用户名: 密码: 验证码:
四川盆地丘陵区降雨侵蚀与输沙特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川盆地丘陵区是长江上游人口稠密的农业区之一,由于自然因素和人为因素的影响,导致该区水土流失面积广、强度大,是长江上游水土流失重点产沙区之一,其入河泥沙量的大小直接关系到中下游长江三峡库区的使用年限和安危,乃至整个长江流域经济的可持续发展。本文以四川盆地丘陵区为研究对象,选取多年实测降雨资料分析了降雨量及降雨侵蚀力的时空变化特征;利用径流小区及小流域观测站实测资料,研究了自然因素与人为活动因素对土壤侵蚀的影响,并结合水文站实测输沙量资料分析了河流输沙变化特征及河道冲淤情况,并估算了流域泥沙输移比。取得了以下主要研究结果:
     (1)四川盆地丘陵区大部分地区的年降雨量空间分布总体上是盆周多于盆底,由外而内逐渐减少;降雨年内分配极不均衡,主要集中于5~10月,占全年降雨量的78%以上;年际变化也较大,且变化幅度为北部大于中部和南部,西北部大于东南部。顺坡休闲农耕地的侵蚀性雨量标准为11.3mm,多年平均总降雨量中有60%以上属于侵蚀性降雨,7、8两个月年均侵蚀性降雨量和土壤侵蚀量最大。年均降雨侵蚀力R值介于5000~6500MJ·mm·ha-1·h-1之间,主要由≥15mm降雨构成,其时空分布特征与降水量相似。
     (2)多年平均条件下,顺坡农耕地径流小区土壤侵蚀量和径流量均随坡度与坡长的增加而增大;在次降雨条件下,随着降雨量、降雨强度及降雨能量的增加,坡度的变化对坡面产流产沙的影响明显,而坡长变化的影响则不显著。
     (3)横坡垄作与顺坡垄作相比,减流率相对稳定,变化在35.1%~74.7%之间,而减蚀率变化趋势起伏较大,在8.5%~96.8%之间;林草措施相对于自然坡面的减流效益平均为48.6%和32.3%,减沙效益平均为54.4%和73.8%;梯地多年平均减流量为1.94×104m3/km2,减沙量为2151.0t/km2;淤地坝单坝年均拦沙量为143.7t;小型蓄用水工程平均每年汛期减少地表径流量13650m3,减少输沙量44.2t。
     (4)休闲裸地年侵蚀量为753.2t/km2,农耕地种植不同作物条件下年均侵蚀模数变化在9.2~15567.7t/km2之间,不同草地径流小区的多年平均侵蚀量变化在45.3~710.8t/km2,不同林地类型下多年平均侵蚀量变化在3.25~620.5t/km2。无论哪种土地利用类型,随着植被覆盖度或郁闭度的不断增大,降雨对土壤侵蚀的影响逐渐减弱,土壤侵蚀就会减轻。考虑土地利用类型、植被覆盖度、种植条件、侵蚀产沙特征等因素,归纳出四川盆地丘陵区不同土地利用类型的多年平均侵蚀模数:旱地为5424.8t/km2,水田为714.8t/km2,裸岩为12428.0t/km2,有林地、灌木林地、疏林地和经济林地的侵蚀模数分别为240.7t/km2、392.9t/km2、2326.7t/km2、514.9t/km2,高盖度草地、中盖度草地和低盖度草地的侵蚀模数分别为139.3t/km2、710.8t/km2、2038.9t/km2。
     (5)在嘉陵江中游干流流域以武胜~(亭子口、红岩、赵家祠、清泉乡)区段的水土流失最严重,多年平均输沙模数为1060.4t/(km2·a),渠江流域则为为罗渡溪~(苟渡口、静边)区段,多年平均输沙模数为2158.4t/(km2·a),而涪江流域为将军石~甘溪区段,多年平均输沙模数为1730.6t/(km2·a)。在1957~1987年间,嘉陵江中游干流流域输沙模数呈下降趋势,涪江流域有略微降低趋势,与流域内降水量的逐年减少及水利工程的拦沙有关;而渠江流域则呈上升趋势,其原因主要是降雨量的增加。
     (6)1983年与1965年相比,涪江干流河段除涪江桥站断面萎缩外,平武站、射洪站和小河坝站断面均以冲刷为主;支流平通河河床以冲刷为主,梓潼河、安昌河、凯江及魏城河河床均以淤积为主;涪江流域干流及主要支流水文站控制流域的SDR值变化范围在0.04~0.87之间,其中梓潼河流域SDR值变化于0.04~0.2之间,凯江流域SDR值为0.07,平通河流域SDR值为0.6,涪江流域干流不同控制区间内的SDR值变化于0.1~0.87之间。各水文站控制流域的SDR大小与流域控制断面的冲淤情况基本一致。
The hilly area of Sichuan Basin is one of the most densely populated agricultural regions in China, and the area represents one of the most severely eroded regions in the upper Yangtze River basin because of the purple soils which are highly susceptible to erosion. The sediment yielding from the hilly area of Sichuan Basin is closely related to the service life and safe of Three Gorges Project, even to the sustainable development of the whole Yangtze River basin. Thus, the hilly area of Sichuan Basin was chose as the research area, the spatial and temporal characteristics of rainfall and rainfall erosivity, and the effect of natural factors and human activity factors on soil erosion were studied based on the measured data from runoff plots, small watersheds and rainfall stations. Meanwhile, the sediment transporting characteristics, scouring and silting changes of large riverbed sections and sediment delivery ratio (SDR) were analyzed based on the hydrological observation data. The main conclusions are including:
