用户名: 密码: 验证码:
我国铜矿勘查程度及资源潜力预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜是我国一直紧缺的、但需求很大、对外依存度逐年增加的战略性矿产资源,也是我国矿产勘查中最重要的主攻矿产。本着立足于国内立开展铜矿产资源勘查来缓解我国目前及未来对铜矿资源供需矛盾的宗旨,结合矿产资源调查评价工作的目标和任务,以研究我国铜矿勘查工作部署为目的,通过对我国铜矿勘查地质工作程度研究和分析,圈定铜矿勘查可进一步提高工作程度的地区,预测铜矿资源潜力。为实现这一目的,论文主要通过建立我国铜矿勘查空间数据库,开展铜矿勘查程度分析,划分勘查程度等级,确定低勘查程度区域,预测和评价低勘查程度区铜矿资源潜力,提出铜矿找矿工作宏观部署建议等内容进行了研究和分析。
    1、通过组织全国40 个省(市、自治区)、部级地勘单位,建立了目前国内迄今为止覆盖范围最大、数据量最多,包括勘查工作数据5172 条,矿区实物工作量数据12442 条,铜矿产地4961 处的铜矿勘查空间数据库。同时也是本文研究我国铜矿勘查程度的基础。
    2、对我国铜矿勘查程度进行了较全面系统地分析和研究,建立了勘查程度等级划分标志,圈定了各勘查程度的等级空间范围。包括:1)较全面系统地总结了20 世纪我国铜矿勘查工作的投入及其变化特征;2)根据铜矿勘查空间数据的图形特征和属性特征,应用GIS 空间分析技术,开展了铜矿勘查程度与铜矿产出的内在联系性分析,提出我国铜矿勘查达到一定程度所具有的工作投入特征;3)以不同规模矿床所对应勘查程度作为研究对象,建立以钻探和工作投入积累次数为参数的程度等级划分指标;在此基础上,通过行政区划和全国Ⅲ级成矿区带两个地理范畴,分别开展了我国铜矿勘查程度对比研究,将我国Ⅲ级成矿区带铜矿勘查程度划分为9 级,总结了各级成矿区带的勘查程度特征;揭示了目前我国还存在193×104km2的低勘查程度区和414×104km2的空白区的事实;4)较系统地编制了全国铜矿调查、普查、详查、勘探及总勘查程度分布图和相应的程度等级分布图。
    3、应用地球化学块体理论,对全国铜矿勘查程度较低或极低区的铜矿资源潜力进行了预测,预测铜矿资源潜力为11008 万吨。在勘查投入与产出具有一定正相关性,以及低勘查程度区具有一定的成矿地质条件和矿化线索的两个认识前提下,探索性地提出了采用高勘查程度区的参数指标为模型,通过勘查程度类比进行资源潜力预测的思路,对全国低程度区铜矿资源潜力进行了预测,结果为12498 万吨。
    4、立足于当前国家出资开展战略性矿产勘查的目标及任务前提下,提出勘查程度较低或极低区铜矿勘查的的工作部署工作投入建议。包括需要开展铜矿资源调查评价的面积149×104km2,开展铜矿普查的面积约216×104km2;需要投入的钻探工作量约为3786×104m,设置调查和普查工作项目约1526 项。
    论文成果是在地质调查项目《中国20 世纪地质工作程度数据库》和《中国东、西部地球化学块体资源潜力预测》等研究成果基础上提炼而成。在这些项目中,作者作为主要负责人,设计和承担完成了文中相关方面的各项内容。
Copper is the most important target mineral commodity of our country, and one of strategic mineral commodities which have always been being in big shortage in China. The demands from foreign resources have been increasing year after year. The aim of this research is trying to mitigate present and future contradiction of copper ore resource demand exceeding its supply, by means of strengthening exploration of domestic copper resources. In the light of goal and assignment of the investigation and evaluation for mineral resources, for the purpose of studying China’s macro plan for copper ore resource exploration, by way of studying and analyzing the geologic work intensities for copper resource exploration of our country, to block out regions and areas where the intensity can be further exploited, so that their copper resource potential can be predicted.
