用户名: 密码: 验证码:
基于三维荧光谱参数化及模式识别的水中油类鉴别与测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种矿物油是水环境的主要污染物。快速准确地测定水中矿物油的种类及含量,正确判断油污染的性质和来源,对于实施水环境监测管理及污染防治具有重要意义。本文在对国内外关于水环境油污染荧光分析技术的现状及发展趋势进行分析和综合的基础上,针对矿物油的种类鉴别和浓度测定及其在水环境监测中的应用,提出了基于三维荧光谱参数化的矿物油神经网络模式识别方法,并进行了实验研究。
    首先以荧光原理及测量技术为基础,组成荧光谱测量系统,对柴油、煤油、机油、和原油等多种矿物油进行了激发-发射荧光光谱扫描测量和实验研究工作,获得了充实的矿物油荧光谱第一手资料;对大量的原始数据进行了处理,完成了矿物油三维荧光谱的重构和分析;研究了矿物油荧光谱最大值与浓度的定量关系,给出了荧光强度及其参考光强随着浓度变化的关系曲线。
    研究了基于表观统计特征的三维荧光谱参数化方法。提取和计算了多种实际油样三维荧光谱的表观统计特征参数,并通过对典型样本聚类的方法,讨论了溶剂等因素对三维荧光谱的影响(选用水溶剂作为本底标准)。应用结果表明了矿物油三维荧光谱参数化的有效性及模式识别的可行性,同时也表明了表观特征参数的局限性。 为了寻找更为精细的特征参数,组成具有深层物理意义的特征谱,有效鉴别荧
    光谱有相互重叠的各种油类或多组分污染油,对激发-发射矩阵进行了数据挖掘。通过系统聚类分析、比较,选择了奇异值特征谱作为矿物油种类鉴别信息。
    利用激发光的二级色散光作为荧光的参比标准,导出了与光源稳定性、系统增益近似无关的矿物油浓度信息,提高了浓度测量的准确性。
    将矿物油的种类和浓度两种信息相结合,组成便于模式识别的油类三维荧光谱的综合特征谱序列,为解决污染油定性和定量分析提拱了基础。
    设计了定性和定量双重处理的前向神经网络。用鉴别网络确定种类后,反馈到浓度网络的输入端,和相对荧光强度一起预测相应种类的浓度输出。通过对矿物油的综合特征谱进行模式识别,同时实现了水中污染矿物油的种类鉴别和浓度测量。
Mineral oils are the principal contaminations in water environment. Identifying the species of mineral oil in water and measuring its concentration are needed to determine the contamination oil source and evaluating pollution fast and correctly. It has important significance for water environment protection under control. Based on comprehensive analysis and synthesis of the present conditions, as well as its tendency of contamination oil fluorescent analysis techniques, this paper is aimed at identification and concentrate measurement of contamination mineral oil, as well as its application in water environment detection or monitoring. Based on experiment and parameterization of three-dimensional fluorescence spectra, oil pattern recognition using artificial neural network is presented.
    Based on fluorescence principle and its measurement technique, many kinds of mineral oils such as diesel, kerosene, engine oil and crude oils were detected and researched in excitation–emission fluorescence scanning experiments. Firsthand materials of large amount of fluorescence data were obtained, based on which many three-dimensional spectra were reconstructed visually, examined and analyzed by programmed data processing. Quantitative relationship between the maximal fluorescence value and concentration were discussed. The intensities curves of fluorescence versus concentration were given with reference lines companioned
    Parameterization based on apparent features of 3D fluorescence spectra was studied, and apparent statistic parameters of various oils were extracted and calculated. The effect of some factors such as solvents on three-dimensional spectra was visually discussed by parameter clustering for typical samples (distilled or pure water was selected as the background), and by this way, the effectiveness of parameterization was demonstrated. However the limitation of the parameters based on appearance manifested.
    To find sophisticated feature parameters forming profound feature vector with more physical meaning, which should be able to identify various or complex contamination oils with similar or overlapping fluorescence spectra, deeper data mining was carried on. As the result of systematic clustering and validity comparing, the singular values of the excitation-emission matrix (EEM) were selected as the identification information.
