用户名: 密码: 验证码:
长江流域宇宙成因~(10)Be与地表侵蚀速率估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次将宇宙成因核素~(10)Be方法引入到长江流域河流沉积物的研究,主要目的是由“源”到“汇”对长江流域空间尺度上的侵蚀速率进行估算,为宏观尺度上定量研究侵蚀速率和沉积物产生率提供一种全新的方法。
     自20世纪80年代以来,地貌学研究中最重大的突破之一就是应用地表宇宙成因核素来定量研究地表形成的时间和地貌演化的速率。地表宇宙成因核素产生于宇宙射线粒子与地表岩石或土壤中原子的核反应,种类颇多,如~3He、~(10)Be、~(14)C、~(21)Ne、~(26)Al和~(36)Cl等,其中应用最广泛的是~(10)Be。~(10)Be主要由散裂作用产生,集中形成在~(10)Be衰减长度范围内,大致相当于地表上部1m范围内。在地表上部的~(10)Be含量取决于地表核素产生率和地表侵蚀速率两个因素,在核素产生率确定的情况下,可以通过地表岩石中~(10)Be含量估算地表侵蚀速率。~(10)Be反映的侵蚀速率实际代表侵蚀一定厚度,即与衰减长度等厚地表的平均侵蚀速率,根据侵蚀速率大小的不同,它反映的时间尺度在10~3-10~5yr之间。由于~(10)Be记录的是长时期的地表侵蚀速率,对于短时间尺度的地表侵蚀速率变化不敏感,因此,应用~(10)Be估算长江流域地表侵蚀速率的意义在于,为评价人类活动对长江流域地表侵蚀、水土流失的影响提供参考背景值。另外,从地球系统科学角度来看,定量研究地表侵蚀速率是理解地质过程的关键,是地球系统科学研究的重要内容。
     通过对河流沉积物中~(10)Be含量的测试分析表明,长江干流中~(10)Be含量自西向东逐渐降低,在长江上游的金沙江流域最高,为1.1×10~6atoms·g~(-1),到长江三角洲地区降到0.27×10~6atoms·g~(-1)。~(10)Be含量自源头向入海口逐渐降低的现象与两个因素有关:一是源头地区海拔高度较高,地表侵蚀速率缓慢导致长江上游区域~(10)Be含量较高;二是~(10)Be含量较低的支流沉积物汇入干流产生的“稀释”作用使~(10)Be含量自西向东降低。与干流中~(10)Be含量相比,支流中~(10)Be含量要低许多,如长江上游的岷江~(10)Be含量可以达到0.04×10~6atoms·g~(-1),与金沙江~(10)Be含量相比二者可以相差近30倍。长江上游支流~(10)Be含量较低的原因主要与流域快速的侵蚀速率有关,而中下游地区支流侵蚀速率较小,~(10)Be含量主要受低海拔、低核素产生率的影响。
     地球化学元素和~(10)Be同位素含量示踪结果表明,~(10)Be同位素的稳定性要比地球化学元素的稳定性高,可以作为沉积物示踪的良好指示剂。利用~(10)Be同位素的双组分混合原理分析表明,在雅砻江和长江交汇处,有53.6%的沉积物来自于雅砻江;在岷江与长江的交汇处,有26.4%的沉积物来自于岷江;在重庆-宜昌河段,嘉陵江和乌江沉积物对长江的贡献量为25%;长江三角洲地区有30.8%的沉积物来自于长江中下游支流的输入。综合地球化学元素和~(10)Be含量特征表明,全新世以来长江三角洲的物源没有太大变化,长江三角洲有30-34%的沉积物来自于东部支流的贡献,这些沉积物既包括现代沉积物也包括相当一部分沉积再搬运的物质。
     根据数字高程数据统计和宇宙成因核素产生率与海拔高度、纬度的理论关系,分别建立长江流域8个子流域的~(10)Be含量与侵蚀速率的关系模型,通过实测~(10)Be含量分别得出不同子流域的平均侵蚀速率大小:金沙江流域侵蚀速率为207m·Ma~(-1),雅砻江为250m·Ma~(-1),大渡河-岷江流域为460m·Ma~(-1),嘉陵江为75m·Ma~(-1),乌江为51m·Ma~(-1),汉江为75m·Ma~(-1),洞庭湖为15m·Ma~(-1),鄱阳湖为20m·Ma~(-1)。地形地貌和构造活动特征是控制长江流域地表侵蚀作用的主要因素,构造活动发育,地形高差大,高山峡谷发育的大渡河-岷江流域侵蚀速率最高,而构造活动稳定,地势平缓,丘陵-平原发育的洞庭湖、鄱阳湖流域侵蚀速率最低。
     水文数据估算的侵蚀速率和~(10)Be估算的侵蚀速率发现,二者在数量级上一致,尤其在金沙江、鄱阳湖流域二者结果几乎一致,说明~(10)Be估算结果的可靠性。在雅砻江流域和岷江-大渡河流域,~(10)Be估算的流域侵蚀速率明显要高于水文数据反映的侵蚀速率,这可能和水文观测时间短,无法记录发生频率低,但搬运能力强的沉积物搬运事件有关;岷江-大渡河流域水文观测反映的侵蚀速率低与大量物质沉积在四川盆地有关。在嘉陵江流域、乌江流域、汉江、洞庭湖流域~(10)Be反映的侵蚀速率明显要低于水文数据反映的侵蚀速率,这说明在这些流域人类活动对地表侵蚀作用的影响作用大,与自然侵蚀背景值相比,人类活动已经导致上述流域的地表侵蚀速率分别增加了4.0、3.3、1.8和4.3倍。
In this study, cosmogenic nuclide ~(10)Be method was first applied to the research on sediments in Yangtze River catchment. The main purposes of this application were to spatially estimate erosion rates of Yangtze catchment from source to sink, and were to introduce a new relatively quantitative method for studying erosion rate and sediment generation rate.