     (1)The spatial distribution of annual rainfall was gradually decreased from outside to inside in the hilly area of Sichuan Basin. The annual distribution of rainfall was concentrated in May to December, and accounted for above 78% of annual rainfall. The yearly variation of rainfall was also large, and much more variation in the north part than in the middle and south part, while much more variation in the northwest than the southeast. The erosive rainfall standard of downslope fallow arable land was 11.3mm, and more than 60% of the rainfall was erosive rainfall averagely. The most of annual average erosive rainfall and soil erosion amount was appeared in July and August. The annual average rainfall erosivity (R value) was between 5000 and 6500MJ·mm·ha-1·h-1, R value was mainly consisted by the≥15mm rainfall. The spatial distribution of the rainfall erosivity was similar with the rainfall. The Rainfall Erosion and Sediment Transportation Characteristics in the Hilly Area of Sichuan Basin
     (2)The annual average of soil erosion amount and runoff volume increased with the increasing of slope gradient and slope length. The effect of slope gradient on runoff and sediment yield was significant as more as the rainfall, rainfall intensity and rainfall energy increasing under the individual rainfall conditions, while the effect of slope length was not significant.
     (3)The runoff reduction of contour ridge cultivation was stable compared with downslope ridge cultivation which varied from 35.1% to 74.7%, while the sediment reduction was fluctuant widely which varied from 8.5% to 96.8%. The average runoff reduction benefit of forest and grass measures was 48.6% and 32.3% respectively and the average sediment reduction benefit was 54.4% and 73.8% seperately. The average runoff reduction and sediment reduction amount of terrace land was 1.94×104m3/km2 and 2151.0t/km2 respectively. The annual average silting amount of check dam was 143.7t. The runoff reduction amount was 13650m3 by water storage engineering in flood season, and the sediment reduction amount was 44.2t.
     (4)The annual average erosion modulus of fallow bare land was 753.2t/km2, of farmland growing with different crops varied from 9.2~15567.7t/km2, of different grass lands varied from 45.3~710.8t/km2, and of different forest lands varied from 3.25~620.5t/km2. The erosion modulus of different land use types were summarized in the hilly area of Sichuan Basin by considering the effect of vegetation coverage, crop condition and sediment yield characteristics. The average erosion modulus of dry land, paddy field and bare rock was 5424.8t/km2, 714.8t/km2 and 12428.0t/km2 respectively, of forest land, shrub land, open forest land and economic forest land was 240.7t/km2, 392.9t/km2, 2326.7t/km2 and 514.9t/km2, while of grass lands with high coverage, moderate coverage and low coverage was 139.3t/km2、710.8t/km2、2038.9t/km2. No matter what the land use types is, the effect of rainfall on soil erosion decreased as the coverage of vegetation increasing.