    The concentration information is get independent to the stability of excitation light as well as the system gain by making use of the second-order dispersion light working as a surveyor’s pole. By this way, the accuracy of concentration measurement can be improved. By associating species and concentration information, associated features of three-dimensional fluorescence spectra of oil have been made up of, providing foundation for solving the problem of both qualitative and quantitative analysis of contamination oil in water. A double neural network has been designed to implement qualitative and quantitative processing together. The result of identification is fed back to the input of concentration net, wherein the identification result and relative fluorescence intensity are fused to predict oil concentration of corresponding species. At last, with associated features as the pattern input, various samples of contamination oils in water have been identified correctly and measured with an acceptable accuracy.
引文
1 陈国华.水体油污染治理.北京:化学工业出版社,2002:5-8
    2 陈尧.中国近海石油污染现状及防治.工业安全与环保,2003 ,29(11):20-24
    3 曲维政,邓声贵.灾难性的海洋石油污染.自然灾害学报, 2001,10(1):69-74
    4 伊武军.资源、环境与可持续发展.北京:海洋出版社,2001:23-45
    5 国家海洋局.20 世纪末中国海洋环境质量公报.北京:国家海洋局,1999:3-23
    6 吴坚, 曹文祺.荧光分析法监测水中矿物油污染的研究.计量学报.2001,22(3):223 –226
    7 TottenGE, TensiHM, LainerK. Performance of Vegetable Oils as a Cooling Medium in comparison to a Standard Mineral Oil. Joural of Material Engineering and Performance,1999,8:409~516
    8 E.Brown, F.Fingas, et al. Loacating Spilled Oil with Airborne Laser Fluorosensors. SPIE,1999,3534:582-590
    9 赵云英,马永安.三维荧光光谱法鉴别海面溢油源的研究进展.海洋环境科学[J],1997,16:30
    10 朱光文. 海洋环境监测与现代传感器技术. 海洋技术,2000,19(3):38-43
    11 刘廷良,刘京,齐文启等.水中石油类分析方法的现状.环境科学研究,2000,13(5):58-60
    12 夏达英,胡福辰,朱儒弟,等.多参数拖拽荧光计系统现场实验研究.黄渤海海洋,1999,17(2):25-30
    13 Parlanti E, Morin B, Vacher L.Combined 3D-spectrofluorometry, High Performance Liquid Chromatography and Capillary Electro-phoresis for the Characterization of Dissolved Organic Matter in Natural Waters. Org Geochem, 2002,33 (3):221-236
    14 Wolfe A P,Kaushal S S, Fulton J R, et al. Spectrofluorescence of Sediment Humic Substances and Historical Changes of Lacustrine Organic Matter Provenance in Response to Atmospheric Nutrient Enrichment. Environ Sci Technol,2002,36(15):3 217-3 223
    15 Chen J, Gu B, LeBoeuf E J, et al. Spectroscopic Characterization of the Structural and Functional Properties of Natural Organic Matter Fractions.Chemosphere,2002,48(l):59-68
    16 Ritchie J D,Perdue E M. Proton-binding Study of Standard and Reference Fulvic Acids, Humic Acids, and Natural Organic Matter. Geochim Cosmochim Acta,2003,67(l):85-96
    17 夏达英译, 国外荧光技术在海洋学上的应用研究状况.海岸工程,1997,16(1):52-63
    18 Baker A. Fluorescence Excitation-emission Matrix Characterization of Some Sewage-impacted Rivers.Environ Sci Technol,2001,35(5):948-953
    19 Baker A. Fluorescence Excitation-emission Matrix Characterization of River Waters Impacted by a Tissue mill Effluent. Environ Sci Technol,2002,36(7):1377-1382
    20 Baker A. Fluorescence Properties of Some Farm Wastes: Implications for Water Quality Monitoring. Wat Res,2002,36(l):159-195
