用户名: 密码: 验证码:
松辽盆地西部斜坡区烃渗漏信息遥感增强与提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烃类物质微渗漏会引起地表的岩石、土壤、生物等地球化学异常的响应,从而在遥感图像上形成可识别的影像特征。针对松辽盆地西部斜坡区地域辽阔、地表覆盖相对简单的地面状况及良好的稠油勘探前景,本次研究以烃渗漏蚀变矿物在Landsat 7 ETM+(陆地卫星增强型专题制图仪)各个波段上的波谱特征为基础,采用主成分分析、波段比值,最佳指数因子和假彩色合成等多种遥感图像信息增强方法,对松辽盆地西部斜坡区的ETM+7图像进行处理,得到针对研究区域烃渗漏蚀变地物的特征主成分因子、波段比值因子和假彩色合成影像;综合合成影像上烃渗漏蚀变的理论影像特征和已有探井周边的实际影像特征确定烃渗漏蚀变区的影像特征,进而解译烃渗漏蚀变区;综合分析地面样本地球化学勘探数据、地质剖面与遥感解译结果,评价烃渗漏遥感探测的可靠性和有效性;对照区域地质资料讨论异常区的地质背景;根据地表地球化学勘探结果总结烃渗漏蚀变在地面上的变化规律,利用井下样本的地球化学测试数据和录井解释探索烃渗漏蚀变沿途的地球化学变化规律。本次研究主要取得了以下认识和进展:
     1.通过烃渗漏蚀变矿物特征波谱和特征矩阵的分析,首次提出针对松辽盆地西部斜坡区烃渗漏蚀变信息增强的特征主成分因子4个;通过特征波谱的分析,提出能有效增强松辽盆地西部斜坡区烃渗漏蚀变信息的波段比值因子4个。
     2.根据选取的特征主成分因子和波段比值因子的波谱统计特征及相关系数分析,采用最佳指数因子法(OIF)计算排序并经过判读后,选取5幅假彩色合成影像对于烃渗漏蚀变区的解译,结果显示烃渗漏蚀变异常区在这些影像上具有较稳定的分布范围,并且与区域地质背景紧密联系。
     3.异常区土壤样本的地球化学测试结果显示烃类物质微渗漏引起的地球化学变化在近地表土壤表现明显,测试结果与遥感解译一致:一级异常区的地面样本酸解烃(C_2-C_5)含量在解译的异常区内总体表现为高值,并与异常区的展布方向一致,表明烃类物质相对含量在近地表土壤中由于长期的吸附作用而明显提高;一级异常区的地面样本土壤蚀变碳酸盐测量结果与异常区的展布表现出正相关的关系,表明烃渗漏确实在近地表土壤中形成了蚀变碳酸盐的累积;土壤样本磁化率变化趋势图显示该区的磁化率变化方向与一级异常区有较明显的正相关关系,说明烃渗漏造成的还原环境会引起土壤和沉积物中高磁化率矿物的形成;由于烃渗漏形成了还原环境,造成三级异常区的Ce/La比值表现为低值。
     4.经过对富拉尔基南一级异常区地面范围与地质剖面比对发现:异常区(或周边)内的探井均钻遇油层,但异常区在地表的出露范围小于下伏实际含油砂体的分布范围,局部存在异常区与下伏含油砂体的偏移。原因可能是由该区地层及含油砂体向东倾斜的地形以及城区和嫩江水体等干扰因素引起的。
     5.1号和2号探井的井下样本的磁化率和蚀变碳酸盐测量值结果显示烃渗漏在垂向路径上引起的地球化学变化具有一定规律:近地表样品的磁化率小于深层样品的磁化率,近地表样品的蚀变碳酸盐大于深层样品的蚀变碳酸盐;在油页岩之上的深层泥岩样品中,磁化率与深度呈负相关,蚀变碳酸盐与深度呈正相关,并且在油页岩样品中达到最大值;砂砾岩样品的磁化率和蚀变碳酸盐含量随着深度的降低而骤减;磁化率在浅层样品中较稳定,蚀变碳酸盐在浅层样品中变化较大。
     研究结果表明本文提出的烃渗漏信息遥感图像增强与提取方法对于研究区域是有效和可靠的,遥感解译的烃渗漏蚀变异常区内的地表化探结果与烃渗漏引起的地表环境响应特征基本吻合,烃渗漏引起的蚀变异常在地面上和垂直路径上都具有一定的空间规律。
Hydrocarbon leakage or migration would result in rock, soil and botanical anomaly in near-surface sediments which can be identified in remote sensing image. Because of its wide region, simple surface cover and promising deposit of heavy oil in Western slope zone of Songliao basin, China, the area is suitable for remote sensing study. The present study used ETM+ (Landsat 7 Enhanced Thematic Mapper Plus) image to identify the hydrocarbon-induced area based on the diagnostic spectral characteristics of the hydrocarbon-induced manifestations and the spectral enhancement including Principal Component Analysis (PCA), band ratioing, Optimum Index Factor (OIF) and False Color Composition (FCC). The optimum principal components, band ratios and false color compositions were achieved. According to the theoretical characteristics of hydrocarbon-induced manifestation and the tonal characteristics around the existed well, the hydrocarbon-induced area were interpreted in the whole area. Then, the identified tonal anomalies were discussed in the context of geochemical data and cross sections to validate the reliability of the result. The geological setting of the tonal anomaly was noted and the geochemical characteristic resulted from hydrocarbon leakage on the ground was priamaryly achieved. Geochemical measurement results of the samples from exploratory well and logging interpretation were used to imply the geochemical characteristic along with the vertical pathway of hydrocarbon migration. Main conclusions and developments of this study are listed below:
     1. In Western slope zone of Songliao basin, China, there are four principal components (PCs) have relatively good enhancement for delineating mineral and sediment anomalies caused by hydrocarbon leakage. And there are four band ratios have relatively good enhancement for delineating mineral and sediment anomalies caused by hydrocarbon leakage.
     2. The selected principal components and band ratios are used for statistical multi-bands combination analysis of OIF. Then according to the OIF result, five false color compositions have good representation of the hydrocarbon-induced manifestation. The interpretation result shows that the hydrocarbon-induced areas have steady distribution and were related close to geological setting.