     Since 1980s, the application of terrestrial cosmogenic nuclides to study the age when the earth surface formed and the rate at which landscape evolved has been one of the greatest breakthroughs in geomorphology. Terrestrial cosmogenic nuclides, including ~3He, ~(10)Be, ~(14)C, ~(21)Ne, ~(26)Al and ~(36)Cl etc., of which ~(10)Be is used predominately, are produced by nuclear interactions between secondary cosmic particles and target atoms of rock and soil in the very uppermost layer of earth's surface, ~(10)Be is predominately produced by spallation in the depth of 1m of the upper surface of rock or soil, and its concentration in rock depends on cosmogenic nuclide production rate and erosion rate of the rock. When production rate is determined, ~(10)Be can be used to estimate erosion rate of earth's surface. Actually, ~(10)Be-derived erosion rate represents the rate at which erosion removes a rock depth equivalent to one attenuation length of ~(10)Be, and its time scale ranges from 10~3 to 10~5yr. Since ~(10)Be concentration records long term erosion rate and is insensitive to short term erosion rate, the significance of applying ~(10)Be to estimate erosion rates in Yangtze Catchment is to provide base-line data for evaluating short-term human activities' effects on erosion and soil loss. Moreover, in the view of the earth system science, quantitatively studying earth surface erosion is crucial to understand geology processes, and is important research content of the earth system science.
     Based on measurement and analysis of ~(10)Be concentrations in river sediments, it is found that ~(10)Be concentrations in the main channel of Yangtze River decrease downstream from west to east, with highest concentration of 1.1×10~6atoms·g~(-1) in the Jinsha sub-catchment, upper Yangtze and lowest concentration of 0.27×10~6 atoms·g~(-1) on the delta. The higher ~(10)Be concentrations in upper Yangtze are associated with higher elevation and lower erosion rate of plateau from headwater to upper Jinsha. As sediments of lower ~(10)Be concentration in tributaries are discharged and mixed into the main channel, the ~(10)Be concentration of Yangtze River is diluted and deceases from headwater to estuary. Compared with concentrations in the main channel, the ~(10)Be concentrations in tributaries' sediments are much lower than that in main channel, for instance, the ~(10)Be concentration of one major tributary-Min Jiang, is as low as 0.04×10~6atoms'g~(-1), nearly one thirtieth of that of Jinsha Jiang. The lower concentrations of ~(10)Be in western tributaries are strongly connected with higher erosion rates, while, the lower concentrations of ~(10)Be in eastern tributaries are associated with lower production rate because of lower altitude.
     It is revealed by tracing of geochemical elements and ~(10)Be isotope that ~(10)Be isotope are more stable than geochemical elements as tracer of sediments. Based on two-component mixing principle of ~(10)Be isotope, it is shown that about 53.6% sediments come from Yalong Jiang at the junction between Yalong and Yangtze, and about 26.4% enter from Min-Daduhe at the junction between Min-Daduhe and Yangtze, and Jialing Jiang and Wujiang contribute 25% sediments in the reach from Chongqing to Yichang, and 30.8% sediments of Yangtze delta are contributed by eastern tributaries. As revealed by geochemical elements and ~(10)Be, the sediment source of Yangtze delta has not changed greatly during Holocene, and there are about 30-34% sediments, including modern and reworked sediments, originated from eastern tributaries.
     According to statistics on elevation data and relationships between ~(10)Be production and altitude and latitude, ~(10)Be concentration and erosion rate models were established for eight sub-catchments. Average erosion rates were estimated by putting the measured ~(10)Be concentrations into the relevant models, the results are as followed: the average erosion rate of Jinsha Jiang is 207m·Ma~(-1), Yalong Jiang is 250 m·Ma~(-1), Daduhe-Min Jiang is 460 m·Ma~(-1), Jialing Jiang is 75 m·Ma~(-1), Wu Jiang is 51 m·Ma~(-1), Han Jiang is 75 m·Ma~(-1), Dongting Lake is 15 m·Ma~(-1), Poyang Lake is 20 m·Ma~(-1). The dominate factors controlling erosion in the Yangtze cachment are relief and tectonic activity. For example, the highest erosion rate occurs in Daduhe- Min Jiang sub-catchment with active tectonics, high relief, and deep gorges, while the lowest erosion rate appears in Dongting Lake and Poyang Lake sub-catchments with weak tectonics, lower relief, and floodplains.