     (5)The soil loss in the section from Wusheng to Tingzikou, Hongyan, Zhaojiaci and Qing quanxiang was the most severe with annual average sediment discharge modulus of 1060.4t/(km2·a) in the middle main stream of Jialing River basin. While in the Qu River basin, the section from Luoduxi to Goudukou and Jingbian had the biggest annual average sediment transport modulus 2158.4t/(km2·a), and the section from Jiangjunshi to Ganxi is 1730.6t/(km2·a) in the Fu River basin. Among 1957 and 1987, the sediment transport modulus in the middle main stream of Jialing River basin and in the Fu River basin showed downtrend because of the decrease of rainfall and hydraulic engineering, while the sediment transport modulus in the Qu River basin showed uptrend mainly because of the increase of rainfall.
     (6)Based on the data of 1983 and 1965, the riverbed of Pingwu, Shehong and Xiao heba sections were mainly scoured except Fu Jiangqiao section in the main stream of Fu River, and the riverbed of Ganxi section was mainly silted but the riverbed of Zi Tong, Xiaoba, Guanyinchang and Liujiahe sections were mainly scoured in the tributary of Fu River. The SDR value of controlled watershed varied from 0.04 to 0.87 in the main stream and tributary of Fu River, while SDR value varied from 0.04 to 0.2 in the Zitong River, SDR value was 0.07 in the Kai River, SDR value was 0.6 in the Pingtong River, and SDR value of controlled areas varied from 0.1 to 0.87 in the main stream of Fu River. The SDR value in the controlled watersheds was consist with the souring and silting features of the corresponding sections
引文
[1]陈雷.中国的水土保持[J].中国水土保持,2002,(7): 4-6.
    [2]刘震.中国的水土保持现状及今后发展方向[J].水土保持科技情报,2004,(1): 1-4.
    [3]中国科学院成都分院土壤研究室著.中国紫色土(下篇)[M].北京:科学出版社,2003.
    [4]刁承泰.四川盆地中部丘陵的土壤侵蚀特征[J].西南师范大学学报,1989,14(3): 86-93.
    [5]李文萍,雷孝章,刘兴年,等.四川盆地紫色土丘陵区水土流失及防治对策[J].中国地质灾害与防治学报,2004,15(3): 137-139.
    [6]刘力.紫色土和黄土坡耕地土壤侵蚀过程对比研究[D].陕西杨凌:西北农林科技大学硕士论文,2006.
    [7]吕甚悟,李君莲.降雨及土壤湿度对水土流失的影响[J].土壤学报,1992,29(1): 94-103.
    [8]卢喜平,史东梅,吕刚等.紫色土坡地果草种植模式的水土流失特征研究[J].水土保持学报,2005,19(2): 21-25.
    [9]孙佳,何丙辉,吴咏,等.不同降雨条件下紫色土母质水沙输移动态研究[J].水土保持研究,2007,14(4): 457-459.
    [10]中国科学院成都分院土壤研究室著.中国紫色土(上篇)[M].北京:科学出版社,1991.
    [11]姜万勤.川中丘陵区旱坡地水土流失规律分析[J].人民长江,1996,27(6): 34-35.
    [12]林立金,朱雪梅,邵继荣,等.紫色土坡耕地横坡垄作的水土流失特征及作物产量效应[J].水土保持研究,2007,14(3): 254-258.
    [13]王玉宽,王勇强,傅斌,等.紫色土坡面降雨侵蚀试验研究[J].山地学报,2006,24(5): 597-600.
    [14]吕甚悟,陈谦,袁绍良,等.紫色土坡耕地水土流失试验分析[J].山地学报,2000,18(6): 520-525.
    [15]郑进军,张信宝,贺秀斌.川中丘陵区坡耕地侵蚀空间分布的WEPP模型和137Cs法研究[J].水土保持学报,2007,21(2): 19-23.