     3. The geochemical measurements of ground samples indicated that the tonal anomalous area in remote sensing image is related close to soil chemistry changes: (1) The acidolysis hydrocarbon measurement of ground soil samples from the first-order promising area reveals that light hydrocarbon concentration is larger in the first-order promising area and the spatial distribution of light hydrocarbon concentrations mostly agrees with the distribution of the promising area. (2) the delta-carbonate test (ΔC) of ground soil samples from the first-order promising area indicates that the occurrence of anomalous concentrations of delta-carbonate is positive evidence for the tonal anomaly. (3) It is noted that the direction of the magnetic susceptibility is NNE, coincident with the anomalous area. Though the variation image can't cover the whole anomaly because of the limited distribution of the surface samples, it implies that the correlation between magnetic properties and the surface anomalies caused by hydrocarbon is positive in this area. (4) The result of the Ce/La ratio in the third-order promising area is low indicating the reducing environment. The positive spatial correlation between tonal anomaly and reducing environment emphasizes the idea the identified anomaly has a geochemical origin.
     4. The strata section crossing the first-order promising area (southern Fulaer'ji) indicates that the most drilling wells around this anomalous area have met the oil-bearing layer. However, the surface anomalous area detected in the remote sensing interpretation is smaller than that which might be inferred from the profile and is often located updip and westward of the reservoir. And it is may caused by the eastward strata and the spectral disturbance of city zone and Nen River.
     5. The magnetic susceptibility (MS) and delta-carbonate (ΔC) of rock samples in wells Jiang 75 and Jiang 76 show the geochemical characteristics along with pathway of hydrocarbon migration as below: (1) MS value of near surface sample is smaller than that of deep-seated sample and the delta-carbonate content of near surface samples is much higher than that of deep-seated sample. (2) Above the oil-bearing layer, the magnetic susceptibility of sandy gravel sample is increasing along with the decrease of the depth. In contrast, the delta-carbonate content is decreasing when the depth is decreasing. And the lowest MS and highestΔC perfectly mark oil-bearing layer of the oil shale. (3) MS value and delta-carbonate content have very large variation in sandy gravel samples and decrease strongly when the depth is decreasing. (4) Samples of near surface exhibit an intense variation of the delta-carbonate content and relatively steady representation of magnetic susceptibility.
     The result suggests that the enhancement and interpretation of remote sensing image for the study area proposed are applicable and dependable for the study area. The relationship between the many kinds of field data and identified anomalies from remote sensing image suggests that the hydrocarbon-induced manifestation would cause characteristics both on the ground and along with the vertical pathway.
引文
[1] Abrams M A., Significance of hydrocarbon seepage relative to petroleum generation and entrapment: Marine and Petroleum Geology, 2005, v. 22, p. 457-477.
    [2] Almeida-filho, R., F. P. Miranda and T. Yamakawa, Remote detection of a tonal anomaly in an area of hydrocarbon microseepage, Tucano basin, north-eastern Brazil. International Journal of Remote Sensing, 1999, v. 20, p. 2683-2688.
    [3] Almeida-filho, R., Remote detection of hydrocarbon microseepage areas in the Serra do Tona region, Tucano basin, Brazil: Canadian Journal of Remote Sensing, 2002, v. 28, p. 750-757,
    [4] Almeida-filho, R., F. P. Miranda, L. S. Galvao and C. C. Freitas, Terrain characteristics of a tonal anomaly remotely detected in an area of hydrocarbon microseepage, Tucano basin, north-eastern Brazil. International Journal of Remote Sensing, 2002a, v. 23, p. 3893-3898.
    [5] Almeida-filho, R., Remote detection of hydrocarbon microseepage-induced soil alteration: International Journal of Remote Sensing, 2002b, v. 23, p. 3523-3524.
    [6] Almeida-filho, R., and Y. E. Shimabukuro, Digital processing of a Landsat-TM time series for mapping and monitoring degraded areas caused by independent gold miners, Roraima State, Brazilian Amazon: Remote Sensing of Environment, 2002c, v. 79, p. 42-50.
    [7] Amakawa H, J. Ingri, A. Masuda and H. Shimizu, Isotopic compositions of Ce, Nd and Sr in ferromanganese nodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas, and the Gulf of Bothnia: Earth and Planetary Science Letters, 1991, v.105, p.554-565
    [8] Arp, G. K., Effusive microseepage. a first approximation model for light hydrocarbon movement in the subsurface: Association of Petroleum Geochemical Explorationists Bulletin, 1992, v. 8, p. 1-17.
    [9] Baijal. S. K., Geo-chemical Survey of the Hilbig Oil Field. Bastrop County: Texas. - University of Texas. 1962.
    
