用户名: 密码: 验证码:
基于地理信息系统的祁连山地区数字地形分析和隆升机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造山带的隆升过程、机理和影响一直是地学研究的热点。长期以来,地质学、地貌学、大气科学和生物学等众多学科,分别从各自不同的角度探寻青藏高原和祁连山隆升的证据,以推算高原隆升的幅度,探讨隆升的机理,形成、演化历史以及对环境的影响等。但迄今为止,对祁连山地区分布于不同高度的夷平面,是由统一夷平面解体而成,还是不同期次构造运动的产物?夷平面的解体和山体的隆升是构造运动所主导,还是受气候变化、均衡抬升所支配?祁连地区典型的山—盆耦合地貌形式是如何形成的等问题,并未取得一致的认识。而构造隆升和侵蚀的关系是解决上述问题的关键,但直接对地貌隆升进行定量研究是比较困难的。古地貌面的隆升,提供了一个很好的起点与终点,通过对古地貌面的恢复,可以计算出古地貌面解体后的侵蚀量,从而为深入探讨隆升与侵蚀的定量关系创造了条件。
     在古地貌面的恢复研究中,确定古地貌面的层级关系是至关重要的,鉴于断层对划分古地貌面层级的重要影响,我们运用参数法和高差阴影图像法等技术手段,成功提取了祁连山地区断层的分布和性质,并对断层与地貌面的空间关系进行了叠加分析,结果显示,仅有约23.1%的断层线横切分布不同高度的古地貌面,相关沉积也具有多期次、多旋回的特点,这就说明,祁连山地区分布于不同高度的地貌面,不是由统一的夷平面因构造错断形成的,而是不同期次、不同构造旋回的产物。
     对古地貌面的自动识别与提取,也是客观准确地进行古地貌面恢复的关键,研究表明,随着研究区域的扩大,地貌结构复杂程度的提高,简单的基于图像处理技术的分类方法难以完成复杂地貌类型的划分工作。引入坡位指数和基于空间尺度的分类方法,较好地解决复杂地貌单元的划分和古地貌面的识别问题。对古地貌面的统计显示:山顶面解体前西高东低,北高南低,坡度为8°左右;而主夷平面解体前由西南向东北倾斜,坡度为4°左右。
     基于地貌分类和古地貌面识别的插值计算,是古地貌面恢复中的最后一个环节。计算显示,剥蚀面解体以来已经抬升约600m,因地貌均衡作用造成地表的抬升量为124m,占总抬升量的21%;主夷平面解体以来已经抬升约1550m,因地貌均衡作用造成地表的抬升量约为376m,占总抬升量的24.3%;山顶面解体以来已经抬升约2150m,因地貌均衡作用造成地表的抬升量约为428m,占总抬升量的19.9%。因侵蚀而引起的均衡抬升量均未超过总隆升量的30%。而人工地震所测地壳厚度显示,地壳厚度与地表高程有良好的对应关系说明,祁连山的整体隆升,主要是地壳缩短加厚引起的均衡抬升所致,而山峰高度与地壳厚度的不相称,可能主要是地表侵蚀引起的减荷隆升所造就。
     根据断层走向所计算出的区域主应力的方向为N32°E,与印度板块自西南向东北挤压的方向基本一致,主夷平面拱曲变形的特征也说明,印度板块与欧亚板块碰撞后,继续向北东方向推进,是导致祁连山地区的地壳的缩短加厚和地表隆起升的直接原因。而在推进中,遇到先成横向断层的阻挡,并在这些断裂上形成强烈的挤压—逆冲运动,将原来的侧向水平走滑运动转化为逆冲垂直运动,是形成山—盆耦合地貌形式的必要条件。
The uplift process, mechanism and effects of orogen have been a hotspot ingeo-science for a long time. And the relationship between tectonic uplift and erosionis the key to resolve these problems. In the past, there were many studies, whichexplored evidences for the uplift of Tibetan Plateau and Qilian Mountains, in geology,geomorphology, atmospheric science and biology. However, there was still not aconsistent opinion about some problems, such as, whether there was a uniformpeneplanation in Qilian Mountains or not? The main cause of peneplanationdeformation and uplift is tectonic movement or climate change and erosion isostaticeffect? How did the typical coupled mountain with basin geomorphological form beshaped? In the research of the relationship between tectonic uplift and erosion, it wasvery difficult to quantify the amount of uplift directly. However, the uplift of steppedgeomorphic surfaces provided the beginning and ending position of paleo-relief. Byrebuilding paleo-relief, we can calculate the amount of erosion after steppedgeomorphic surfaces deformation and it is also benefit advanced studies for exploringquantitative relationships between uplift and erosion.