    21 史锦珊,郑绳揎.光电子学及其应用.北京:机械工业出版社,1991:192-225
    22 刘顺英,王法军,隗兰华.多酰胺杯芳烃中性阴离子受体的合成与识别性能.中国科学(B辑),2003,33(6):504-510
    23 刘志宏,蔡汝秀. 三维荧光光谱分析技术应用进展.分析科学学报,2000,16(6):516-523
    24 刘伟,胡斌,于敦源等.我国重质油的三维荧光特征及其地质意义.物探与化探,2004,28(2):123-129
    25 宋继梅.唐碧莲.原油样品的三维荧光光谱特征研究.光谱学与光谱分析 2000, 20 (1):115-118
    26 张淑河,王修林,王磊,于萍.浮游植物活体三维荧光光谱分类判别方法研究. 光谱学与光谱分析,2004,24(10):1227-1229
    27 邹伟,杨香华.三维荧光分析在胡庆油田成藏条件研究中的应用.西部探矿工程,2004,(5):41-44
    28 we Frank. Identification of Petroleum Oils by Fluorescence Spectroscopy. Conference on Prevention and Control of Oil Pollution,1979: 87-91
    29 Digambara patra,A.K.Mishra.Recent Developments in Multi-component Synchronous Fluorescence Scan Analysis.Trends in Analytied Chemistry, 2002,21(12):787-798
    30 I. M. Warner,G. D. Christian, and E. R. Davidson. Analysis of Multicomponent Fluorescence Data. Analytical Chemistry, 1977,49:564-573
    31 Brooks JM et al. 15th annual Offshore Technology Conference(OTC) in Houston,Texas. 1983:393-401
    32 Ndou TT, Warner IM. Application of Multidimensional Absorption and Luminescence Spectroscopies in Analytical Chemistry. Chem.Rev.[J],1991,91:493-507
    33 鄂远.三维荧光光谱法研究及在生命科学中的应用.[厦门大学博士论文],1995
    34 雍克岚.三维荧光指纹技术及其在石油地球化学勘探中的应用.石油实验地质,1992,14(4):432-442
    35 周洵琪,冉绍春.三维荧光谱参量化方法及其在油种鉴别中的应用.2002,17 (3)32-35
    36 宋书君,李献甫,费琪.三维荧光指纹技术在东营凹陷丁家屋子油源分析中的应用. 石油实验地质,2002,24(5):469-473
    37 Ding YY. Application of Three-dimension and Contour Total Canning Flouresence to Oil Identification and Correlation Studies. The Second China-Russia Joint Ocean-graphics Symposium,1992
    38 胡泽建,王克言,冉绍春.三维荧光谱参量化方法及其在油种鉴别中的应用.黄渤海海洋,1998,16(4):35-41
    39 阎吉祥,周诗未,李家泽,张雁.3-激光作用下几种石油产品的荧光谱.高技术通讯,2000,(3):45-47
    40 夏达英,史锦珊,尚丽平等.水中矿物油荧光特性实验研究.黄渤海海洋,2002,20(2):91-98
    41 夏达英, 王振先, 夏荣环等. 水中荧光计及其在海洋现场探测中的应用. 黄渤海海洋,1997,15(2):164-170
    42 T.M.Rossi and I.M.Warner. Pattern Recognition of Two-dimensional Fluorescence Data Using Cross-correlation Analysis. Applied Spectroscopy,1985,39:449-959
    43 张永清,莫金垣,谢天尧,蔡沛群.二次微分与样条小波自卷积联用分辨重迭伏安峰.分析科学学报, 2002, 18(1): 12-15
    44 Thomas M. Rossi and Isiah M. Warner. Rank Estimation of Excitation-Emission Matrices Using Frequency Analysis of Eigenvectors. Anal. Chem. 1986,58:810-815
    45 Saurina J, Leal C, Compano R, Granados M, Tauler R, Prat M D. Anal.Chim.Acta, 2000,409: 237
    46 李玉侠,刘向峰,王薇.解析动态光谱的奇异值分解最小二乘法的改进.光谱实验室,2002,19(1): 31-35
    47 陈宗海,林祥钦,邵学广. 电分析化学中的化学计量学方法及其应用进展. 分析科学学报, 2002,18(2): 74-77
    48 汤晓东,徐嘉凉,孙红霞,陈明. 双除数因子-比光谱导数分光光度计算法及其应用. 光谱学与光谱分析, 2002, 22(2): 296-300
    49 ZHENG Xiaoping(郑小萍),MO Jinyuan(莫金垣)and CAI Peixiang(蔡沛祥).Spline Wavelet in the Resolution of Overlapping Voltammetric Peaks. Science in China(series B),1999,42(2):145-152
    50 A.L.Allanic, J.Y. Jezequel, and J.C.Andre. Application of Neural Networks Theory to Identify Two-dimensional Fluorescence Spectra. Analytical Chemistry,1992,64-21):2618-2622
    51 Khalid J.Siddiqui, DeLyle Eastwood. Pattern Recognition and Image Processing for Environmental Monitoring. Part of the SPIE Conference on Environmental Monitoring and Remedation Technologies II. Boston, Massachusetts, 1999. SPIE 3853:60-71