     Comparison between gauge-based and ~(10)Be-derived erosion rates indicates that the results derived from the two methods agree well in magnitude, particularly in Jinsha Jiang and Poyang Lake, gauge-estimated erosion rates are almost equal to ~(10)Be-estimated erosion rates, which indicates that it is reliable to estimate erosion rate using ~(10)Be concentration, ~(10)Be estimated erosion rates in Yalong Jiang and Daduhe-Min Jiang are distinctly higher than that based on suspended sediment flux, which is probably due to the systematic under-representation of high-magnitude, low-frequency transport events in the gauging records which cover less than a century. It may also be the case that sediments in Daduhe-Min Jiang have already deposited in Sichuan Basin before they pass gauging stations. The ~(10)Be-derived erosion rates of Jialing Jiang, Wujiang, Hanjiang, and DongTing Lake are much lower than that estimated from gauge data, which indicates human have played important roles on erosion in these sub-catchments. Compared with ~(10)Be-derived background erosion rates, human activities may have increased erosion rates by 4.0, 3.3, 1.8, and 4.3 times respectively.
引文
[1] Ahnert, F. Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins, Am. J. Sci., 1970,268 :243-263
    
    [2] Allkofer, O. C. and Grieder, P. K. F. .Cosmic rays on earth: Physics Data. Fachinforma -tionszentrum Karlsruhe, 1984,25-31
    [3] Asmerom, Y. and Jacobsen, S.B. .The Pb isotopic evolution of the Earth: inferences from river water suspended loads. Earth Planetary Science Letters, 1993, 115:245-256
    [4] Avouac, J.P., Burov, E.B. Erosion as driving mechanism of intracontinental mountain growth, J. Geophys. Res., 1996, 101 :17747-17769
    [5] Bierman, P, Caffee M. .Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, Southern Africa. American Journal of Science, 2001, 301: 326-358
    [6] Bierman, P. R., Marsella, K.A., Patterson, C, Davis, P.T., Caffee, M. . Mid-Pleistocene cosmogenic minimum age limits for pre-Wisconsin glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology, 1999 27, 25-40
    [7] Bierman, P. R., Reuter J. M., Pavich K, et al. Using cosmogenic nuclides to contrast rates of erosion and sediment yield in a semi-arid, arroyo-dominated landscape, Rio Puerco Basin, New Mexico Earth Surface Processes and Landforms 2005, 30 (8): 935-953
    [8] Bierman, P. R., Steig E. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms, 1996,21: 125-139
    [9] Bierman, P., Clapp, E. M., Nichols K. K., Gillespie A. R., Caffee M. .Using cosmogenic nuclide measurements in sediments to understand background rates of erosion and sediment transport. In Landscape Erosion and Evolution Modeling, ed. RS Harmon, WM Doe, New York: Kluwer pp. 89-116
    [10] Bierman, P., Nichols, K. Rock to sediment - Slope to sea with 10-Be - Rates of landscape change. Annual Review of Earth and Planetary Sciences, 2004, 32: 215-255
    
    [11] Bierman, Paul R. Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A review from the geomorphic perspective. Journal of Geophysical Research, 1994, 99(B7):13,885-13,896
    
    [12] Bierman, PR, Caffee MW, Davis PT, Marsella K, Pavich M, et al., .Rates and timing of Earth surface processes from in-situ produced cosmogenic 10Be. In Beryllium: Mineralogy, Petrology, and Geochemistry. Reviews in Mineralogy, ed. E Grew, Washington, DC: Mineral. Soc. Am., 2003, pp. 147-196
    
    [13] Bierman, PR, Steig E. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms,1996, 21:125-139
    [14] Blanckenburg, F. von, Hewawasam, T., Kubik,. R, Cosmogenic nuclide evidence for low weathering and denudation in the wet tropical Highlands of Sri Lanka, J. Geophys. Res., 2004, 109, F03008, doi:10.1029/2003JF000049
    [15] Blanckenburg, Friedhelm von. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth and Planetary Science Letters, 2005, 237:462-479
    [16] Brook, E.J., Kurz, M.D., Ackert, R.R, Raisbeck, G, Yiou, F.. Cosmogenic nuclide exposure ages and glacial history of late Quaternary Ross Sea drift in McMurdo Sound, Antarctica. Earth and Planetary Science Letters, 1995, 131, 41-56
    [17] Brown, E.T., Brook, E.J., Raisbeck, G.M., Yiou, F., Kurz, M.D., .Effective attenuation lengths of cosmic rays producing ~(10)Be and ~(26)A1 in quartz: Implications for surface exposure age dating. Geophysical Research Letters, 1992, 19:369-372
    [18] Brown, E.T., Edmond, J.M., Raisbeck, G.M., Yiou, F., Kurz, M.D., Brook, E.J., Examination of surface exposure ages of Antarctic moraines using in situ produced ~(10)Be and ~(26)AI. Geochimica et Cosmochimica Acta, 1991, 55:2269-2283
    [19] Brown, ET, Stallard, RF, Larsen, MC, Bourles, DL, Raisbeck, GM, Yiou, F.. Determination of predevelopment denudation rates of an agricultural watershed (Cayaguas River, Puerto Rico) using in-situ-produced ~(10)Be in river-borne quartz. Earth and Planetary Science Letters,1998, 160:723-728
    [20] Brown, ET, Stallard, RF, Larsen MC, Raisbeck, GM, Yiou, F. Denudation rates determined from the accumulation of in situ-produced ~(10)Be in the Luquillo Experimental Forest, Puerto Rico. Earth and Planetary Science Letters, 1995, 129:193-202
    [21] Brown, L., Klein, J., Middleton, R., Sacks, I.S., Tera, F. ~(10)Be in island-arc volcanoes, and imphcations for subduction. Nature, 1982, 299, 718-720.