     In rebuilding paleo-relief, it is very important to make sure the stage ofpeneplanation. Whereas the fault have very important influence on partition ofdifferent grade peneplanation, we used some methods such as horizontal curvature,vertical curvature and shaded-relief images, to extract the distribution and propertiesof faults in Qilian Mountains successfully. Then we made overlay analysis on spatialrelationships between faults and different grade peneplanation surfaces. The resultsshowed that there was only 20 percent faluts which cut across different gradepeneplanation surfaces at different altitude and related sediments had multi-periodsand multi-cycled properties. It indicated that those geomorphic surfaces distributing atdifferent altitude in Qilian Mountains were not a uniform planation which wasdisturbed by tectonic movements, but a result of different tectonic movement cycles.
     The auto-identification and extraction of stepped geomorphic surfaces was alsothe key to rebuild paleo-relief exactly. Studies also indicated that, with scale-up ofstudy area and increase of complexity in geomorphical structure, simple classification methods based on image process were not enough to complete classification ofcomplex geomorphical forms. With introducing slope position index and space-scale,we could resolve this problem well. After statistics, the results suggest that from westto east, from north to south, the elevation of Summit Surface decreased, and itsslope was about 8°. However, the elevation of Main surface decreased fromnorthwest to southeast and its slope was about 4°. Based on these quantitativecharacters, we can rebuild paleo-relief easily.
     The interpolated calculation based on the result of auto-classification is the laststep in rebuilding paleo-relief. The calculation indicated that surface has been raised600m after the erosion surface broke. The amount of uplift caused by isostatic effectwas 124m which occupied 21% of total amount of uplift. To Main Surface andSummit Surface, the total amounts of uplift were 1550m and 2150m respectively afterthe two surfaces broke, the amounts of uplift caused by isostatic effect were 376m and428m, which occupied 24.3% and 19.9% of total amounts of uplift. Since the crustdepth measured by using artificial earthquakes showed that crust depth correspondedwith elevation of surface, the main reason of the tectonic uplift in Qilian Mountainswas isostatic uplift caused by curst shortening and thickening rather than surfaceerosion.
     According to the fault strike, we calculated the direction of regional main stressis N32°E, consisting with the direction of compression from southwest to northeastof Indian plate. The character of the arched deformation of Main Surface also showedthat Indian plate continued pushing northwestwards after it collided with Eurasianplate. And it directly caused the surface uplift and the crust shortening and thickeningin Qilian Mountains. It was necessary for the formation of coupled mountain-basingeomorphological form that the discontinuous push blocked by pre-formed transversefaults forming strong compress-strike motion and changed lateral slip motion tovertical strike motion.
引文
1. Adams, G ed. Planation surfaces. Peneplains, pediplains, and etchplains. Dowden, Hutchinson & Ross, Stroudsburg [Benchmark Papers in Geology V. 22]. 1975,1-476
    2. An Zhisheng, Kutzbach J E, Prell W L, Porter S C. Phased Himalaya-Tibetan uplift since the Late Miocene and evolution of Asian monsoons, Nature, 2001,411: 62-66.
    3. Arnaud N O, Vidol P H, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implications. Earth and Planetary Science Letters, 1992, 111: 351-367
    4. Aronoff, S., Geographic Information Systems: A Management Perspective(Ottawa: WDL Publications), 1989.
    5. Avouac J P, Tapponnier P, Bai M, et al. Active thrusting and folding along the northern Tianshan, and Late Cenozoic rotation of Tarim relative to Dzhungaria and Kazakhstan. J. Geophys. Res., 1993, 98: 6755-6804
    6. Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia. Geophy. Res. Letts., 1993,20:895-898
    7. ?.?.列别杰夫.现代地貌学基本理论与问题.北京:科学出版社,1958
    8. Blaszczynskl, J. S. Landform Characterization with Geographic Information Systems, Photogrammertric En gineering & Remote Sensing, V.63, No.2 183-191, 1997.
    9. Burbank D.W, Blythe A.E., Putkonen J., et al. Decoupling of erosion and precipitation in the Himalayas: Nature, 2003,426:652-655.
    10. Burbank D. W., Beck R.A. Rapid, long-term rates of denudation. Geology, 1991,19:1169-1172
    11. Burbank, D. W., Blythe, A. E., Putkonen, J., et. al, Decoupling of erosion and precipitation in the Himalayas[J], Nature, 2003,426:652-655
    12. Burrough, P. A., Principles of Geographic Information Systems for land Resources Assessment(Oxford: Clarendon Press), 1986.