    In order to realize this aim, works mainly in the following aspects are done in the thesis: (1) Establishment of space database for copper exploration of our country; (2) Analysis and classification of copper ore exploration intensity; (3) Confirmation of low-exploration-degree regions and areas; (4) Prediction and evaluation of copper resource potentials in the low-exploration-degree regions and areas; (5) Recommendations and suggestions on macroscopic plan for copper ore prospecting.
    1. The space database for copper exploration covers the biggest area with most data till now in our country, based on organizing 40 units which include institutions of geological survey and former industry departments of geology and exploration. The database is composed of 5172 items of exploration data, 12442 items of ore district practical workloads, and 4961 items of copper mineral occurrences; the research of copper ore exploration intensity of our country made in this thesis is based on this database.
    2. Comparatively systematic analysis and study to space GIS of copper ore exploration intensity in our country, by means of establishment of indications for exploration intensity, and spatial demarcation of different exploration intensities. Detailed works are as follows: (1) Comprehensive and systematic summing-up of invest in copper ore exploration of our country in the 20 century, and analysis of its changing characteristics. (2) Exploration intensity analysis on relations between copper ore exploration invest and their scale and resource, hence the necessary workload accumulation and amount are put forward for copper ore exploration to a specific degree in our country. (3) Foundation of parameter indexes of drilling and workload invest accumulating times for exploration intensities of copper deposits in different scales; classification and demarcation of exploration intensity. Based on this, compare the differences of exploration extents among the areas which in different administrative divisions and III-grade minerogenetic units, and divided into nine grades and set up the parameter indexes of copper ore exploration intensity on minerogenetic belts. In an all-round way in our country; so that facts of low-grade exploration intensity regions and areas for a total area of 193×104 km2 and blank of 414×104 km2 are brought to light. (4) The compiling of copper ore exploration
引文
[1] 赵鹏大、胡旺亮、李紫金,矿床统计预测,北京:地质出版社。
    [2] 赵鹏大,李万亨,矿产勘查与评价,北京:地质出版社1988。
    [3] 赵鹏大,科学找矿与矿床预测基本原理和准则,矿产勘查,1990。
    [4] 赵鹏大、池顺都,当前矿产勘探问题的思考,地球科学,1998,23(1)。
    [5] 赵鹏大,矿产勘查理论与方法,北京:中国地质大学出版社,2001。
    [6] 赵鹏大,矿产勘查的若干重要思路及途径,矿产储量管理,1995,Vol.5:4~10。
    [7] 赵鹏大,“三联式”资源定量预测与评价,地球科学,2002。
    [8] 王世称、范继璋、成秋明,金矿资源综合信息评价,长春:吉林科技出版社,1983。
    [9] 王瑞江,关于我国战略性矿产勘查工作几个问题的思考,地质通报,2004,Vol.23, No.11: 1074~1077。
    [10] 陈毓川等编,中国主要成矿区带矿产资源远景评价,北京:地质出版社,1999。