    [10]Buhe, A., K Tsuchiya, M. Kaneko. N. Ohtaishi and M. Halik. Land cover of oases and forest in Xinjiang, China retrieved from ASTER data: Advances in Space Research. 2007. v. 39, p. 39-45.
    [11] Carmichael. R. S.. Magnetic properties of minerals and rocks. In Carmichael, R. S. eds. Practical handbook of physical properties of rocks and minerals. Boca Raton Florida: CRC Press, 1989.
    [12] Chavez. P. S., G. L.. Berlin and L. B. Sowers, Statistical methods for selecting Landsat MSS ratios: J. Appl. Photogr. Eng, 1982, v. 8, p. 30-32
    [13]Cheng, J., J. C. McIntosh, X. Xie, J. J. Jiao, Hydrochemistry of formation water with implication to diagenetic reactions in Sanzhao depression and Qijia-gulong depression of Songliao Basin, China: Journal of Geochemical Exploration, 2006, v. 88, p. 86-90.
    [14] Cheng, J. M., C. M. Jennifer, X. Xie and J. J. Jiao, Hydrochemistry of formation water with implication to diagenetic reactions in Sanzhao depression and Qijia-gulong depression of Songliao Basin. China: Journal of Geochemical Exploration, 2006, v. 88, p. 86- 90.
    [15]Costanzo-Alvarez, V., M Aldana, O. Aristeguieta. M. C. Marcano and E. Aconcha, Study of magnetic contrasts in the Guafita oil field (south-western Venezuela): Phys. Chem. Earth (A). 2000, v.25, p. 437-445.
    [16]Crosta, A. and J. Moore, Geological mapping using Landsat Thematic Mapper imagery in Almeria Province, south-east Spain: International Journal of Remote Sensing, 1989, v. 10, p. 505-514.
    [17]Diaz, M., M. Aldana, V. Costanzo-Alvarez, P. Silva and A. Perez, EPR and Magnetic Susceptibility studies in well samples from some Venezuelan oil fields: Phys. Chem. Earth (A), 2000, v. 25, p. 447-453.
    [18]Donovan, T. J., Petroleum microseepage at Cement, Oklahoma; evidence and mechanism: The American Association of Petroleum Geologists Bulletin, 1974, v. 58, p. 429-446.
    [19]Donovan, T. J. and M. C. Dalziel, Late diagenetic indicators of buried oil and gas: US Geol. Survey Open-File Rept, 1977, p. 77-817.
    [20]Donovan, T. J., R. L. Forgey and A. A. Roberts, Aeromagnetic detection of diagenetic magnetite over oil fields: The American Association of Petroleum Geologists Bulletin. 1979, v. 63, p.245-248.
    [21]Duchscherer, W., Geochemical methods of prospecting for hydrocarbons: Oil and Gas Journal, 1980, v. 78.
    [22] Duchscherer, W., Nongasometric geochemical prospecting for hydrocarbons with case histories: Oil and Gas Journal, 1981, v. 79, p. 320-327.
    [23] Duchscherer, W., Geochemical hydrocarbon prospecting with case histories. Tulsa: Pennwell Publishing, 1984, p. 196.
    [24]Duchscherer,W.,Delta carbonate hydrocarbon prospecting.In Davidson.M.J.eds.,Unconventional methods in exploration for petroleum and natural gas,symposium Ⅳ:Dallas,Texas,Southern Methodist University Press,1986,p.173 182.
    [25]Dwivedi,R.S.and B.R.M.Rao,The selection of best possible Landsat TM band combination for delineating salt-affected soils.International Journal of Remote Sensing,1992,v.13,p.2051-2058.
    [26]Ellwood,B.B.and B.Burkart,Test of hydrocarbon-induced magnetic patterns in soils:The sanitary,landfill as laboratory.In Schumacher,D.and M.A.Abrams,eds.,Hydrocarbon migration and its near-surface expression:The American Association of Petroleum Geologists Memoir 66,1996,p.91-98.
    [27]Ellwood,B.B.W.L.Balsam and H.H.Roberts,Gulf of Mexico sediment sources and sediment transport trends from magnetic susceptibility measurements of surface samples:Marine Geology,2006,v.230,p.237-248.
    [28]Feng,Z.H.,G.Z.Liao,W.Fang,J.H.Zhang and L.B.Song,Formation of heavy oil and correlation of oilsource in the western slope of the northem Songliao Basin:Petroleum Exploration and Development,2003,v.30,p.25-28.
    [29]Freeze,R.A and P.A.Witherspoon,Theoretical Analysis of Regional Groundwater Flow:1.Analytical and Numerical Solutions to the Mathematical Model:Water Resources Research,1966.v.2,p.641-656.
    [30]Freeze,R.A.and P.A.Witherspoon,Theoretical Analysis of Regional Groundwater Flow:2.Effect of Water-Table Configuration and Subsurface Permeability Variation:Water Resources Research,1967.v.3,p.623-634
    [31]Freeze,R.A.and P.A.Witherspoon,Theoretical Analysis of Regional Ground Water Flow:3.Quantitative Interpretations:Water Resources Research,1968,v.4,p.581-590.
    [32]Gad,S.and T.Kusky,ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield,the Neoproterozoic Wadi Kid area,Sinai,Egypt:Gondwana Research,2007,v.11,p.326-335.
    [33]Gay,S.P.Jr.,Epigenetic versus syngenetic magnetite as a cause of magnetic anomalies:Geophysics,1992,v.57,p.60 68.
    [34]Glasby.G.P,R.Gwozdz.H.Kunzendorf and K.W.Bruland,The distribution of rare earth and minor elements in manganese nodules and sediments from the equational and S.W. Pacific:Lithos,1987,v.20,p.97-113.
    [35]Goetz,A.F.H.,and B.N.Rowan,Remote sensing for exploration:an overview:Economic Geology,1983,v.78,p.573-590.
    [36]Gonzalez,F.,M Aldana,V.Costanzo-Alvarez.M.Diaz and I.Romero An integrated rock magnetic and EPR study in soil samples from a hydrocarbon prospective area:Physics and Chemistry of the Earth,2002,v.27,p.1311-1317.
    [37]Habermehl,M.A,The Great Artesian Basin,Australia.BMR Journal of Australian Geology and Geophysics,1980.v.5,p.9-38.
    [38]Henderson,P.,Rare Earth Element Geochemistry.New York:Elsevier,1984
    [39]Henry,W.E.,Magnetic detection of hydrocarbon microseepage in a frontier exploration region:Association of Petroleum Geochemical Explorationists Bulletin,1988.v.4.p.18 29.
    [40]Horvitz,L.,On geochemical prospecting:Geophysics,1939.v.4,p.210-228.
    [41]Horvitz,L.,Chemical Methods.In Jakosky,J.J.eds..Exploration Geophysics.Los Angeles:Trija Publishing,1950,pp.938-965.
    [42]Horvitz,L.,Hydrocarbon geochemical prospecting after thirty years.In Heroy,W.B.eds.,Unconventional methods in exploration for petroleum and natural gas.Dallas:Southern Methodist University Press,1969.p.205.
    [43]Horvitz,L.,Near surface evidence of hydrocarbon movements from depth.In Roberts,W.H.Ⅲ and R J.Cordell eds.,Problems of Petroleum Migration,American Association of Petroleum Geologist Memoir.1980,p.241-269.
    [44]Horvitz,L.,Hydrocarbon prospecting after forty years.In Gottleib,B.M.eds.,Unconventional Methods in Exploration for Petroleum and Natural Gas Ⅱ.Dallas:Southern Methodist University Press,1981,p.83 95.
    [45]Horvitz,L.,Geochemical exploration for petroleum:Science,1985,v.229,p.821-827.
    [46]Hovland,M.and A.G.Judd,Seabed pockmarks and seepages:Impact on Geology,Biology and the Marine Environment.Oxford:Graham and Trotman,1988.
    [47]Hunt,J.M.,Petroleum geochemistry and geology,San Francisco:Freeman,1979.
    [48]Hunt,G R.,Electromagnetic radiation:the communication link in remote sensing.In Siegal,B.S.and A.R.Gillespie,eds.,Remote Sensing in Geology.New York:Wiley,1980.
    [49] Jensen, F. V., An Introduction to Bayesian Networks. New York: Springer, 1996.
    