    13. Cane, M. A, Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago[J], Nature, 2001,411:157-162
    14. Chung S L, Lo C H, Lee T Y, et al. 1998. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 394: 769-773
    15. Coleman M, and Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age of east-west extension. Nature, 1995,374:49-52
    16. Coltori M, and Oilier C D. Geomorphic and tectonic evolution of the Ecuadoran Andes. Geomorphology, 2000,32: 1-19.
    17. Dymond, J.R., Harmsworth, G.R., 1994. Towards automated landbresource mapping using digital terrain models. ITC Journal 2,129-138
    18. Davis W M. The Geographical Cycle. Geogr. J., 1899,14(A): 481-504.
    19. Davis, W.M. The peneplain. American Geologist, 1899,23,207-239.
    20. Desmet, P. J. J., and G Govers, Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies. International Journal of Geographical Information System, v.10,311-331,1996.
    21. Dikau, R. (1989) The application of a digital relief model to landform analysis on geomorphology. Three dimensional applications in geographic information systems. Edit by Sonathan Raper, Taylor & Francis.
    22. Einsele, G, Ratschbacher, L. Wetzel, A.. The Himalaya-Bengal Fan denudation-accumulation system in the past 20 Ma. Journal of Geology, 1996, 104, 163-184.
    23. England P, Molnar P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 1990, 18: 1173-1177
    24. Evans, I.S. (1979) An integrated system of terrain analysis and slope mapping. Final report on grant DA-ERO-591-73-G0040, University of Durham, England.
    25. Evans, I.S., 1980. An intergrated system of terrain analysis and sloping mapping. Z. Geomorpholo. Suppl., 36: 274-295.
    26. Evans, I.S., An integrated system of terrain analysis and slope mapping. Z. Geomorphol. Suppl., 1980, 36, 274-295.
    27. Evans, L. S., General geomorphology, derivatives of altitude and descriptive statistic. In Spatial Alasysis in Geomorphology, edited by R.J. Chorley (London: Methuen), pp. 17-90, 1972.
    28. Fielding E J, Isacks B L, Barazangi M, et al. How flat is Tibet? Geology, 1994, 22:163~167
    29. Fielding E J. Tibet uplift and erosion. Tectonophysics, 1996, 260(1-3): 55-84.
    30. Florinsky I.V., Quantitative topographic method of fault morphology recognition, geomorphology, 1996, vol. 16, 103-119.
    31. Florinsky, I.V. 1996.Quantitative topographic method of fault mophology recognition. Geomorphoiogy vol. 16, pp.103-119.
    32. Formento-Trigilio M.L, Burbank D.W., Nicol A., et al. River response to an active fold-and-thrust belt in a convergent margin setting, North Island, New Zealand, Geomorphology, 2003, 49: 125-152.
    33. Frostick L E, Steel R J. Tectonic signatures in sedimentary basin fills: An overview. In Frostick L E and Steel R J, eds. Tectonic Controls and Signatures in Sedimentary Successions. Oxford: Blackwell, 1993, 1-12
    34. Galadini F, Messina P, Giaccio B, et al. Early uplift history of the Abruzzi Apennines (central Italy): available geomorphological constraints. Quaternary International, 2003, (101-102): 125~135
    35. Gansser A. The Geology of the Himalayas, Wiley Interscience, New York, 1964, 289
    36. Garbrechjt, J., and L. Martz, Grid size dependency of parameters extracted from digital elevation models. Computers & Geosciences, v.20,85-87, 1994.
    37. Garzione CN, Dettman DL, Horton BK. Carbonate oxygen isotope paleoaltimetry: evaluating the effect of diagenesis on estimates of paleoelevation in Tibetan plateau basins: Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212:119-140
    38. Garzione CN, Dettman DL, Quade J, et al. High times on the Tibetan Plateau: Paleoelevation of the Thakkola graben, Nepal. Geology, 2000, 28:339~342
    39.Gellert J.F.新观点下的夷平面—梯级山地—单斜山.地理学报,1960,26(2):73-85
    40. George AD, Marshallsea SJ, Wyrwoll KH, et al. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and VR analysis. Geology, 2001, 29 (10): 939-942
    41. Gilbert, Grove K. Report on the Geology of the Henry Mountains. Washington, D.C.: U.S. Geographical and Geological Survey of the Rocky Mountains, 1877
    42. Guo Z T, Ruddiman W F., Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J], Nature, 2002, 416:159~163
    43. Guth, P. L. Slope and aspect calculations on gridded digital elevation models:examples form a geomorphometric toolbox for person computers. Geomorphologies, Supplementband, v.101,31-52,1995.
    44. Hack J.T. Dynamic Equilibrium and Landscape Evolution. In Melhorn W.N., Flemal R.C. (eds.) Theories of Landform Development, Proceedings of the Sixth Annual Binghampton Symposium, 1975, 87-102.