    [16]葛方龙,张建辉,苏正安,等.坡耕地紫色土养分空间变异对土壤侵蚀的响应[J].生态学报,2007,27(2): 459-464.
    [17]龚仲箎.四川紫色土的侵蚀及保护措施研究[J].土壤通讯,1980(1): 32-36.
    [18]朱波,高美荣,刘刚才,等.紫色页岩风化侵蚀与环境效应[J].土壤侵蚀与水土保持学报,1999,5(3): 33-37.
    [19] Zhang Yan,Liu Baoyuan,Zhang,Qingchun,et al. Effect of different vegetation types on soil erosion by water[J].Acta Botanica Sinica,2003,45(10): 1204-1209.
    [20] Gilley J E. Narrow grass hedge effects on runoff and soil loss[J].Journal of Soil and WaterConservation,2000,(2): 191-195.
    [21] Raffaelle J. B.,Mcgregor K.C.,Foster G.R.,et al. Effect of narrow grass strips on conservation reserve land convented to cropland[J].American society of agricultural engineers,1997,40(6): 1581-1587.
    [22]黄礼隆,唐光.川中丘陵区防护林体系蓄水保土效益研究[J].四川林业科技,2000,21(2): 36-40.
    [23]刘刚才,范建容,张建辉,等.四川盆地紫色丘陵区土地利用类型对土壤理化性质的影响[J].山地学报,2005,23(2): 209-212.
    [24]袁再健,蔡强国,秦杰,等.鹤鸣观小流域不同土地利用方式的产流产沙特征[J].资源科学,2006,8(1): 70-73.
    [25]王勇强,王玉宽,傅斌,等.不同耕作方式对紫色土侵蚀的影响[J].水土保持研究,2007,14(3): 333-335.
    [26]傅斌,王玉宽,王先拓,等.中耕对紫色土坡耕地产流产沙影响[J].山地学报,2006,24(B10): 77-81.
    [27]刘刚才,李兰,周忠浩,等.紫色土丘陵区坡耕地退耕对水土流失的影响及其效益评价[J].中国水土保持科学,2005,3(4): 32-36.
    [28]吕甚悟,王世平,徐多润,等.紫色土坡耕地耕作方法对土壤侵蚀影响的试验研究[J].中国水土保持,1996,(2): 38-41.
    [29]张奇,杨文元,林超文,等.川中丘陵小流域水土流失特征与调控研究[J].土壤侵蚀与水土保持学报,1997,3(3): 38-45.
    [30]姜万勤.川中丘陵区旱坡地水土流失规律及其防治[J].中国农村水利水电,1996,(5): 33-35.
    [31]朱波,陈实,游祥,等.紫色土退化旱地的肥力恢复与重建[J].土壤学报,2002,39(5): 743-749.
    [32]刘刚才,高美荣,林三益.紫色土两种耕作制的产流产沙过程与水土流失观测准确性分析[J].水土保持学报,2002,16(4): 108-113.
    [33]高美荣,刘刚才,朱波.四川紫色土丘陵区不同耕作制的产流过程初步分析[J].水土保持学报,2000,14(5): 118-121.
    [34]刘刚才,朱波,代华龙,等.四川低山丘陵区紫色土不同土地利用类型的水蚀特征[J].水土保持学报,2001,15(6): 98-103.
    [35]韩建刚,李占斌.紫色土小流域土壤流失对不同土地利用类型的响应[J].中国水土保持科学,2005,3(4): 37-41.
    [36]王先拓,王玉宽,傅斌,等.川中丘陵区紫色土坡耕地产流特征试验研究[J].水土保持学报,2006,20(5): 9-11.
    [37] Vaezi A.R.,Sadeghi S.H.R.,Bahrami H.A.,et al.Modelling the USLE K-factor for calcareous soils in northwestern Iran[J]. Geomorphology,2008,97(3-4): 414-423.
    [38] Renard K.G. RUSLE model description and database sensitivity[J].Journal of Environmental Quality,1993,22(3): 458-466.
    [39] Wischmeier W.H. A Soil Erodibility Nomograph for farmland and construction sites[J]. Journal of Soil and Water Conservation,1971,(26): 189-193.