    [22] Brown, L., Pavic, M.J., Hickman, R.E., Klein, J., Middleton, R. Erosion of the Eastern United States observed with ~(10)Be. Earth Surf. Process. Landf., 1988, 13: 441- 457
    [23] Brown, RW, Summerfield, MA, Gleadow, AJW. Apatite fission track analysis: its potential for the estimation of denudation rates and implications for models of long-term landscape development. In Process Models and Theoretical Geomorphology, ed. MJ Kirby, Chichester, UK: Wiley, 1994, pp. 23-53
    [24] Cerling, T. E., and Craig, H. Geomorphology and in situ cosmogenic isotopes: Ann. Rev. Earth Planet, Sci., 1994, 22:273-317
    [25] Chappell, John, Hongbo, Zheng, Fifield Keith. Yangtse River sediments and erosion rates from source to sink traced with cosmogenic ~(10)Be: sediments from major rivers, in review, 2005
    [26] Chen, Jingsheng, Wang, Feiyue, Xia Xinghui, Zhang, Litian. Major element chemistry of the Changjiang (Yangtze River). Chemical geology, 2002, 187:231-255
    [27] Clapp, E, Bierman PR, Caffee M. Using ~(10)Be and ~(26)A1 to determine sediment generation rates and identify sediment source in an arid region drainage basin. Geomorphology, 2002, 45:67-87
    [28] Cockburn, H.A.P., Seidl M.A., Summerfield M.A. Quantifying denudation rates on inselbergs in the central Namib Desert using in situ-produced cosmogenic 10Be and 26Al. Geology, 1999,27:399-402
    [29] Craig, H., Poreda, R.J. Cosmogenic 3He in terrestrial rocks : The summit lavas of Maui. Proceedings of the National Academy of Science U.S.A., 1986, 83: 1970-1974
    [30] Davis, R.J., Schaeter, O.A. Chlorine-36 in nature. Annals New York Academy of Science, 1955, 62, 105-122
    [31] Denton, G H., Bockheim, J. G, Wilson, S.C., Stuiver, M. Late Wisconsin and early Holocene Glacial history, inner Ross Enmbayment, Antarctica. Quaternary Research, 1989, 31:151 -182
    [32] Dunai T.J. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth Planet. Sci. Lett. 2000, 176:157-69
    [33] Dunne, J., Elmore, D., Muzikar, P.. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 1999, 27, 3-11.