    [50] Jones, V. T. and H. W. Thune, Surface detection of retort gases from an underground coal gasification reactor in steeply dipping beds near Rawlins, Wyoming: Society of Petroleum Engineers, 1982, SPE11050, p. 1-24.
    [51] Jones, V. T. and R. J. Drozd, Prediction of oil and gas potential by near-surface geochemistry: The American Association of Petroleum Geologists Bulletin, 1983, v. 67, p. 932-952.
    [52]Kariuki, P. C., T. Woldai and F. Meer, The Role of Remote Sensing in Mapping Swelling Soils: Asian Journal of Geoinformatics, 2004, v. 5, p. 1-11.
    [53]Kartsev, A. A,, Z. A. Tabasaraaskii, M. I. Subbota and G. A. Mogilevskii, Geochemical methods of prospecting and exploration for natural gas, translated by PA Witherspoon and WD Romey. Los Angeles: University of California Press, 1959.
    [54]Klusman, R. W., Soil gas and related methods for natural resource exploration. Chichester, John Wiley & Sons, 1993, p. 483.
    [55]Klusman, R. W. and M. A. Saeed, Comparison of light hydrocarbon microseepage mechanisms. In D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: The American Association of Petroleum Geologists Memoir 66, 1996, p. 157-168.
    [56]Kunzendorf, H., G. P. Glasby, P. Stoffers and W. L. Pluger, The distribution of rare earth and minor elements in manganese nodules, micronodules and sediments along an east-west transect in the southern Pacific: Lithos, 1993, v.30, p.45 56
    [57]Kunzendorf, H. and H. Vallius. Rare earth elements (REE) in deep basin sediments of the Baltic Sea: Baltica, 2004. v.17, p. 53-62.
    