    45. Hacker BR, Gnos E, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet. Science, 2000, 287: 2463-2466.
    46. Hogg, J., J. E. McCormack, S. A. Roberts, M. N. Gahegan, and B. S. Hoyle, Automated derivation of stream-channel networks and selected cachment characteristics from digital elevation models. In Mather, P.M.(ed.) geographic Information Handling-Research and Application. John Wiley and Sons, York. P.207-235,1993.
    47. Igor V. Florinsky, Quantitative topographic method of fault morphology recognition,geomorphology, V.16,103-119,1996.
    48. Keller, E.A.,1986. Investigation of active Tectonics: Use of surficial earth processes. In : R.E. Wallace(Editor), Active Tectonics. National Academy Press, Washington, pp. 136-147.
    49. Keller, E.A., Investigation of active tectonics: use of surfacial earth processes. In: R.E. Wallace (Editor), Active Tectonics. National Academy Press, Washington, 1986,136-147.
    50. King L C. Canons of landscape evolution. Geological Society of America Bulletin, 1953,64: 721-751
    51. King L.C. Morphology of Earth. Edinburgh-London, 1962.
    52. Lattman, L.H., 1958. Techinque of mapping geologic fracture traces and lineaments on aerial photographs. Photogramm. Eng. Remote Sensing, No. 4, pp. 568-576.
    53. Li J J Eds. Uplift of the Qinghai-Xizang (Tibet) Plateau and global change. Lanzhou: Lanzhou University Press, 1995
    54. Li J.J., Fang X.M., Rob Van der Voo, et al. Magnetostratigraphic dating of river terraces: Rapid and intermittent incisionby the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. Journal of Geophysical Research, 1997,105(B5): 10121-10132.
    55. Li Jijun, Xie Shiyou, Kuang Mingsheng. Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology, 2001,41: 125-135
    56. Li Jijun, Zhang Bo, Zhu Junjie, et al. Magneto-and pedo-stratigraphy of paleosol-loess sequences in the Lanzhou Basin: Evidence for evolution of Huang He. Chinese Science Bulletin, 1999, 44(Supp.): 119-128
    57. Li Jijun. The environmental effects of the uplift of the Qinghai-Xizang Plateau. Quaternary Science Review, 1991,10:479-483
    58. Li Youli, Yang Jingchun, Tan Lihua, et al. Impact of tectonics on alluvial landforms in the Hexi Corridor, Northwest China. Geomorphology, 1999,28:299-308
    59. Liu T S eds. Aspects of Loess Research. Beijing Ocean Press, 1987
    60. Liu Tungsheng, Ding Menglin, Derbyshire E. Gravel deposits on the margins of the Qinghai-Xizang Plateau, and their environmental significance. Palaeogeography, Palaeoclimatelogy, Palaeoecology, 1996,120:159-170
    61. Lyon C H, Molnar P. Gravity anomalies and the structure of western Tibet and the southern Tarim basin. Geophysical Research Letters, 1984,11: 1251-1254
    62. Macmillan, R.A., Pettapiece, W.W., Nolan, S.C., Goddard, T.W.,2000. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems 113, 81- 109
    63. Milne, J.D.G, Clayden, B., Singleton, PL., Wilson, A.D., 1995. Soil Description Handbook. Manaaki Whenua Press, Landcare Research, Lincoln, New Zealand.
    64. M. E. Hodgson, G L. Galle, Acartographic Modeling Approach for Surface Orientation-related Applications, Photogrammetric Engineering & Remote Sensing, V.65 No.l,p85-95,1999.
    65. M. P. Bishop, J. F. Shroder Jr., B. L. Hickman, SPOT PanchromaticImagery and Neural Networks for Information Extraction in a Complex Mountain Environment. Geocarto International, V. 14 No.2,1999.
    66. Metivier F., Gaudemer Y, Tapponnier P. et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two areas: The Qaidam and Hexi corridor basins, China, Tectonics, 1998,17: 823-842
    67. Meyer B., Tapponnier P., Bourjot L. et al., Crustal thickening in Gansu-Qinghai, Lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau, Geophys. J. Int., 1998, 135: 1-47
    68. Miller K G, Faribanks R G, Mountain G S. Tertiary ozygen isotope synthesis, Sea level history and continental margin erosion. Paleoceanography, 1987, 2(1): 1-19
    69. Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 1975, 189:419~426
    70. Molnar P., and England P. Late Cenozoic Uplift of the mountain range and global climatic change: Chicken or egg?. Nature, 1990, 346: 29-34.