    [11] 陈毓川、朱裕生等,中国矿床成矿模式,北京:地质出版社,1993。
    [12] 朱裕生、肖克炎、王全明等,成矿预测方法,北京:地质出版社,1997。
    [13] 谢学锦,1997,论矿产勘查史-经验找矿、科学找矿与信息勘查,Xie Xuejing,1997,Empirical prospecting, scientific exploration and information exploration, Journal of Geochemical Exploration 67 Vol. Pp. 97~108)
    [14] 谢学锦,勘查地球化学的现状与未来展望,地质论评,1996,第42 卷第4 期,P346~355)。
    [15] 肖克炎等,矿产资源GIS 评价系统,北京:地质出版社,2000,87~108。
    [16] 刘江等,中国资源利用战略研究,北京:中国农业出版社,2003,
    [17] 国土资源部、中国地质调查局、中国国土资源经济研究院,矿产资源规划工作手册,北京:地质出版社,2001,P313~330。
    [18] 戴自希,矿产勘查百年,北京:地震出版社,2004,P18~20
    [19] 叶柏庄,我国矿产资源地质勘查技术现状与进展,中南铀矿地质,2003,Vol.17(2总29):88~94。
    [20] 王学求,矿产勘查地球化学:过去的成就与未来的挑战,地学前缘,2003,Vol.10(1) :239~248
    [21] 李锦轶,王克卓等,东天山晚古生代以来大地构造与矿产勘查,新疆地质,2002,Vol.20(4 总76):295~301。
    [22] 刘凤山,加拿大近十年固体矿产勘查进展,地质科技情报,2001,Vol..20 (4总88) :57~62。
    [23] 裴荣富,矿产勘查的双控论与合理域模型,矿床地质,2001,Vol.20(4) :307~313。
    [24] 杜佩轩、张锡云、田晖、田素,不同地球化学景观区的金属矿产勘查方法技术,国土资源与环境,2001,Vol.1 总55:15~19。
    [25] 赵一鸣、吴良士等,中国主要金属矿床成矿规律,北京:地质出版社,2004,P13~60。
    [26] 施俊法,矿产勘查中矿床模型、区域构造与成矿规律研究的成就和挑战,国土资源科技进展,2000,Vol.3 总171:7~17。
    [27] 王文、赵燕生,矿产勘查技术进步评价方法与实例,地质科技管理,1999,Vol.2 总80:27~30。
    [28] 陈汉中,新理论新思路为矿产勘查提供新天地,湖南地质科技信息,1999,Vol.1 总113 :12~16。
    [29] 戴自希,近年来世界金属矿产勘查的经验与启示,国外地质科技,1998,Vol.1 总161:19~27。
    [30] 胡云中、侯增谦,当代主要金属矿产资源勘查与研究的发展态势(下),地质科技管 理,1998,Vol.2 总74:59~62。
    [31] 姜福林,地理信息系统(GIS)及其在地质矿产勘查中的应用,青海地质科技情报,1997,Vol.2 总46:26~29。
    [32] 田绍东,矿产地质勘查阶段划分探讨,中国地质,1997,Vol.10 总245:37~39。
    [33] 钱大都等,中国矿床发现史(综合卷),北京:地质出版社,2001。
    [34] 王全明,叶天竺,王保良等,我国主要金属矿产勘查工作特点及对当前勘查工作的启示,地质与勘探,2005,41(2):1~5。
    [35] 朱裕生,李纯杰,王全明等,1997,成矿地质背景分析,地质出版社。
    [36] 王全明,叶天竺,王保良等,我国主要金属矿产勘查程度对比,地质通报,2005,第5 期。
    [37] 王全明,1999,阿舍勒矿区大比例尺成矿预测实践,当代矿产资源勘查评价的理论与方法,地震出版社,p487~495。
    [38] 王全明,方一平,2000,地理信息系统中矿产资源评价模型的建立,地质论评,2000,第46 卷,p54~58。
    [39] 王全明,方一平,矿产资源调查评价中的GIS,中国地质,2001,Vol.28(4 总287) :38~44。
    [40] 王安建、肖克炎、王全明,国土资源评价若干构想——以矿产资源评价为例,中国地质,1999,Vol.6 总265:4~6。
    [41] 朱裕生、王全明、张晓华、方一平、肖克炎,中国成矿区带划分及有关问题,地质与勘探,1999,Vol.35(4 总364):1~4。
    [42] 施俊法、肖庆辉,当代成矿作用研究的重要前沿,地质调查情报动态,2003,第10期。
    [43] 施俊法、肖庆辉,经验勘查与理论勘查的发展趋势,地质通报,2004,Vol. 23,No.8,809~815。
    [44] 中国地质调查局,二十世纪末中国区域地质调查工作与研究进展,北京:地质出版社2003。
    [45] 黄崇轲等,中国铜矿床,北京:地质出版社,2001。
    [46] 中华人民共和国国家技术监督局,GB9649-88,地质矿产术语分类代码,北京:中国标准出版社。
    [47] 中华人民共和国国家技术监督局,GB/T13989-92,国家基本比例尺地形图分幅编号,北京:中国标准出版社。
    [48] 中华人民共和国国家技术监督局,GB2260-98,中华人民共和国行政区划代码,北京:中国标准出版社。
    [49] 中华人民共和国国家技术监督局,GB958-89,区域地质图图例(1:50000),北京:中国标准出版社。
    [50] 中华人民共和国国家技术监督局,GB/T17694-1999,地理信息技术基本术语,北京:中国标准出版社。
    [51] 中华人民共和国国家技术监督局,GB958-89,1:5 万地质图例(1998 年修改版),北京:中国标准出版社。
    [52] DZ/T0197-1997,数字化地质图图层及属性文件格式。
    [53] DDB9702,GIS 图层描述数据内容标准。
    [54] DDZ9701,资源评价工作中地理信息系统工作细则。
    [55] DZ/T 0179-1997,地质图用色标准及用色原则。
    [56] 中华人民共和国国家技术监督局,GB/T 13908-2002,固体矿产地质勘查规范总则,北京:中国标准出版社。
    [57] DZ/T0011-91,地球化学普查规范。
    [58] DZ/T0082-93,区域重力调查规范。
    [59] DZ/T0171-96,大比例尺重力勘查规范。
    [60] DZ/T0144-94,地面磁勘查技术规程。