    [58]Lang, H. R., W. H. Aldeman and F. F. Sabins, Patrick Draw, Wyoming-petroleum test case report In Abrams, M. J. et al., eds., The Joint NASA/Geosat Test Case Project: Final Report. Special Publication of American Association of Petroleum Geologists, 1985a, v. 2, 11-1 to 11-28.
    [59]Lang, H. R., J. B. Curtis and J. C. Kovacs. Lost river, West Virginia- petroleum test site report. In Abrams, M. J. et al., eds., The Joint NASA/Geosat Test Case Project: Final Report. Special Publication of American Association of Petroleum Geologists, 1985b, v. 2, 12-11 to 12-96
    [60] Liu, J. J., Remote Sensing Information Acquisition of Paleochannel Sandstone Type Uranium Deposit in Nuheting Area: Uranium Geology, 2000, v. 16. p. 52-57.
    [61]Liu, Q. S., L. S. Chan, Q. S. Liu, H. X. Li, F. Wang, S. X. Zhang, X. H. Xia, and T. J. Cheng, Relationship between magnetic anomalies and hydrocarbon microseepage above the Jingbian gas field, Ordos basin, China: The American Association of Petroleum Geologists Bulletin, 2004. v. 88, p. 241-251.
    
    [62] Liu. Q. S., Q S Liu, L. S. Chan. T. Yang, X. H. Xia, and T. J. Cheng, Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China: Journal of Petroleum Science and Engineering, 2006, v. 53, p. 25-33.
    [63] Liu, X. M., J. Bloemendal, and T. Rolph, Pedogenesis and paleoclimate: interpretations of the magnetic susceptibility record of Chinese loess-paleosol sequences: comment. Geology. 1994. v.22, p.858 859.
    
    [64]Ma, L., J. L. Yan and Z. Y. Din, Songliao basin-a compound continental sedimentary basin in acraton. In Zhang, X. and Xu, W., eds., Mesozoic, Cenozoic Sedimentary Basins in China: Beijing, Petroleum Industrial Publication House, 1990, p. 10-18.
    [65]MacElvain, R. and W. B. Heroy, Mechanics of gaseous ascension through a sedimentary column. Unconventional methods in exploration for petroleum and natural gas. Dallas: Southern Methodist University, 1969.
    
    [66]Machel, H. G., and E. A. Burton, Causes and spatial distribution of anomalous magnetization in hydrocarbon seepage environments: The American Association of Petroleum Geologists Bulletin, 1991, v. 75, p. 1864-1876.
    
    [67]Machel, H. G.,Magnetic mineral assemblages and magnetic contrasts in diagenetic environments-with implications for studies of palaeomagnetism, hydrocarbon migration and exploration: Geological Society (Special Publications), 1995, v. 98, p. 9-29.
    [68]Maher, B. A., and R. Thompson, Mineral magnetic record of the Chinese loess and paleosols: Geology, 1991, v. 19, p. 3-6.
    [69]Maher, B. A., R. Thompson. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols: Quaternary Research, 1992. v. 37, p. 155-170.
    [70]Matthews. M. D., Effects of hydrocarbon leakage on Earth surface materials. In Proceedings of the Symposium on Unconventional Methods in Exploration for Petroleum and Natural Gas. Dallas. S. M. U. Press. 1986, p. 27-44.
    [71]Matthews,M.D.,Migration a view from the top,in D.Schumacher and M.A.Abrams,eds.,Hydrocarbon migration and its near-surface expression:The American Association of Petroleum Geologists Memoir 66,1996,p.139-155.
    [72]Mello,M.R..F.T.Goncalves.N.A.Babinski,F.P.Miranda,Hydrocarbon prospecting in the amazon rain forest:application of surface geochemical,microbiological,and remote sensing methods.In Schumacher,D.and M.A.Abrams eds.,Hydrocarbon migration and its near-surface expression,The American Association of Petroleum Geologists Memoir 66.1996,p.401-411.
    [73]Meer,F.,P.Dijk,H.Werff,and H.Yang,Remote sensing and petroleum seepage:a review and case study:Terra Nova,2002,v.14.
    [74]Nab Raj Subedi,Updating Geographic Information Using High Resolution Remote Sensing Optical Imagery.,2002.
    [75]Niu,J.Y.and J.Y.Hu,Formation and distribution of heavy oil and tar sands in China:Marine and Petroleum Geology,1999,v.16,p.85-95.
    [76]Novak,I.D.,and N.Soulakellis,Identifying geomorphic features using LANDSAT-5 TM data processing techniques on Lesvos,Greece:Geomorphology,2000,v.34,p.101-109.
    [77]Ohalander,B.,M.Land,J.Ingri and A.Widerlund,Mobility of rare earth elements during weathering of till in northern Sweden:Applied Geochemistry,1996.v.11,p.93-99.
    [78]Philp,R.P.,P.T.Crisp,Surface geochemical methods used for oil and gas prospecting-a review:Journal of Geochemical Exploration,1982.v.17,p.1-34.
    [79]Pirson,S.J.,Quantitative Interpretation of Electric Logs in Oil-Wet Rocks:Proposed Procedure and Example Applications:SPE1562,1960.
    [80]Price,C.A.Geology of the Iveragh Peninsula incoporating a remote sensing lineament study.PhD thesis,University of Dublin,1986.
    [81]Prinz,T.,Multispectral remote sensing of the Gosses Bluff impact crater,central Australia (N.T.) by using Landsat-TM and ERS-1 data:ISPRS Journal of Photogrammetry &Remote Sensing.1996,v.51,p.137-149.
    [82]Reitsema,R.H..A.J.Kaltenback and F.A.Lindberg,Source and migration of light hydrocarbons indicated by carbon isotopic ratios:The American Association of Petroleum Geologists Bulletin,1981;v.65,p.1536-1542.
    [83]Richards J.A.,Remote sensing digital image analysis:An introduction.Springer-Verlag, New York. 1995.
    [84] Robert. A. S., Remote sensing, models, and methods for image processing (second edition). San Diego: Academic Press, 1997.
    [85]Rosaire, E. E, 1940, Geochemical prospecting for petroleum: The American Association of Petroleum Geologists Bulletin, v. 24, p. 1434-1463.
    [86] Ruiz-Armenta, J. R. and Prol-Ledesma, R. M., Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper Images of Central Mexico: International Journal of Remote Sensing, 1998, v. 19, p. 1981-2000.
    [87]Sabins, F. F., Remote sensing for mineral exploration: Ore Geology Reviews, 1999, v. 14. p. 157-183.
    [88]Saunders, D. F., K. R. Burson, and C. K. Thompson, Observed relation of soil magnetic susceptibility and soil gas hydrocarbon analyses to subsurface petroleum accumulations: The American Association of Petroleum Geologists Bulletin, 1991, v. 75, p. 389-408.
    [89] Saunders. D. F., K. R. Burson, and C. K. Thompson, Model for hydrocarbon microseepage and related near-surface alterations: The American Association of Petroleum Geologists Bulletin, 1999, v. 83. p. 170-185.
    [90] Schumacher, D., Surface geochemical exploration for petroleum, in A. Steven eds., Chapman & Hall, Inc., New York, 1995, chapter 18, p. 6
    