    71. Molnar, P. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications, Phil. Trans. R. Soc. Lond. 1988, A, 326: 33-88
    72. Molnar, P., England, P., Late Cenozonic Uplift of Mountain Ranges and Global Change,Chicken or Egg?[J], Nature, 1990, 357:29~34
    73. Molnar, P., P. England, and J. Martinod, Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon, Reviews of Geophysics, 1993, 31: 357-396.
    74. P. A.Shary, Land Surface in Gravity Point Classification by a Complete System of Curvature, Mathematic Geology, V. 27, No.3,1995.
    75. P. Samson, J-L. Mallet, Curvature Analysis of Triangulated Surfaces in Structrual Geology, Matyematical Geology, V.29. No.3, 1997.
    76. Pan Baotian, Burbank D, Wang Yixiang, et al. A 900 ky. record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology, 2003, 31 (11): 957~960
    77. Peltzet G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: an experimental approach. J. Geophy. Res., 1988, 93(B12): 15085-15117
    78. Peucker, T. K. and Douglas, D. H. (1974). Detection of surface specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and ImageProcessing 4, pp.375-387.
    79. Phillips J.D. Erosion, isostasy, and the missing peneplalns. Geomorphology, 2002, 45: 225-241.
    80. Phyiosophov, V.P., 1960. Brief Manual on the Morphometric Method for Tectonic Structure Search. Saratov University Press. Saratov, pp. 94.
    81. Pitlick, J. Relation between peak flows, precipitation, and physiography of five mountainous regions in the western USA Journal of Hydrological, v. 158, 219~240. 1994
    82. Reiners, P. W., Ehlers, T. A., Mitchell, S. G., Coupled spatial variations in recipitation and long~term erosion rates across the Washington Cascades[J], Nature, 2003, 426:645~647
    83. Ruddiman W F. Tectonic uplift and climate change. Plenum Press New York and London, 1997
    84. Ruxton B P, and McDougall I. Denudation rates in north~east Papua from potassium argon dating of lavas. American Journal of Science, 1967, 265:545~561
    85. Schowengerdt R.A.,and Glass, C.E.. 1983. Digitally processed topographic data for regional tectonic evaluation. Geo. Soc. Am. Bull., vol. 4, pp.549-556.
    86. Schumm S A. The disparity between present rates of denudation and orogeny. U.S. Geol. Survey Prof. Paper, 1963, 454~H, 13pp.
    87. Shackleton R M, and Chang C F. Cenozoic uplift and deformation of the Tibetan Plateau: the geomorphologie evidence. Phil. Trans. R. Soc. Lond., 1988, A: 327-377
    88.Shackleton R.M.,常承发.青藏高原新生代的隆起和变形:地貌证据.见:中—英青藏高原综合地质考察队《青藏高原地质演化》.北京:地质出版社,1990,372~382.
    89. Shary, P.A., The second derivative topographic method. In: I.N. Stepanov(Editor), The Geometry of the Earth Surface Structures. Pushchino Research Centre Press, Pushchino, 1991, 30-60.
    90. Slemmons and Depolo,1986. Evaluation of active fau lting and associated bazards. In: R.E. Wallace(Editor), Active Tectonics. National Academy Press, Washington, pp. 45-62.
    91. Slemmons, D.B. and Depolo, C.M., Evaluation of active faulting and associated hazard. In: R.E. Wallace (Editor), Active Tectonics. National Academy Press, Washington, 1986, 45-62.
    92. Speight, J.G., 1990. Australian Soil and Land Survey: Field Handbook, 2nd ed. Inkata Press, Melbourne
    93. Small E. Does global cooling reduce relief?. Nature, 1999, 401: 31-33.
    94. Takashi O., Tatsuto A., Nobuhisa M., Identification of an active fault in the Japanese Alps from DEM-based hill shading, Computers & Geosciences, 2003, 885-891.
    95. Tapponier P, Xu Zhiqin, Roger F, et al., Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294:1671~1676
    96. Tapponnier P, Lacassin R, Leloup P H, et al. The Ailaoshan/Red river metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 1990, 343:431-437
    97. Tapponnier P, Molnar P. Slip-line fields theory and large-scale continental tectonics. Nature, 1976, 264: 319~324.
    98. Thelin, G.P., Pike, R.J., Landforms of the conterminous United States—a digital shaded-relief portrayal. 1991. Manual of US Geological Survey Map I-2206.
    99. Trifomov, V. G., 1983. Late Quaternary Tectonics. Nauka, Moscow, 224pp.
    100. Vinogradova A.I., and Yeremin, V.K.(Editors) 1971. Air Methods for Geological Investigations. Nedra, Leningrad, pp. 703
    101. Wallace, R.E., 1986. Overview and recommendations In: R.E. Wallace(Editor), Active Tectonics. National Academy Press, Washington, pp. 3-19.