    [40]周佩华,武春龙.黄土高原土壤抗冲性试验研究方法探讨[J].水土保持学报,1993,7(1): 29-34.
    [41]刘国彬,张光辉.原状土冲刷法雨人工模拟降雨法研究土壤抗冲性对比分析[J].水土保持通报,1996,16(2): 32-37.
    [42]骆东奇,侯春霞,魏朝富,等.紫色土团聚体抗蚀特征研究[J].水土保持学报,2003,17(2): 20-23.
    [43]李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响[J].水土保持学报,2001,15(4): 122-125.
    [44]杨玉盛.不同利用方式下紫色土可蚀性的研究[J].水土保持学报,1992,6(3): 52-58.
    [45]史晓梅,史东梅,文卓立.紫色土丘陵区不同土地利用类型土壤抗蚀性特征研究[J].水土保持学报,2007,21(4): 63-66.
    [46]陈晏,史东梅,文卓立,等.紫色土丘陵区不同土地利用类型土壤抗冲性特征研究[J].水土保持学报,2007,21(2): 24-27.
    [47]张建辉,刘刚才,倪师军,等.紫色土不同土地利用条件下的土壤抗冲性研究[J].中国科学E辑技术科学,2003,33(增刊): 61-68.
    [48] Wischmeier W.H.,Smith D.D. Predicting rainfall erosion losses: a guide to conservation planning[Z].USDA Agricultural Handbook,1978,No.537.
    [49] Renard K.G.,Foster G.R.,Weesies G.A.,et al. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation(RUSLE)[Z]. USDA Agricultural Handbook,1997,No.703.
    [50] Nearing M.A.,Foster G.R.,Lane L.J.,et al. A process-based soil erosion model for USDA—Water Erosion Prediction Project Technology[J].Transactions of the ASAE,1989,32(5): 1587-1593.
    [51]陈晓燕,何丙辉,缪驰远等.WEPP模型在紫色土坡面侵蚀预测中的应用研究[J].水土保持学报,2003,17(3): 42-46.
    [52]缪驰远,何丙辉.水蚀模型USLE与WEPP在紫色土水蚀预测中的应用对比研究[J].农业工程学报,2005,21(1): 13-15.
    [53]严冬春,文安邦,张忠启,等.坡面版WEPP模型在川中丘陵区的应用研究[J].水土保持学报,2007,21(5): 42-45.
    [54]苏锋.WEPP模型在紫色土休闲地的应用及其因子权重分析[D].重庆:西南大学硕士学位论文,2008.
    [55]代华龙,曹叔尤,刘兴年,等.基于WEPP模型的紫色土坡面水蚀预报[J].中国水土保持科学,2008,6(2): 60-65.
    [56]高扬,朱波,缪驰远,等.SCS模型在紫色土坡耕地降雨径流量估算中的运用[J].中国农学通报,2006,22(11): 396-400.
    [57]袁再健,蔡强国,吴淑安,等.四川紫色土地区典型小流域分布式产汇流模型研究[J].农业工程学报,2006,22(4): 36-41.
    [58]袁再健,蔡强国,褚英敏,等.四川紫色土地区鹤鸣观小流域分布式侵蚀产沙模型[J].地理研究,2006,25(6): 967-975.
    [59] Yuan Zaijian,Cai Qiangguo,Ying Minchun. A GIS-based distributed soil erosion model:a case study of typical watershed,Sichuan basin[J].Journal of International Sediment Research,2007,22(2): 120-130.
    [60] Zhang Xinbao,Zhang Yiyun,Wen Anbang,et al. Assessment of soil losses on cultivated land by using the 137Cs technique in the Upper Yangtze River Basin of China[J].Soil and tillage,2003,69: 99-106.
    [61] Helmut D. Application of 210Pb in soils[J]. Journal of Paleolimnology,1995,13: 157-168.
    [62] Bai Zhanguo,Wan Guojiang,Wang Changsheng,et al. 7Be: A Geochemical tracer for seasonal erosion of surface soil in watershed of Lake Hong Feng,Guizhou,China[J].Pedosphere,1996,6(1): 23-28.