    52 Royston Goodacre, Aoife C.McGovern, Eadaoin M. et al. Intelligent Systems for the Characterization and Quantification of Microbial Systems from Advanced Analytical Techniques. Part of the SPIE Conference on Environmental Monitoring and Remedation Technologies II. Boston, Massachusetts, 1999. SPIE 3853:174-184
    53 He L.M., Kear-Padilla L.L.,Lieberman, S.H. Application of Neural Networks in Online Oil Content Monitors. Proceedings of the International Joint Conference on Neural Networks
    (IJCNN'01), Washington, DC Institute of Electrical and Electronics Engineers Inc.2001, 2,p
    1404-1409
    54 Lambert P. A literature review of portable fluorescence-based oil-in-water monitors. Journal of Hazardous Materials, 2003,102(1):39-55
    55 Stelmaszewski Adam. Fluorescence method for the determination of oil identity. Optica Applicata, 2004,34(3):405-418
    56 常建华,董绮功.波谱原理及解析.北京:科学出版社,2001:1-10
    57 Kazuyuki Horie, Hideharu Vshiki, Francoise M. Winnik. Molecular Photonics Fundamentals and Practical Aspects.张镇西等.北京:科学出版社,2004:8-69
    58 S.O.Kasap. Optoelectronics and Photonics. Beijing: Publishing House of Electronics Industry,2003:1-27
    59 陈国珍.荧光分析法.2.北京:科学出版社,1990:1-111
    60 李润卿. 有机结构波谱分析. 天津:天津大学出版社,2002:9-45
    61 杨茹,邱法林,刘翊.分光光度学.机械工业出版社 1998;37-47,55-75]
    62 A carjington and A D Mclachlan. Introduction to Magnetic Resonance. New York:John Wiley Andsons,1979
    63 Nielsen M A, Knill E, Laflamme R. Complete Quantum Teleportation by Nuclear Magnetic Resonance. Nature,1998,396(6706):52-55
    64 张建中,孙存普.磁共振教程.北京:中国科技大学出版社,1995.1
    65 徐金森.现代生物科学仪器分析.北京:化学工业出版社,2004:88-127
    66 尚丽萍.水中痕量矿物油污染荧光监测全光纤实现技术及应用基础.燕山大学博士论文,2002:19
    67 Ashutosh Sharma and Stephen G.Schulman. Introduction to Fluorescence Spectroscopy. New York: John Wiley and Sons, Inc.1999:22-23
    68 宁永成.有机化合物结构鉴定与有机波谱学.第二版.北京:科学出版社,2001:364-384
    69 孔垂华,徐效华.有机物的分离和结构鉴定.化学工业出版社,2003:187-203
    70 黄福堂,阎卫东,李振广等.石油化学.北京:石油工业出版社,2000:80-95
    71 Jager Michael J, McClintic Daniel P, Tilotta David C. Measurement of Petroleum Fuel Contamination in Water by Solid-phase Microextraction with Direct Raman Spectroscopic Detection. Applied Spectroscopy, 2000,54(11):1617-1623
    72 Kyriakidis Nikolaos B, Skarkalis Paulos Fluorescence Spectra Measurement of Olive Oil and Other Vegetable Oils. Journal of AOAC International, 2000, 83, (6):1435-1439
    73 Sikorska E, Romaniuk A, Khmelinskii I V, at al. Characterization of Edible Oils Using Total Luminescence Spectroscopy. Journal of Fluorescence, 2004,14(1):25-35
    74 Shang Li-Ping, Xu Xiao-Xuan, Xu Jing-Jun,at al. Fluorescence Measurement of Oil Micro-contamination in Water with Optical Fiber Technique and its Application. Jiliang Xuebao/Acta Metrologica Sinica, 2005, 26(1): 81-85
    75 Arnold A, Bombach R, Hubschmid W. Fuel-oil Concentration in a Gas Turbine Burner Measured with Laser-induced Fluorescence. Experiments in Fluids, 2000,29(5):468-477
    76 夏达英,王振先,张士魁.荧光技术在海洋环境学上的应用研究.海洋学报.1999,21 (3): 66-72
    77 Liu, C.Yu, et al. Time-resolved Spectra Studying of Oil Pollution in Water by Laser-induced Fluorescence. SPIE, 2000,(4221):393-396
    78 Ashutosh Sharma and Stephen G.Schulman. Introduction to Fluorescence Spectroscopy. New York, John Wiley and Sons, Inc, 1999:22-23