    [34] Ehlers, TA, Farley KA. Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett., 2003, 206:1-14
    [35] Gaillardet, J. B. Dupre, P. Louvat, C.J. Allegre. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999, 159:3-30
    [36] Garrels, R.M. and Mackenzie, F.T., Evolution of Sedimentary Rocks. Norton, Newtok, Norton, N.Y., 1971
    [37] Gilbert, GK. Geology of the Henry Mountains, (Utah),Geographical and Geological Survey of the Rocky Mountains Region, U.S. Washington, DC: Gov. Print. Off, 1877
    [38] Goldstein, S. L., O'Nions R. K. and Hamilton P. J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planetary Science Letter. 1984, 70, 221-236
    [39] Gosse, J.C., Phillips, F.M. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews, 2001,20:1475-1560
    [40] Graf, T, Kohl, C.P., Marti, K., Nishiizumi, K. Cosmic-ray produced neon in Antarctic rocks. Geophysical Researc Letters, 1991,18: 203-206
    [41] Granger, D.E., J.W. Kirchner, R. Finkel, Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment, J. Geol., 1996, 104: 249-257
    [42] Gregg, J. S. Bluth and Lee, R. Kump. Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta., 1994, 58(10):2341-2359
    [43] Harverym Blatt, Gerardm Middleton, Raymond, Murray. Origin of sedimentary rocks, Prentice Hall,INC, Englewood Cliffs New Jersey, 1980, pp:1-782
    [44] Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C. The soil production function and landscape equilibrium. Nature, 1997, 88:358-361
    [45] Heimsath, AM, Chappell, J, Spooner, NA, Questiaux, D. Creeping Soil. Geology, 2002, 30:111-14,
    [46] Heirnsath, A.,Chappell, J., Dietrich, W.E., Nishiizumi, K. & Finkel, R.C. Soil production on a retreating escarpment in southeastem Australia. Geology, 2000, 28:787-790
    [47] Heimsath, A.M., Chappell, J., Dietrich, W.E., Nishiizumi, K. & Finkel, R.C. Late Quaternary erosion in southeastern Australia: a field example using cosmogenic nuclides. Quaternary International, 2001, 83-85: 169-185
    [48] Heisinger, B., Niedermayer, M., Hartmann, J.F., Korschinek, G., Nolte, E., Morteani, G., Neumaier, S., Petitjean, C., Kubik, P., Synal, A., Ivy-Ochs, S., .In-situ production of radionuclides at great depths. Nuclear Instruments and Methods in Physics Research B, 1997,123:341-346
    [49] Hewawasam,T. Blanckenburg, F. von, Schaller, M., Kubik, W. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology, 2003, 31:597-600
    [50] Hooke, RL. On the efficacy of humans as geomorphic agents. GSA Today, 1994, 4:21724-21725
    [51] Hooke, RL. On the history of humans as geomorphic agents. 2000, Geology 28:843-846
    [52] Ivy-Ochs, S., Schluchter C, Kubik PW, Dittrich-Hannen B, Beer J. Minimum ~(10)Be exposure ages of early Pliocene for the Table Mountain plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica. Geology, 1995, 23:1007-1010
    [53] Jansen, L M. L, and Painter, R. B. Predicting sediment yield form climate and Topography. Journal of Hydrology, 1974, 21:371-380
    [54] Judson, S., Ritter D. Rates of regional denudation in the United States. J. Geophys. Res., 1964, 69:3395-3401
    [55] Judson S. Erosion of the land or what's happening to our continents. Am. Sci. 1986, 56:356-374
    [56] Jull, A.J.T., Donahue, D.J., Linick, T.W., Wilson, C.C. Spallogenic ~(14)C in high-altitude rocks and in Antarctic meteorites. Radiocarbon, 1991, 31 (3):719-724.
    [57] Jull, A.J.T., Lifton, N., Phillips, W.M., Quade, J. Studies of the production rate of cosmic-ray produced ~(14)C in rock surfaces. Nuclear Instruments and Methods in Physics Research B, 1994, 308-310
    [58] Kim, K.J., Imamura, M. Exposure dating of underwater rocks: potential application to studies of land bridges during the Ice Ages. Nuclear Instruments and Methods in Physics Research B, 2004, 223-224:608-612
    [59] Kirchner, JW, Finkel, RC, Riebe, CS, Granger, DE, Clayton, JL, et al. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales.Geology, 2001, 29:591-594