    [63] Martz L.W.,Jong E.D. Using cesium-137 and landform classification to develop a net soil erosion budget for a small Canadian Prairie watershed[J].Catena,1991,18(3-4): 289-308.
    [64] Walling D.E.,Collins A.L.,Sichingabula H.M. Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment[J].Geomorphology,2003,52(3-4): 193-213.
    [65] Krmar M.,Radnovic D.,Mihailovic D.T.,et al. Temporal variations of 7Be,210Pb,137Cs in moss samples over 14month period[J].Applied Radiation and Isotopes,2009,67: 1139-1147.
    [66]文安邦,张信宝,王玉宽,等.长江上游紫色土坡耕地土壤侵蚀137Cs示踪法研究[J].山地学报,2001,19(增刊): 56-59.
    [67]李勉.小流域侵蚀速率与产沙关系的137Cs、210Pbex示踪研究[D].陕西杨凌:西北农林科技大学博士学位论文,2002.
    [68]张信宝,贺秀斌,文安邦,等.川中丘陵区小流域泥沙来源的双同位素法研究[J].科学通报,2004,49(15): 1537-1541.
    [69]郑进军.基于核素示踪技术和WEPP模型的侵蚀产沙评价研究[D].成都:中国科学院研究生院博士学位论文,2007.
    [70]许全喜,石国钰,陈泽方.长江上游近期水沙变化特点及其趋势分析[J].水科学进展,2004,15(4): 420-426.
    [71]许炯心.农村社会经济因素变化对嘉陵江产沙量的影响[J].山地学报,2006,24(4): 385-394.
    [72]丁文峰,张平仓,任洪玉.近50年来嘉陵江流域径流泥沙演变规律[J].长江科学院院报,2008,25(3): 23-27.
    [73]黄胜.嘉陵江流域北碚站年输沙量的变化规律及预测研究[J].泥沙研究,2008,(4): 28-30.
    [74]许炯心.人类活动和降水变化对嘉陵江流域侵蚀产沙的影响[J].地理科学,2006,26(4): 432-437.
    [75]许全喜,陈松生,熊明,等.嘉陵江流域水沙变化特性及原因分析[J].泥沙研究,2008,(2): 1-8.
    [76]花利忠.基于AnnAGNPS模型的流域侵蚀产沙评价—以三峡库区大宁河流域为例[D].成都:中国科学院水利部成都山地灾害与环境研究所博士论文,2007.
    [77] Vanoni V A. Sedimentation Engineering[M].New York: The Society,1975.
    [78]景可,陈永宗,李风新.黄河泥沙与环境[M].北京:科学出版社,1993.
    [79]李智广,刘秉正.我国主要江河流域土壤侵蚀量测算[J].中国水土保持科学,2006,4(2): 1-6.
    [80]水利部水土保持司.SL 190-2007土壤侵蚀分类分级标准[S].北京:中国水利水电出版社,2007.
    [81]刘毅,张平.长江上游流域地表侵蚀与河流泥沙输移[J].长江科学院院报,1995,12(1): 40-44.
    [82]吴成基,甘枝茂.陕西河流泥沙输移比问题[J].地理科学,1998,18(1): 39-44.
    [83]景可.长江上游泥沙输移比初探[J].泥沙研究,2002,(1): 53-59.
    [84]范建容,钟祥浩,刘淑珍.嘉陵江中下游典型流域土壤侵蚀与泥沙输移遥感监测[J].中国科学(E辑技术科学),2003, 33(增刊): 157-163.
    [85]孙厚才,李青云.应用分形原理建立小流域泥沙输移比模型[J].人民长江,2004,35(3): 12-13.
    [86]张信宝,文安邦,张云奇,等.川中丘陵区小流域自然侵蚀速率的初步研究[J].水土保持学报,2006,20(1): 1-5.
    [87]高旭彪,孙厚才,赵永军,等.长江上游川中紫色土丘陵区小流域泥沙输移比空间尺度效应研究[J].水土保持通报,2007,27(6): 130-133.