    [91] Schumacher, D., Hydrocarbon-induced alteration of soils and sediments, in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near surface expression: The American Association of Petroleum Geologists Memoir 66, 1996. p. 71 89.
    [92] Schumacher, D.. Surface geochemical exploration for petroleum. In Beaumont, E. A. and N. F. Foster, eds., Exploring for Oil and Gas Traps: Treatise of Petroleum Geology. Handbook of Petroleum Geology, The American Association of Petroleum Geologists Bulletin, 1999, p. 18-1 to 18-27.
    [93] Schumacher, D.. Surface geochemical exploration for oil and gas: The Leading Edge. 2000. p. 258-261.
    [94] Segal, D. B., and I. S. Merin, Successful use of Landsat Thematic Mapper data for mapping hydrocarbon microseepage-induced mineralogic alteration, Lisbon Valley. Utah: Photogrammetric Engineering and Remote Sensing, 1989, v. 4. p. 1137-1145.
    [95]Siegel, F. R., 1974. Applied geochemistry. New York: Wiley-Interscience. p. 202-227.
    [96]Sokolov, V. A., New method of Surveying oil and gas formations.Tekhnnefti, Gas surveying, Moscow, Gostoptekhizdat, 1936, v. 16, p. 269.
    
    [97]Stahl, W., E. Faber, B. D. Carey and D. L. Kirksey, Near-Surface Evidence of Migration of Natural Gas from Deep Reservoirs and Source Rocks: The American Association of Petroleum Geologists Bulletin. 1981, v. 65, p. 1543-1550.
    
    [98]Tangestani, M. H., and F. Moore, Iron oxide and hydroxyl enhancement using the Crosta Method: a case study from the Zagros Belt, Fars Province, Iran: International Journal of Applied Earth Observation and Geoinformation, 2000, v. 2, p. 140-146.
    [99]Tedesco, S. A., Surface geochemistry in petroleum exploration. New York: Chapman & Hall, Inc.. 1995.
    
    [100] Thrasher, A. J., A. J. Fleet. S. J. Hay. M. Hovland, and S. Duppenbecker, Understanding geology as the key to using seepage in exploration: the spectrum of seepage styles. In Schumacher, D. and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: The American Association of Petroleum Geologists Memoir 66, 1996, p. 223-241.
    [101] Tissot, B. P. and D. H. Welte, Petroleum formation and occurrence: New York, Spring-Verlag, 1984, p. 6-8.
    
    [102] Wang, X. P., Z. Q. Xie, and Y. Z. Wu. Information Extraction of Mineralizing Alteration from ETM Space Image: Taking Taxkorgan Area of West Kunlun Mountain as an Example: Geology and Resources, 2002. v. 11, p. 119-122.
    
    [103] Wang, Y. P., and X. Ding, Hydrocarbon alteration characteristics of soils and mechanism for detection by remote sensing in East Sichuan Area, China: Natural Resources Research, 2000. v. 9, p. 295-305.
    
    [104] Wu, F. Y., D. Y. Sun, H. M Li and X. L. Wang, The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints. Physics and Chemistry of the Earth, Part A, 2001, v. 26. p. 793-803.
    
    [105] Xue, L. Q. and W. E. Galloway, Genetic sequence stratigraphic framework, depositional style, and hydrocarbon occurrence of the upper Cretaceous QYN Formation in the Songliao lacustrine basin, northeastern China: The American Association of Petroleum Geologists Bulletin, 1993. v. 77. p. 1792-1808.
    