    [60] Kohl, C.P., Nishiizumi, K., .Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica Cosmochimica Acta, 1992, 56:3583-3587
    [61] Kurz, M.D. .In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochimica et Cosmochimica Acta, 1986b, 50:2855-2862
    [62] Kurz, M.D., O'Brien, P., Garcia, M., Frey, F.A., 1985. Isotopic evolution of Haleakala volcano: Primordial, radiogenic and cosmogenic, helium. EOS, 1985, 66:11-20
    [63] Lajczak, A. and Jansson, M. B. . Suspended sediment yield in the Baltic drainage basin. Nordic Hydrology, 1993,24:31-52
    [64] Lal, D, Arnold, JR. Tracing quartz through the environment. Proc. Indian Acad. Sci., Earth Planet. Sci., 1985:94:1-5
    [65] Lal, D. Cosmic ray labeling of erosion surfaces; in situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 1991,104: 424-439
    [66] Lal, D. Investigations of nuclear interactions produced by cosmic rays. Ph.D. Thesis, Tata Institute of Fundamental Research, Bombay, 1958
    [67] Lal, D., .In situ-produced cosmogenic isotopes in terrestrial rocks. Annu. Rev. Earth Planet. Sci., 1988, 16:355-88
    [68] Lal, D., Arnold, J.R., Honda, M., .Cosmic-ray production rates of Be7 in oxygen, and P32, P33, S35 in argon at mountain altitudes. Physics Reviews, 1960, 118, 16-26
    [69] Lal, D., Peters, B., .Cosmic ray produced radioactivity on the earth. In: Sitte, K. (Ed.) Handbuch der Physik. Springer, Berlin, 1967, pp. 551-612
    [70] Li, Y. H. Teraoka, H., Young, T. S. and Chen, J. S. The elemental composition of suspended particles from the Yellow and Yangtze Rivers. Geochim. Cosmochim. Acta., ????, s48:1561-1564
    [71] Libby, F., Anderson, E.C., Arnold, J.R., .Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science, 1949, 109, 227-228
    [72] Lu, Xixi, Higgitt, David. Sediment yield variability in the upper yangtze, China. Earth Surf. Process. Landforms, 1999,24:1077-1093
    [73] Masarik, J., Beer, J., .Simulation of particle flux and cosmogenic nuclide production in the Earth's atmosphere. Journal of Geophysical Research, 1999, 104 (D10), 12,099-12,111
    [74] Masek, J.G., Isacks, B.L. Gubbels, T.L., Fielding, E.J. Erosion and tectonics at the margins of continental plateaus, J. Geophy. Res., 1994, 99:13941-13956
    [75] Matmon, A, Bierman PR, Larsen J, Southworth S, Pavich M, Caffee M., .Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains. Geology, 2003c, 31:155-58
    [76] Matmon, A, Crouvi O, Enzel Y, Bierman P, Larsen J, et al., .Complex exposure histories of chert clasts in the late Pleistocene shorelines of Lake Lisan, southern Israel. Earth Surf. Process. Landf, 2003a, 28:493-506
    [77] Matmon, A., Bierman, PR., J. Larsen, S. Southworth, M. Pavich, R. Finkel, M. Caffee, .Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee, Am. J. Sci., 2003b, 303:817- 855 [78] Meade, R. H. Movement and storage of sediment in river systems, in Lerman, A., and Meybech, M, eds., Physical and Chemical Weathering in Geochemical Cycles: Dordrecht, Kluwer, 1988,551-612.
    [79] Meybeck, M. Global chemical weathering from surficial rocks estimated from river dissolved load. Am. J. Sci., 1988,287:401-428.
    [80] Milliman, JD, Meade, RH. Worldwide delivery of river sediment to the oceans. J. Geol., 1983, 91:1-21
    [81] Molnar, P., England, P., 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature, 1990, 346, 29-34
    [82] Negerl, P., Allegre, C.J., Dupre, B. and Lewin, E., .Erosion sources determined by inversion of major and trace elements ratios in river water: The Congo Basin case. Earth Planetary Science Letters, 1993, 120:59-76
    [83] Nichols, KK, Bierman, PR, Hooke, RL, Clapp, E, Caffee, M., .Quantifying sediment transport on desert piedmonts using 10Be and 26Al. Geomorphology, 2002, 45:89-104
