理工大学学报(自然科学版),2008,35(4):357-365
    [155]B.C.Burchfiel, L.H.Royden, R.D.vander Hilst, et al.. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China[J]. GSA Today,2008, v.18,no.7,p.4-8
    [156]韦伟,孙若昧,石耀霖.青藏高原东南缘地震层析成像及汶川地震成因探讨[J].中国科学D辑,2010,40(7):831-839
    [157]李勇,周荣军,Densmore A L,等.青藏高原东缘大陆动力学过程与地质响应[M].北京:地质出版社,2006,1-148
    [158]杜方,闻学泽,张培震,等.2008年汶川8.0级地震前横跨龙门山断裂带的震间形变[J].地球物理学报,2009,52(11):2729-2738
    [159]中国科学院成都地理研究所.贡嘎山地理考察[M].重庆:科学技术文献出版社重庆分社,1983,p:4-30
    [160]张培震.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J].中国科学(D辑):地球科学,2008,38(9):1041-1056
    [161]谭锡斌,徐锡伟,李元希,等.贡嘎山快速隆升的磷灰石裂变径迹证据及其隆升机制讨论[J].地球物理学报,2010,53(8):1859-1867
    [162]周荣军,何玉林,黄祖智,等.鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔 [J].地震学报,2001,,23(3):250-262
    [163]程佳.川西地区现今地壳运动的大地测量观测研究[D].中国地震局地质研究所.硕士学位论文,2008,49-53
    [164]Peter K.Zeitler, Peter O.Koons, Michael P. Bishop,et al.Crustal reworking at Nanga Parbat,Pakistan:Metamorphic consequences of thermal-mechanical coupling facilitated erosion[J].Tectonics,2001, v.20.p.712-728
    [165]P.O.Koons, P.K.Zeitler, C.P.Chamberlain, et al.. Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya [J]. American Journal of Science, v.302,p.749-773
    [166]Philip England, Peter Molnar. Surface uplift, uplift of rocks, and exhumation of rocks[J]. Geology,1990, v.18,p.H73-1177
    [167]N.J.Finnegan, Bernard Hallet, D.R.Montgomery, et al.. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet[J]. GSA Bulletin,2008, b.120,p.142-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700