    102. Weibel, R. and Heller, M., Digital terrain modelling. In Geographic Information Systems: Principles and Applications, edited by D. J. Maguire, M. F. Goodchild and D. W. Rhind(London: Longrnan), pp.269-297, 1991.
    103. Yoeli, P., Analytical hill shading (a cartographic experiment). Surveying and Mapping, 1965.25, 573-579.
    104. Young, A., 1972. Slopes. Oliver and Boyd, Edinburgh, pp.288.
    105. Young, M. (1978) Terrain analysis: program documentation. Statistical Characterisation of altitude matrices by computer: Report 5 on grant DA-ERO-591-73-G0040, University of Durham, England.
    106.陈杰,卢演俦,丁国瑜.祁连山西段酒西盆地地区阶地构造变形的研究.西北地震学报,1998,20(1):28-36
    107.陈志泰,虢顺民,戴华光,祁连山—河西地区断层活动及其动力作用[A].见:国家地震局地质研究所编.中法合作活断层对比研究[C].北京:地震出版社,29~50等.1993.
    108.崔之久,高全洲,刘耕年等.青藏高原夷平面与岩溶时代及其起始高度.科学通报,1996,41(15):1402~1406.
    109.崔之久,高全洲,刘耕年等.夷平面、古岩溶与青藏高原隆升.中国科学(D辑),1996,26(4),378~385.
    110.崔之久,李德文,冯金良等.覆盖型岩溶风化壳与岩溶(双层)夷平面,中国科学(D辑),2001,31(6):510~519
    111.崔之久,李德文,伍永秋等.关于夷平面.科学通报,1998,43(17),1794~1804.
    112.董文杰,汤懋苍.青藏高原隆升和夷平过程的数值模型研究.中国科学(D辑),1997,27(1):65-69
    113.方小敏,李吉均,马玉贞等.高原东北缘(以临夏盆地为主)天然剖面记录.见:施雅风,李吉均,李炳元主编,青藏高原晚新生代隆起与环境变化,广州:广东科技出版社,1998,19-79
    114.方小敏,宋春晖,高军平等.青藏高原东北边缘晚新生代哺乳动物化石的磁性地层学,科学通报,2002.47(23):1824~1828
    115.方小敏,赵志军,李吉均等.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升.中国科学(D辑),2004,34(2):76-106
    116.葛肖虹,刘俊来.北祁连山造山带的形成与背景.地学前缘,1999,6(4):223-230
    117.葛肖虹,刘永江,任收麦.青藏高原隆升动力学与阿尔金断裂,中国地质,2002,29(4):346~350
    118.顾延生,张旺生,朱云海等.祁连山东南缘基于RGMAP的数字化地貌研究.地球科学—中国地质大学学报,2003,28(4):395-400
    119.国家地震局地质研究所,国家地震局兰州地震研究所.1993.祁连山—河西走廊活动断裂系[M]北京:地质出版社,74~208
    120.虢顺民,向宏发,黄昭.1987.河西走廊南缘断裂第四纪活动断裂的考察[A]见:中国地震学会地质专业委员会编.中国地震年鉴[C].北京:地震出版社,263~268
    121.何浩生,何科昭.滇西地区夷平面变形及其反映的第四纪构造运动.现代地质,1993,31-39
    122.侯康明.1927年古浪8级大震地表破裂特征及形成机制.地震地质,1998,20(1):19~26
    123.候康明,邓起东,刘百篪.冬青顶背斜的变形形式/变形幅度及形成机理.见:汪一鹏主编,活动断裂研究(第6辑),北京:地质出版社,1998,88~95
    124.黄华芳.酒西盆地、酒东盆地第三系磁性地层的划分与对比.甘肃地质,1993,2(1):6-16
    125.黄培之。2001,提取山脊线和山谷线的一种新方法。武汉大学学报,信息科学版,26(3):247-252
    126.季莫菲也夫.地球上夷平面对比的经验(顾嗣亮译).地理译丛,1965,1:21-25
    127.贾云鸿,苏向洲,刘洪春等.皇城-双塔断裂带东段(祁连-双塔段)晚更新世以来的活动特征.见:邓起东主编,活动断裂研究(第三期).北京:地质出版社,1993,170~179
    128.金德生等,实验地貌学研究进展,《地貌实验与模拟研究》,北京,地震出版社,1996。
    129.李勇,侯中健,司光影等.青藏高原东缘新生代构造层序与构造事件.中国地质,2002,29(1):30-36
    130.李保俊,杨景春,李有利.根据砾石风化圈厚度估算地貌年龄.地理研究,1996,15(1):11-21
    131.李长安,骆满生,于庆文等.东昆仑晚新生代沉积、地貌与环境演化初步研究.地球科学(中国地质大学学报),1997,22(4):347-351
    132.李春初.对滇南地区地貌发育的一些认识.中国地理学会1961年地貌学术讨论会论文摘要.北京:科学出版社,1962
    133.李吉均,方小敏,马海洲等.晚新生代黄河上游地貌演化与青藏高原隆升.中国科学(D辑),1996,26(4):316~322
    134.李吉均,方小敏,潘保田等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5),381~390.