    79 J. Liu, C. Yu, et al. Time-resolved Spectra Studying of Oil Pollution in Water by Laser-induced Fluorescence. SPIE, 2000,(4221):393-396
    80 Ndou TT, Warner IM. Chem. Rev [J].,1991,91:493
    81 S. Panadero, A.Gomez-Hens and D. Perez-bendito. Simultaneous Determination of Warfarin and Bromadiolone by Derivative Synchronous Fluorescence Spectrometry.Talanta,1993,40(2):225-230
    82 傅平青,刘丛强,尹祚莹等.腐殖酸三维荧光光谱特性研究.地球化学 2004,33(3)
    83 孟庆强,卢宝光,孙雷.污染通报石油污染对土壤中蚯蚓存活率的影响 水土保持科技情报,2003(3):23
    84 Hautala K, Peuravuori J, Pihlaja K. Measurement of aquatic humus content by spectroscopic analyses.Wat Res,2000,34 (l):246-258
    85 Pironon J, Thiery R,Teinturier S, at al. Water in petroleum inclusions: evidence from Raman and FT-IR measurements, PVT consequences. Journal of Geochemical Exploration, 2000, 69:663-668
    86 Vladimir S.Gorelik, Alexander Agaltsov, Ruslan Moro. Water Quality Monitoring Based on Ultraviolet Pulsed Laser Excitation of Ranman and Fluorescence Spectra. Part of the SPIE Conference on Environmental Monitoring and Remediation Technologies II,Boston,Massachusetts1999,SPIE 3853:364-374
    87 杨一心,杨宜康,赵天成等.苯并咪唑的三维荧光光谱与三维室温磷光光谱.光子学 报,2002,31(10):1273-1276
    88 K halid J. Siddiqui, DeLyle Eastwood. Pattern Recognition and Image Processing for Environmental Monitoring. Part of the SPIE Conference on Environmental Monitoring and Remediation Technologies II,Boston,Massachusetts1999,SPIE 3853:60-71
    89 孙才新,陈伟根,李检等.电气设备油中气体在线监测与故障诊断技术.北京科学出版社,2003:191-211
    90 王颖.三维荧光光谱参量化理论及其在油种鉴别中的应用燕山大学硕士论文,2003:49-50
    91 A.K. Jain and D. Zongker, Feature Selection: Evaluation, Application and Small Sample Performance. IEEE Trans, Pattern Anal. Machine Intelligence, 1997,19:153-158
    92 J. Basak, R.L. De, and S.K. Pal. Unsupervised Feature Selection Using a Neuro-Fuzzy Approach. Pattern Recognition Letters, 19:997-1006
    93 George H. Fried, George J. Hademenos. Shaum’s Outlines of Theory and Problems of Biology, Second Edition. 田清涞.北京:科学出版社,2002:25-96
    94 Andreas D. Baxevanis, B.F.Francis Ouellette. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins.李衍达,孙之荣.北京:清华大学出版社,2000:16-32,46-65, 133-156, 160-208, 251-293
    95 赵玮,温小霓.应用统计学教程(下册).西安:科技大学出版社,2003:26-35
    96 徐克学.生物数学.北京:科学出版社,1999:71-72
    97 苏金明,阮沈勇. MATLAB6.1 使用指南(下册)-最优化方法的 MATLAB 实现. 北京:电子工业出版社,2002.1:436
    98 陈念贻,陈瑞亮,钦佩,陆文聪.模式识别方法在化学化工中的应用.北京:科学出版社,2002:71-88
    99 Simon Haykin. Neural Networks-A Comprehensive Foundation, Second Edition. 叶世伟,史忠植.神经网络原理.北京:机械工业出版社,2004:38-227
    100 Gao Ying, Xie Shengli. A Variable Step Size Adaptive LMS Algorithm Filtering and Its Analysis,” ACTA Electronic Sinica, 2001,29, (8):1094-1097
    101 Tom M.Mitched Maehine Leawnin 曾华军,张银奎.机器学习.北京:机械工业出版,2003:60-94
    102 Sun Y, Jiang H,Aygen Z E. Falt Section Estimation in Electrical Power System Using Artificial Neural Network. IEEE Transmision & Distribution Conference,1999,466-469
    103 Lu W.Z., Fan H.Y. et al. Analysis of Pollutant Levels in Central Hong Kong Applying Neural Network Method with Particle swarm Optimization. Environmental Monitoring and Assessment,2002,79(3):217-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700