    [61] DZ/T0070-93,时间域激发极化法技术规定。
    [62] DZ/T0073-93,电阻率剖面法技术规程。
    [63] DZ/T0081-93,自然电法技术规程。
    [64] 中华人民共和国国家技术监督局,GB13687-92,固体矿产普查总则,北京:中国标准出版社。
    [65] 中华人民共和国国家技术监督局,GB13688-92,固体矿产详查总则,北京:中国标准出版社。
    [66] DZ/T0001-91,区域地质调查总则。
    [67] 全国矿产储量委员会,矿产工业要求参考手册,北京:地质出版社1986。
    [68] 地质部地质辞典办公室编辑,地质辞典(第一、二、三、四、五分册),北京:地质出版社,1982。
    [69] Sue-Ann Higgin, Foreign direct investment and exploration in China's Mining industry presentation, Australia-China Metals & Minerals Conference 8~9 July 2004.
    [70] Jon Hronsky, The Science of Exploration Targeting The Science of Exploration Targeting, SEG 2004.
    [71] A.J.Naldrett et al. Voisey’s Bay Canada: Implications for Exploration, Minerals Industry International, Jan. 1997:66~77.
    [72] D.R. Cook, Analysis of Significant Mineral Discoveries in the last 40 years and Future Trends, Mining Engineering, Feb. 1986: 87~94.
    [73] Morse et al., Mineral and Materials in the 20th Century –Review, U. S. Geological Survey Minerals Yearbook, 2002.
    [74] Harper et al. Worldwide Exploration Trends –Where is the next Exploration romance?, E&MJ, July 1998.
    [75] J.D. Lowell et al., How Orebodies are Found, Mining Engineering, July 2000.
    [76] Cabello, Exploration Discoveries in Chile During the last Decades, Mining Engineering, April 2001: 19~24.
    [77] Cabello, Exploration Rewards in Chile, Mining Engineering, April 2000: 198~199.
    [78] J.S. et al., Olympic Dam Copper-Uranium-Gold-Silver Deposit, Geology of the Mineral Deposit of Australia and Papua Guinea, Vol.2 1990.
    [79] P. Laznicka, Giant ore Deposit: A Quantitative Approach, Global Tectonics and Metallogeny, 1993, Vo2, No.1,2.
    [80] P. Laznicka, Quantitative Relationships Among Giant Deposits of Metals, Economic Geology, 1999, Vol. 94, No.4, 455~473.
    [81] R. Valliant, The Lac Discoveries, Canadian Mining, Journal, May 1985, 39~47.
    [82] Wang Quanming, Yetianzhu,Chen Jianguo, Li Shuyu, Zhang Daquan, Spatial Database of Geological Survey Extent in 20th Century in China, Journal of China University of Geosciences, 2003,14(3): 220~226.
    [83] Pirajno F., Ore Deposit and Mantle Plumes, Netherland: Kluwer Academic Publishers, 2000, 387~504.
    [84] Hildenbrand T G, Berger B, Jachen R C, et al., Regional Crustal Structures and Their Relationship to the Distribution of ore Deposits in the Western United States, base on magnetic and gravity, Economic Geology, 2000, 95:1583~1603.
    [85] Looney C. DataXplore: a program for exploring associations and classesin data in Spatial Data Modelling with exploration datasets in ArcView, Workshop Notes, Workshop held at the Geological Survey of Canada, Ottawa, Oct. 1999, 26~27.
    [86] Harris D. P., and Pan G., 1999, Mineral favorability maping: A compareison of artificial neural networks, logistic regression, and discriminant analysis, Nat. Resour. Res., 8:93~109.