    [88]袁再健,褚英敏.四川紫色土地区小流域次降雨泥沙输移比初探[J].水土保持通报,2008,28(2): 36-40.
    [89]唐克丽等编著.中国水土保持[M].北京:科学出版社,2004.
    [90]刘卫东,石承苍,任国业.四川省农业功能区划研究[J].中国农业资源与区划,2008,29(3): 27-32.
    [91]孔斌.论四川丘陵地区经济可持续发展[D].成都:四川大学硕士学位论文,2007.
    [92]史德明.长江流域水土流失与洪涝灾害关系剖析[J].土壤侵蚀与水土保持学报,1999,5(1): 1-7.
    [93]何淑勤,郑子成.浅议四川盆地丘陵区的水土保持[J].水土保持研究,2005,12(2): 101-102.
    [94]何毓蓉,郭永明.四川盆地丘陵区水土流失及水土保持系统建设[J].土壤农化通报,1997,12(1): 33-36.
    [95]廖友国.四川省盆地丘陵区经济发展问题与对策分析[J].农村经济与科技,2005,(10): 24-25.
    [96] Capolongo D,Diodato N,Mannaerts C.M.,et al. Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy)[J].Journal of Hydrology,2008,356(1-2): 119-130.
    [97] Yin S,Xie Y,Nearing M.A.,et al. Estimation of rainfall erosivity using 5- to 60-minute fixed-interval rainfall data from China[J].Catena,2007,70(3): 306-312.
    [98] Sarah P. Soil aggregation response to long- and short-term differences in rainfall amount under arid and Mediterranean climate conditions[J].Geomorphology,70(1-2): 1-11.
    [99]王万忠,焦菊英著.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1996.
    [100]王万忠.黄土地区降雨特性与土壤流失关系的研究III—关于侵蚀性降雨的标准问题[J].水土保持通报,1984,4(2): 58-63.
    [101]王万忠,焦菊英.中国土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5): 1-20.
    [102]谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4): 6-11.
    [103]水利部水土保持司.SL 190-2007土壤侵蚀分类分级标准[S].北京:中国水利水电出版社,2007.
    [104]章文波,谢云,刘宝元.中国降雨侵蚀力空间变化特征[J].山地学报,2003,21(1): 33-40.
    [105] Wischmeier W H,Smith D D. Rainfall energy and its relationship to soil loss[J]. Transactions,American Geophysical Union,1958,39(2): 285-291.
    [106]伍育鹏,谢云,章文波.国内外降雨侵蚀力简易计算方法的比较[J].水土保持学报,2001,15(3): 31-34.
    [107]章文波,付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003,25(1): 35-41.
    [108]谢云,章文波,刘宝元.用日雨量和雨强计算降雨侵蚀力[J].水土保持通报,2001,21(6): 53-56.
    [109]章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002,22(6):705-711.
    [110]周武.改造坡耕地加速山区建设[A].见:水土保持科学理论与实践[C].北京:科学出版社,1992.
    [111]吴发启,赵晓光,刘秉正著.缓坡耕地侵蚀环境及动力机制分析[M].西安:陕西科学技术出版社,2001.
    [112]江忠善,刘志,贾志伟.地形因素与坡地水土流失关系的研究[J].中国科学院水利部西北水土保持研究所集刊,1990,12集: 1-8.
    [113]刘志,江忠善.降雨因素和坡度对片蚀影响的研究[J].水土保持通报,1994,14(6): 19-22.
    [114]张新华,舒仲英.川中丘陵区旱坡地水土流失规律及其防治措施[J].四川水利,1996,17(4): 16-19.
    [115]李勉,李占斌,刘普灵.川中紫色丘陵区土壤侵蚀研究进展[J].水土保持学报,2002,16(1): 72-75.
    [116]靳长兴.坡度在坡面侵蚀中的作用[J].地理研究,1996,15(3): 57-63.
    [117]吴发启,刘秉正,赵晓光.土壤侵蚀环境的人工调控—以淳化县泥河沟流域为例[J].西北林学院学报,1998,13(2): 5-9.