    [106] Yang, W. L., Daqing oil field, People's Republic of China: A giant field with oil of nonmarine origin:The American Association of Petroleum Geologists Bulletin,1985,v.69,p.1101-1111.
    [107]Yang,W.L.,R.Q.Gao,Q.F.Guo and Y.G.Liu,Generation,migration and accumulation of nonmarine petroleum in the Songliao basin,China:Heilongjiang,Science and Technology Press,1985a,p.5.
    [108]Yang,W.L.,Y.K.Li.R.Q.Gao,Formation and evolution of nonmarine petroleum in Songliao Basin,China:The American Association of Petroleum Geologists Bulletin,1985b,v.69,p.1112-1122.
    [109]Yu,W.Y.,X.P.Qi,and L.Q.Zou,Evaluation of multi-sensor remote sensing data applied Oil & Gas Exploration in the Loess Highlands,Ordos Plateau,China:In the 22nd Asian Conference on Remote Sensing,5-9 November 2001,Singapore.
    [110]Zehtabian,Alavipanah Seyed Kazem and Ehsani Amir Hushang,Studying the efficiency of Landsat ETM+ bands for differentiating soil playa margin.17th WCSS,14-21,August 2002.Thailand.
    [111]Zhang,G.F.,X.H.Shen,L.J.Zou.C J.Li,Y.L.Wang and S.L.Lu,Detection of hydrocarbon bearing sand through remote sensing technique in Western slope zone of Songliao basin,China:International Journal of Remote Sensing,2007a,v.28,p.1819-1833.
    [112]Zhang,G.F.,X.H.Shen and L.J.Zou.Identifying Hydrocarbon Leakage Induced Anomalies Using Lansat-7/ETM+ Data Processing Techniques in Western Slope Zone of Songliao Basin,China.第28届亚洲遥感会议,马来西亚吉隆坡,2007b.
    [113]Zhang,G.F.,L.J.Zou,X.H.Shen,S.L.Lu,C.J.Li and H.L.Chen,Remote sensing detection of heavy oil through spectral enhancement techniques in Western slope zone of Songliao basin,China:The American Association of Petroleum Geologists Bulletin,2009,v.93,p.31-49.
    [114]Zumsprekel,H.and T.Prinz,Computer-enhanced multispectral remote sensing data:a useful tool for the geological mapping of Archean terrains in(semi)arid environments:Computers & Geosciences,2000,v.26,p.87-100.
    [115]陈清华,林玉祥,黄鹏程等,韩眷生 荣淑芳 陈洪,鄂尔多斯盆地土壤酸解烃成因分析:石油大学学报(自然科学版),1994,v.18,p.8-13.
    [116]陈圣波,松辽盆地西部斜坡带烃类微渗漏遥感信息提取:吉林大学学报(地球科学版),2002,v.32,p.155-157.
    [117]程同锦,王者顺,吴学明等.烃类运移的近地表显示与地球化学勘探。北京:石油工业出版社,1999.
    [118]陈佑德,杨惠民,赤水石油地质与油气遥感信息关系分析:地质地球化学,2001,v.29,p.68-74.
    [119]大庆油田石油地质志编写组,中国石油地质志(卷二),大庆、吉林油田(上册)—大庆油田,北京:石油工业出版社,1987.
    [120]冯洪真,Bernd2D.Erdtmann,王海峰,上扬子区早古生代全岩Ce异常与海平面长缓变化:中国科学(D辑),2000,v.30,p.66-72.
    [121]冯洪真,E.Wallis,刘家润,姚素平,川西南阿什及尔期地层中的Ce异常及其古海洋学意义:火山地质与矿产,2001,v.12,p.126-125.
    [122]冯洪真,俞剑华,方一亭,曹奇原,Ceanom对古海洋氧化还原条件相对变化的另一种可能解释:南京大学学报(自然科学),1997,v.33,p.402-408.
    [123]冯子辉,廖广志,方伟,张居和,宋兰斌,松辽盆地北部西斜坡区稠油成因与油源关系:2003,v.30,p.25-28.
    [124]付少英,海底沉积物中不同形式烃类气体的地球化学意义:地学前缘,2005,v.12,p.253-257.
    [125]傅水兴,杨自安,张守林,新疆卡拉麦里成矿带赋矿岩层-矿化蚀变遥感填图:第十二届遥感技术会议,2000.
    [126]郭德方,烃类微渗漏晕及其信息提取:环境遥感,1995,v.10,p.124-131.
    [127]Hunt,G.R.and J.W.Salisbury,矿物岩石的可见—中红外波谱及其应用。北京:地质出版社,1980.