    135.李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569-1574
    136.李吉均,文世宣,张青松等.青藏高原隆起的时代、幅度和形式的探讨.中国科学,1979.(6):608~616.
    137.李吉均.纪念台维斯侵蚀循环、准平原学说诞生一百周年.兰州大学学报(自然科学版),1999,35(3),157~163.
    138.李吉均.祁连山山地近期年龄及第四纪冰期探讨.兰州大学学报,1963,(1):77~86
    139.李吉均.青藏高原隆起的三个阶段及夷平面的高度与年龄.见:地貌 环境 发展.北京:中国环境科学出版社.1995,1~5.
    140.李吉均.青藏高原天然剖面记录对比及意义.见:施雅风,李吉均,李炳元主编,青藏高原晚新生代隆起与环境变化,广州:广东科技出版社,1998,141-158
    141.李祥根.中国新构造运动概论.北京:地震出版社,2003
    142.李孝泽,董光荣,陈惠中等.从青藏高原南北两个磨拉石剖面的对比看青藏高原的隆升过程.中国沙漠,2001,21(4):354-360
    143.李有利,杨景春,李保俊.河西走廊梨园河河流阶地发育及其环境意义.见:中国地理学会地貌与第四纪专业委员会编,地貌环境发展.北京:中国环境科学出版社,1995,153-156
    144.林畅松,张燕梅.盆地的形成和充填过程模拟-以拉伸盆地为例.地学前缘,1999,6(增):139-147.
    145.刘百篪,李清河,刘小凤等.祁连山活动地块东北部活动构造的定量研究与大地震危险性分析.西北地震学报,2000,22(2):187-190.
    146.卢演俦,丁国瑜.与亚洲古季风有关的中国及邻区新生代构造演化的几个问题.第四纪研究,1998,8(3):205-212.
    147.鹿化煜,安芷生,王晓勇等.最近14 Ma青藏高原东北缘阶段性隆升的地貌证据.中国科学(D辑),2004,34(9):855-864.
    148.潘保田,高红山,李吉均.关于夷平面的科学问题—兼论青藏高原夷平面.地理科学,2002,22(5):520~526
    149.潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论.兰州大学学报(自然科学版),2000,36(3):100~111.
    150.潘保田,李吉均,施雅风等.第三纪青藏地区隆升、夷平与环境特征.见:施雅风,李吉均,李炳元主编,青藏高原晚新生代隆起与环境变化,广州:广东科技出版社,1998,375-394
    151.潘保田,邬光剑,王义祥等.祁连山东段沙沟河阶地的年代与成因.科学通报,2000,45(24):2669~2675
    152.潘裕生.青藏高原的形成与隆升.地学前缘,1999,6(3):153-163
    153.钱方.青藏高原晚新生代磁性地层研究.地质力学学报,1999,5(4):22-34
    154.任纪舜,姜春发,张正坤,等.1980.中国大地构造及其演化[M].北京:科学出版社,1~124
    155.任美锷编译.台维斯地貌学论文选,北京:科学出版社,1958
    156.桑海清,裘冀,王松山.第四纪地质年代学和定年方法及应用.质谱学报,1997,18(2):57-66
    157.沈显杰.青藏高原隆升的构造热演化机制.地质科学,1986,2:101-117
    158.沈玉昌,现代地貌与研究的进展,地质科技在发展中(44),1980。
    159.沈振枢,程果,乐昌柱等.柴达木盆地第四纪含盐地层划分及沉积环境.北京:地质出版社,1993
    160.时掁梁,环文林等,中国地震学会地震地质专业委员会,河西走廊西部的活动断层和地震,《中国活动断裂》,1982,地震出版社,北京。
    161.史正涛,张世强,周尚哲等.祁连山第四纪冰碛物的ESR测年研究.冰川冻土,2000,22(4):353-357.
    162.宋春晖,方小敏,李吉均等.青藏高原北缘酒西盆地13 Ma以来沉积演化与构造隆升.2001,中国科学(D辑),31(增):155-162
    163.潭利华,杨景春,段烽军.河西走廊新生代构造运动的阶段划分.北京大学学报(自然科学版),1998,34(4):523-532
    164.万天丰.中国第四纪的构造事件与应力场.第四纪研究,1994,1:48-55
    165.王德基.祁连山东段的古剥蚀面.兰州大学学报(自然科学版),1983,19(3):108~114
    166.王树基.亚洲中部山地夷平面研究.北京:科学出版社,1998.