    [84] Niemi, Nathan A., Michael, Oskin, Douglas, W. Burbank, Arjun, M. Heimsath, Emmanuel J. Gabet, .Effects of bedrock landslides on cosmogenically determined erosion rates. Earth and Planetary Science Letters, 2005,237: 480- 498
    [85] Nishiizumi, K, Finkel R, Brimhall G, Mote T, Mueller G, Tidy E., .Ancient exposure ages of alluvial fan surfaces compared with incised stream beds and bedrock in the Atacama Desert of north Chile. Geol. Soc. Am. Abstr. Program, 1998, 30:A1-298
    [86] Nishiizumi, K., Lal, D., Klein, J., Middleton, R., Arnold, J.R., .Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature, 1986, 319: 134-135
    [87] Nishiizumi, K., Winterer, E.L., Kohl, C.P., Lal, D., Arnold, J.R., Klein,J., Middleton, R., Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research, 1989, 94 (B12):17,907-17,915
    [88] Ozturk, F. 1996. .Suspended sediment yields of rivers in Turkey. In Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996), IAHS Publication, 1996,236:65-71
    [89] Phillips, F.M., Leavy, B.D., Jannik, N.O., Elmore, D., Kubik, P.W., .The accumulation of cosmogenic Chlorine- in rocks: a method for surface exposure dating. Science, 1986, 231:41-43
    [90] Poreda, R.J., Cerling, T.E., .Cosmogenic neon in recent lavas from the western United States. Geophysical Research Letters, 1992, 19:1863-1866
    [91] Potter, P.E., .Petrology and chemistry of big rivers sands. Journal of Geology, 1978, 86:423-449
    [92] Raymo, ME, Ruddiman, WE, .Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 1988, 16:649-653
    [93] Reiners, PW., .(U-Th)/He chronometry experiences a renaissance. EOS Trans. Am. Geophys. Union, 2002, 83:21-27
    [94] Reneau, S. L., Dietrich, W. E., Rubin, M., Donahue, D. J., and Jull, J. T., .Analysis of hillslope erosion rates using dated colluvial deposits. Journal of Geology, 1989, 97:45-63
    [95] Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, R. C, .Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology 2001, 29:511-514
    [96] Riebe, C.S., J.W. Kirchner, R.C. Finkel, Erosional and climatic effects in long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes, Earth Planet. Sci. Lett., 2004, 224:547- 562
    
    [97] Riebe, CS, Kirchner JW, Granger DE, Finkel RC, .Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26Al and 10Be in alluvial sediment. Geology 2000, 28:803-806
    
    [98] Saito, Y., Yang, Z., Hori, K., .The Huanghe(Yellow River). and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology, 2001,41(2-3): 219-231
    
    [99] Sarda, P., Staudacher, T, Allegre, C.J., Lecomte, A., .Cosmogenic neon and helium at Reunion: measurement of erosion rate. Earth and Planetary Science Letters, 1993, 119, 405-417
    
    [100] Schaller, M, von Blanckenburg F, Hovius N, Kubik PW. Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth and Planetary Science Letters, 2001, 188: 441-458
    [101] Small, E. E., Anderson, R. S., Hancock, G. S., .Estimates of the rate of regolith production using 10Be and 26A1 from an alpine hillslope. Geomorphology, 1999, 27:131-150
    [102] Staudacher, T, AlleH gre, C.J., .Cosmogenic Neon in ultramafic nodules from Asia and in quartzite from Antarctica. Earth and Planetary Science Letters, 1991, 106: 87-102
    [103] Strack, E., Heisinger, B., Dockhorn, B., Hartmann, F.J., Korschinek, G, Nolte, E., Morteani, G, Petitjean, C, Neumaier, S., .Determination of erosion rates withcosmogenic 26A1. Nuclear Instruments and Methods B, 1994, 92:317-320
    [104] Summerfield, M.A. and Hulton, N.J., .Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research, 1994, 99(B7): 13,871-13,883
    [105] Templeton, D. H. Nuclear reactions induced by high energy particles. Annual review of nuclear science 1953,2:93-104
    [106] Trimble, S.W. The fallacy of stream equilibrium in contemporary denudation studies. Am. J. Sci., 1977,277:876-887
    [107] Wang, Y, Ren. M. E., and Zhu, D., .Sediment supply to the continental shelf by the major rivers of China, J. Geol. Soc. London., 1986, 143:935-944
    