    [87] Guocheng Pan, Deverle P. Harris, Information Synthesis for Mineral Exploration, OXFORD University Press, 2000.
    [88] A New Geochemical Technique for Gold Exploration: Alkali Element Mobility Associated with Gold Mineralization in the West Australian Goldfields Christopher J. Heath and Ian H. Campbell pp. 313~324, ECONOMIC GEOLOGY and the Bulletin of the Society of Economic Geologists, Volume 99 March-April 2004 Number 2.
    [89] A.K. Ghose and B.B. Dhar, Mining : challenges of the 21st century, New Delhi : A.P.H. Publishing Corporation, 2000. 813 p.
    [90] D.D. Sarma, Geostatistics with applications in earth sciences, New Delhi : Capital Publishing Company, 2002.,170 p.
    [91] H.S. Pandalai and P.K. Saraswati, Recent researches in geology. v.18, geological data analysis :statistical methods, New Delhi : Hindustan Publishing Corporation, 2000. 220 p.
    [92] Edward I. Erlich, W. Dan Hausel, Diamond deposits : origin, exploration, and history of discovery, Society for Mining, Metallurgy, and Exploration, Inc., 2002. 374 p.
    [93] Norbert de Lange, Geoinformatik in Theorie und Praxis, Berlin, 2002. 438 p.
    [94] David O'Sullivan and David Unwin. —Hoboken, N.J. : Wiley, Geographic information analysis, 2003. 436 p.
    [95] Klaus J. Schulz and Joseph A. Briskey,USGS Mineral Resources Program: The Global Mineral Resource Assessment Project, U.S. Geological Survey, Fact Sheet 53~03, June 2003 -Online Version 1.0.
    [96] David Wilburn, Thomas Goonan, and Donald Bleiwas, Technological Advancement-A Factor ih Increasing Resource use, U.S. Department of the Interior and U.S. Geological Survey, Open File Report 01~197.
    [97] J oseph A. Briskey and Klaus J. Schulz, Agenda, Extended Abstracts, and Bibliographies for a Workshop on Deposit Modeling, Mineral Resources Assessment, and Their Role in Sustainable Development (31st International Geological Congress), U.S. Geological Survey Open-File Report 02~423, Version 1.0.
    [98] D.B. Hoover, W.D. Heran, and P.L. Hill, The Geophysical Expression of Selected Mineral Deposit Models, U.S. Geological Survey Open-File Report 92~0557
    [99] Anna B. Wilson, Gregory T. Spanski, Melissa J. Crane, and Marc D. Woodard, Databases and Spatial Data Model for Mineralized Areas, Mines, and Prospects in the Grand Mesa, Uncompahgre, and Gunnison (GMUG) National Forests, Colorado, U.S. Geological Survey Open-File Report 00~0298
    [100] K. Eric Livo and Roger N. Clark, Mapped Minerals at Questa, New Mexico, Using Airbourne Visible-Infrared Imaging Spectrometer (AVIRIS) Data -Preliminary Report, U.S. Geological Survey Open-File Report 02~0026.
    [101] Mark J. Mihalasky, Mineral Potential Modelling of Gold and Silver Mineralization in the Nevada Great Basin—A GIS-Based Analysis Using Weights of Evidence U.S. Geological Survey, Open-File Report 01~291.
    [102] Anna B. Wilson, Terry L. Klein, and William D. Heran, Databases and Simplified Geology for Mineralized Areas, Claims, Mines, and Prospects in Wyoming, U.S. Geological Survey Open-File Report 01~0497
    [103] F. T. Agterberg, G. F. Bonham-Carter and Wright, Statistical pattern integration for mineral exploration, Geological Survey of Canada Contribution, 1986.
    [104] Bonham –Carter, Geographic information for Geoscientists: Modeling with GIS, Elsevier Sciences Press U.S.A 1994。
    [105] Bon ham –Carter,Agterberg,Weights of Evidence Modeling: a new approach to mapping mineral potential, Geological Survey of Canada Paper 89~9。
    [106] Harris D.P, Mineral Resource Appraisal Clarendon Press,1984。
    [107] Lox,D.P and Singer,D.A., Mineral Deposit Models, Uniterdstates Geological

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700