    167.王义祥.祁连山地形数字模型分析与地貌演化(硕士学位论文).兰州大学,1999
    168.吴锡浩,王富葆,安芷生等.晚新生代青藏高原隆升的阶段和高度.见刘东生,安芷生主编,黄土、第四纪地质、全球变化(三),北京:科学出版社,1992,1-13
    169.吴宣志,吴春苓,卢杰等.用深地震反射剖面研究北祁连—河西走廊地壳细结构.地球物理学报,1995,38(增):29-35
    170.吴珍汉,吴中海,江万等.中国大陆及邻区新生代构造—地貌演化过程与机理.北京:地质出版社,2001.
    171.夏邦栋,张开均,孔庆友等.青藏高原内部三条磨拉石带的确定及其构造意义.地学前缘(中国地质大学,北京),1999,6(3):173-180
    172.向宏发,虢顺民,才树华.1988.祁连山北缘断裂带第四纪运动特征的初步研究[J].华北地震科学,6(3):1~9
    173.向宏发,虢顺民.1990.对河西走廊玉门2嘉峪关地区活动断裂的初步认识[A].见:国家地震局地质研究所编.现代地壳运动研究[C].北京:地震出版社,139~145
    174.肖序常,刘 训,高锐等.西昆仑及邻区岩石圈结构构造演化—塔里木南—西昆仑多学科地学断面简要报道.地质通报,2002,21(2):63-68
    175.肖序常,王军.青藏高原构造演化及隆升的简要评述.地质论评,1998,44(4):372-247
    176.邢成起,尹功明,丁国瑜等.黄河黑山峡阶地的砾石Ca膜厚度与粗碎屑沉积地貌面形成年代的测定.科学通报,2002,47(3):167-172
    177.胥颐,刘福田,刘建华等.中国西北大陆碰撞带的深部特征及其动力学意义.地球物理学报,2001,44(1):40-47
    178.徐叔鹰.论夷平面的成因、年龄与变形,兰州大学学报(自然科学版),1963,(2):96~106.
    179.徐叔鹰.祁连山及其毗邻地区地貌发育与环境演化.苏州铁道师院自然科学学报,1985,1:90-98
    180.杨达源,李徐生.中国东部新构造运动的地貌标志和基本特征.第四纪研究,1998,3:249-255
    181.杨景春,谭利华,李有利等.祁连山北麓河流阶地与新构造演化.第四纪研究,1998,(3):229~308
    182.杨志华,李勇,苏春乾等.关于大陆动力学几个问题的讨论.见:马宗晋,杨主恩,吴正文.构造地质学—岩石圈动力研究进展.北京:地震出版社,1999,304-321
    183.业渝光,刁金波,和杰等.沉积物的ESR测年.地球学报,1996,17(增):168-175
    184.尹泽生,徐叔鹰.祁连山区域地貌与制图研究.北京:科学出版社,1992
    185.岳乐平.中国黄土与红色粘土记录的地磁极性界限及地质意义.地球物理学报,1995,38(3):311-320
    186.曾永年,马海洲,李珍等.西宁地区湟水阶地的形成与发育研究.地理科学,1995,15(3):253-258
    187.张建新,许志琴.北祁连中段加里东俯冲-增生杂岩/火山弧带及其变形特征.地球学报,1995,(2):36~463
    188.张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场.地学前缘,2002,9(2):442-450.
    189.张镱锂,李炳元,郑度.论青藏高原范围与面积.地理研究,2002,21(1):1~8
    190.赵兵,林金辉,李保华等.青藏高原北部古近系新建岩石地层单位—祖尔肯乌拉山组.地质通报,2003,22(11-12):944-948
    191.赵志军,方小敏,李吉均等.酒泉砾石层的古地磁年代与青藏高原隆升.科学通报,2001,46(14):1208~1212
    192.郑度,姚檀栋等.青藏高原隆升与环境效应.北京:科学出版社.2004,1-564.
    193.郑文涛,杨景春,段锋军.武威盆地晚更新世河流阶地变形与新构造活动.地震地质,2000,22(3):318~328
    194.中国自然地理编委会.中国自然地理—地貌.北京:科学出版社,1980,11-18
    195.钟大赉,Tapponnier P,吴海威等.大型走滑断层:碰撞后陆内变形的重要形式.科学通报,1989,7:526-529
    196.钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑),1996,26(4):289-295
    197.钟伟青,GIS在地貌实验与模拟中的作用困难和对策,热带地理,V.15(2),1995。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700