    [108] Yang, S.L., I.M. Belkin, A.I. Belkina, Q.Y. Zhao, J. Zhu, P.X. Ding. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century. Estuarine, Coastal and Shelf Science, 2003, 57: 689-699
    [109] Yang, Shouye, Jung, Hoi-Soo, Li, Congxian. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sedimentary Geology 2004, 164:19-34
    [110] Zhang, P.Z., Molnar, P., Downs, W.R., 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 2001, 410:891-897
    [111] 陈吉余,沈焕庭,恽才兴等著.长江河口动力过程和地貌演变.上海:上海科学技术出版社,1988
    [112] 陈静生,李远辉,乐嘉祥,王德春.我国河流的物理与化学侵蚀作用.科学通报,1984,932-936
    [113] 陈静生,王飞越,程成旗,陈江麟,宋吉杰.中国东部主要河流颗粒物的元素组成.北京大学学报(自然科学版),32(2):206-214
    [114] 程裕淇.中国区域地质概论.北京:地质出版社,1-485
    [115] 邓英淘,王小强,崔鹤鸣等.再造中国,上海:文汇出版社,1999
    [116] 府仁寿,虞志英,金缪,方红卫.长江水沙变化发展趋势.水利学报,2003,11:21-29
    [117] 辜胜祖,侯伟丽.治理长江上游水土流失的对策.长江流域资源与环境.2000,9(2):260-264
    [118] 顾兆炎,刘东生.~(10)Be和26A1在地表形成和演化研究中的应用.第四纪研究,1997,3:211-221
    [119] 郭永明,汤宗祥.岷江上游水土流失及其防治,山地研究,1995,13(4):267-272
    [120] 韩贵琳,刘丛强.贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征.地球科学进展,2005,20(4):394-406
    [121] 黄春长.环境变迁.北京:科学出版社,1998
    [122] 孔屏.宇宙成因核素在地球科学中的应用.地学前缘.2002,9(3):41-48
    [123] 李保华,李从先,沈焕庭.冰后期长江三角洲沉积通量的初步研究冲国科学(D辑),2002,32:776-782
    [124] 李长安,殷鸿福,俞立中.长江流域泥沙特点及对流域环境的潜在影响.长江流域资源与环境,20009(4):504-509
    [125] 李从先,汪品先,等.长江晚第四纪河口地层学研究.北京:科学出版社,1998:114-172
    [126] 李从先,杨守业,范代读,赵娟.三峡大坝建成后长江输沙量的减少及其对长江三角洲的影响.第四纪研究,2004,24(5):496-500
    [127] 李晶莹,张经.中国主要流域盆地风化剥蚀率的控制因素.地理科学,2003,23(4):434-440
    [128] 李勇,曹叔尤,周荣军.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束.地质学报,2005,79(1):28-37
    [129] 林承坤,潘少明.古代长江江水何时变为混浊.自然杂志,2005,27(1):37-41
    [130] 刘会平.长江流域地貌类型研究.华中师范大学学报(自然科学版),1994,28(1):129-132
    [131] 刘树根,罗志立,戴苏兰.龙门山冲断带的隆升和川西前陆盆地的沉降.地质学报,1995,69(3):205-214
    [132] 刘毅,张平.长江上游流域地表侵蚀与河流泥沙输移.长江科学院院报,1995,12(1):39-44
    [133] 潘久根.金沙江流域的河流泥沙输移特性.泥沙研究,1999,2:46-49
    [134] 屈翠辉,郑建勋,杨绍晋,钱琴芳,杨亦男.黄河、长江、珠江下游控制站悬浮物的化学成份及其制约因素的研究.科学通报,1984(17):1063-1066
    [135] 沈承德,易惟熙,刘东生.高分辨~910)Be记录与黄土地层定年.第四纪研究,1994(3):203-213
    [136] 沈承德.深海沉积物~(10)Be记录研究.第四纪研究,1997,(3):203-210
    [137] 水利部水文局.中国泥沙公报.2000-2004,http://www.hydroinfo.gov.cn/gb/hlnsgb.asp
    [138] 汤奇成,熊恰.中国河流水文.北京:科学出版社,1998,121-139
    [139] 王宁练,姚檀栋.~36kaBP大气中宇宙成因核素含量增加的古里雅冰芯证据.科学通报,1999(7):765-768
    [140] 王新才.长江防洪地图集.北京:科学出版社,2001,1-146
    [141] 夏金梧,郭厚桢.长江上游地区滑坡分布特征及主要控制因素探讨.水文地质工程地质,1997,(1):19-22
    [142] 熊怡,张家桢.中国水文区划.北京:科学出版社,1995,1-206
    [143] 闫百兴,何岩.汉水沉积物中元素的地球化学特征.地理科学,1996,16(4):312-316
    [144] 杨怀仁.叶良辅与中国地貌学.杭州:浙大出版社,1989,314-318
    [145] 杨怀仁.中国东部断裂构造地貌分析.见:中国地理学会第一次构造地貌学术讨论会议论文选集,科学出版社,1984,31-43
    [146] 杨凌云,张一军,李广.贵州地质灾害的防治对策.西部探矿工程,2005,114(10):203-204
    [147] 杨守业,李从先.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质.1999a,19(2):19-26
    [148] 杨守业,李从先.长江与黄河现代表层沉积物元素组成及其示踪作用.自然科学进展,1999b(10):930-937
    [149] 叶书宗,马洪林,朱敏彦.长江文明史.上海教育出版社,2001,1-556
    [150] 易哲文.长江上游的泥沙.四川水利,2003,5:29-33
    [151] 张朝生,章申,王立军,王丽珍.长江与黄河沉积物金属元素地球化学特征及其比较.地理学报,1998,53(4):314-322
    [152] 张车伟.北宋以来我国的人口增长、土地垦殖和生态环境.2005,http://economy.guoxue.com/article.php/8552
    [153] 张二凤.长江中下游人类活动对河流泥沙来源及入海泥沙的影响研究.华东师范大学博士论文,2004
    [154] 张珂,蔡剑波.黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动.第四纪研究,2006,(1):85-91
    [155] 张兰生、史培军、王建序、王静爱等.《中国自然灾害地图集》的编制.北京师范大学 -中国人民保险公司农村灾害保险技术研究中心年报(1990-1991),海洋出版社,1991
    [156] 张文甫.川、滇毗邻地区新构造运动与活动断裂.四川地震,1994,(4):1-9
    [157] 张祥志.洞庭湖水沙特性与泥沙淤积分析.华东师范大学学报(自然科学版),1996,63-69
    [158] 张岳桥,杨农,孟晖.岷江上游深切河谷及其对川西高原隆升的响应.成都理工大学学报(自然科学版),2005,32(4):33 1-339
    [159] 赵本磊.98鄱阳湖水系流域暴雨-滑坡、崩塌、泥石流等灾害的世纪启示.江西地质,1999,13(4):271-275
    [160] 赵志忠,吴锡浩,C.Schluchter,J.Schafer,S.Tschudi.青藏高原第四纪冰川的宇宙核素暴露年龄首次测定.地质力学学报,2002,(4):15
    [161] 郑洪波.IODP中的海陆对比和海陆相互作用.地球科学进展,2003,18(5):722~729
    [162] 中国社会科学院农村发展研究所.长江三峡地区和上游地区林业生态工程建设和国民经济发展的关系研究.生态经济通讯,1998(增刊):1-14
    [163] 周正度.洪涝灾害之我见.见:许厚泽,赵其国主编,长江流域洪涝灾害与科技对策,北京:科技出版社,1999,42-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700