    [128]郭世勤,吴必豪,卢海龙,多金属结核和沉积物的地球化学研究。北京:地质出版社,1994.
    [129]郭德方,烃类微渗漏晕及其信息提取:环境遥感,1995,v.10,p.124-131.
    [130]郭少斌,油气综合勘探方法。武汉:中国地质大学出版社,2006.
    [131]郭世勤,吴必豪,卢海龙,多金属结核和沉积物的地球化学研究。北京:地质出版社,1994.
    [132]黄秀华,石油遥感勘探中油气化探若干问题的地学分析:环境遥感,1994,v.9,p. 122-128.
    [133]黄秀华,张磊,冀东地区油气微渗漏地植物的遥感基础研究:环境遥感,1992,v.7,p.115-124.
    [134]候卫国和苏江玉,塔北地区油气藏上方烃类垂向运移的证据和特征:新疆石油地质,2001,v.22,p.465-470.
    [135]Hunt,G.R.and J.W.Salisbury,矿物岩石的可见—中红外波谱及其应用。北京:地质出版社,1980.
    [136]靳秀良,陕北油田烃类微渗漏遥感化探特征:国土资源遥感,1999,n.4,p.23-25.
    [137]李兰杰,影响酸解烃浓度的因素及排除干扰的方法,2004,v.28,p.126-129.
    [138]李岩和迟国彬,烃类微渗漏的地物波谱探测原理与方法研究:干旱区地理,1995,v.18,p.76-72.
    [139]刘崇禧和徐世荣,油气化探方法与应用,合肥:中国科技大学出版社,1992.
    [140]刘崇禧,油气化探文集。北京:地质出版社,1995,p.1-25.
    [141]刘建军,努和廷地区古河道砂岩型铀矿遥感信息提取:铀矿地质,2000,v.16,p.52-57.
    [142]梁春秀,刘宝柱,孙万军,松辽盆地南部的西部斜坡重油特征与油源探讨:石油勘探与开发,2002,v.29,p.45-48。
    [143]刘季花,东太平洋沉积物稀土元素和Nd同位素地球化学特征及其环境指示意义,[博士论文],北京:中国科学院海洋研究所,2004.
    [144]刘晓峰,吕国芳,豫西杜关锰结核稀土元素地球化学:中国锰业,1999,v.17,p.24-29.
    [145]刘子贵,李钦雄和王錾,烃类微渗漏的光谱遥感信息:环境遥感,1992,p.65-73.
    [146]卢振权,白瑞梅,罗续荣,吴必豪,祝有海,饶竹,海底沉积物酸解烃脱气装置的改进:地球学报,2006,v.27,p.91-96.
    [147]孟宪伟,刘娜,韩贻兵,太平洋CC区多金属结核Ce同位素组成—幔源Ce证据:东海海洋,2003,v.21,p.13-18.
    [148]缪九军,荣发准,李广之等,酸解烃技术在油气勘探中的应用:物探与化探,2005,v.29,p.209-213.
    [149]牛嘉玉和洪峰,我国非常规油气资源的勘探远景:石油勘探与开发,2002,v.29,p. 5-7.
    [150]潘家华,刘淑琴,DeCarlo E,大洋磷酸盐化作用对富钴结壳元素富集的影响:地球学报,2002a,v.23,p.403-408.
    [151]潘家华,刘淑琴,杨忆,刘学清,西太平洋海山磷酸盐的常量微量和稀土元素地球化学研究:地质论评,2002b,v.48,p.534-541.
    [152]彭信海,藏北某盆地油气化探异常特征及及找油意义:石油勘探与开发,1996,v.23,p.44-48.
    [153]彭望琭,遥感资料的计算机处理与地理信息系统,北京:北京大学师范大学出版社,1991.
    [154]宋孚庆,任东苓,张文东,王汇彤,严重生物降解原油GC-MS特征及油源对比:分析测试学报,2004,v.23,p.304-305,308.
    [155]孙效东,路万强,杨玉峰,松辽盆地北部西部斜坡稠油的来源分析:大庆石油学院学报,2004,v.28,p.1-2,41.
    [156]王晓鹏,谢志清和伍跃中,ETM图像数据中矿化蚀变信息的提取—以西昆仑塔什库尔干地区为例:地质与资源,2002,v.11,p.119-122.
    [157]吴传璧和周书欣译,油气化探的理论与方法。北京:地质出版社,1989.
    [158]吴德文和杨自安,TM图像矿化蚀变信息提取方法研究—以东疆地区为例:第十一届遥感技术会议,1999.
    [159]夏响华,油气微渗漏理论与检测技术研究,[博士论文],成都:成都理工大学,2003.
    [160]夏响华,油气地表地球化学勘探技术的地位与作用前瞻:石油实验地质,2005,v.27,p.529-533.
    [161]向才富,夏斌,解习农,冯志强,吴河勇,松辽盆地西部斜坡带油气运移示踪分析:地质科技情报,2004a,v.23,p.64-70.
    [162]向才富,夏斌,解习农,冯志强,松辽盆地西部斜坡带油气运移主输导通道:石油与天然气地质,2004b,v.25,p.204-209.
    [163]谢青云,丁树柏,油气资源遥感技术若干问题的探讨:国土资源遥感,1994,n.2,p.55-62.
    [164]杨育斌,张金来,吴学明等,油气地球化学勘探。武汉:中国地质大学出版社,1995, p.62-76.
    [165]张厚福,方朝亮,高先志,张枝焕和蒋有录编,石油地质学。北京:石油工业出版社,1999.
    [166]章桂芳,沈晓华,邹乐君,李长江,吴文渊,张重,苏楠和孔凡立,松辽盆地西部斜坡区烃渗漏蚀变信息遥感探测:遥感学报,2009,v.13,p.327-334.
    [167]张磊,国外遥感技术在烃类微渗漏探测中的应用简介:国土资源遥感,1995,n.1,p.55-60.
    [168]张维琴和杨玉峰,松辽盆地西部斜坡油气来源与运移研究:大庆石油地质与开发,2005,v.24,p.17-20.
    [169]章孝灿,黄智才和赵元洪,遥感数字图像处理。杭州:浙江大学出版社,1997,p.20-27.
    [170]赵振华,微量元素地球化学原理。北京:科学出版社,1997.
    [171]朱振海,遥感技术勘探油气资源的研究进展:天然气地球科学,1990
    [172]钟昆明,颜以彬,云南大红山细碧质岩石的地球化学特征及成因:昆明理工大学学报,1999,v.24,p.98-106.
    [173]邹才能,王兆云,徐冠军,吴小洲,孙效东,王建伟,松辽盆地西斜坡稠油特征及成因:沉积学报,2004,v.22,p.700-706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700