    [118]江忠善,贾志伟,刘志.降雨和地形因素与坡地水土流失关系的研究[A].见:黄土高原小流域综合治理与发展[C].北京:科学技术文献出版社,1992.
    [119]刘秉正,吴发启,陈继明.渭北高原水土流失降低土壤肥力与生产力的研究[A].见:黄土高原小流域综合治理与发展[C].北京:科学技术文献出版社,1992.
    [120]陈一兵.紫色丘陵区降雨侵蚀力初探[J].土壤农化通报,1995,10(1): 55-58.
    [121]景可,王万忠,郑粉莉.中国土壤侵蚀与环境[M].北京:科学出版社,2005.
    [122]辛树帜,蒋德麒主编.中国水土保持概论[M].北京:农业出版社,1982.
    [123] Smith D D,Wischmeier W H. Factor affecting sheet and rill erosion[J].Transactions,American Geophysical Union,1957,38(6): 889-896.
    [124] Morgan R.P.C. Soil erosion and conservation[M]. UK London: Longman Group UK Limited,1986.
    [125]蔡强国.坡长在坡面侵蚀产沙过程中的作用[J].泥沙研究,1989,(4): 84-91.
    [126] Zachar D. Soil erosion: development in soil science 10[M]. New York: Elsevier Scientific Publishing Company,1982.
    [127] King L Y. The uniformitarian nature of hillslopes[J].Transaction of the Edinburgh Geological Society,1957,17: 81-102.
    [128] Schumm S A,Mosley M P. Slope morphology. Pennsylvania: Hutchinson Ross Publishing Company,1973.
    [129]冷疏影,宋长青,吕克解,等.区域环境变化的重要科学问题[J].自然科学进展,2001,11(2): 222-224.
    [130]李锐,杨勤科,吴普特,等.中国水土保持科技发展战略思考[J].中国水土保持科学,2003,1(3): 5-9.
    [131]唐克丽,熊贵枢,梁季阳,等.黄河流域的侵蚀与径流泥沙变化[M].北京:中国科学技术出版社,1993.
    [132]唐克丽,张科利,刘宝元,等.黄土高原人为加速侵蚀与全球变化[J].水土保持学报,1992,6(2): 88-96.
    [133]赵其国.加速我国南方农业持续发展与生态环境建设[J].土壤,1993,12(1): 1-6.
    [134]刘刚才,高美荣,张建辉,等.川中丘陵区典型耕作制下紫色土坡耕地的土壤侵蚀特征[J].山地学报,2001,19(增刊): 65-70.
    [135]席有.水土保持原理与规划[M].呼和浩特:内蒙古大学出版社,1992.
    [136]王学勤,韦红,何丙辉,等.鹤鸣观小流域综合治理减水减沙效益研究[J].土壤学报,2002,39(2): 246-253.
    [137]焦菊英,王万忠,李靖,等.黄土高原丘陵沟壑区淤地坝的淤地拦沙效益分析[J].农业工程学报,2003,19(6): 302-306.
    [138]焦菊英,王万忠,李靖,等.黄土高原丘陵沟壑区淤地坝的减水减沙效益分析[J].干旱区资源与环境,2001,15(1): 78-83.
    [139]于兴修,杨桂山.中国土地利用/覆被变化研究[J].地理科学进展,2002,21(1): 51-57.
    [140]柳长顺,齐实,史明昌.土地利用变化与土壤侵蚀关系的研究进展[J].水土保持学报,2001,15(5): 10-17.
    [141]邹亚荣,张增祥,周全斌,等.基于GIS的土壤侵蚀与土地利用关系分析.水土保持研究,2002,9(1): 67-69.
    [142] Fu Bojie,Zhao Wenwu,Chen Liding,et al. Multiscale soil loss evaluation index. Chinese Science Bulletin,2006,51(4): 448-456.
    [143]吴秀芹,蔡运龙.土地利用/土地覆盖变化与土壤侵蚀关系研究进展[J].地理科学进展,2003,22(6): 576-584.
    [144]赵文武,傅伯杰,吕一河,等.多尺度土地利用与土壤侵蚀[J].地理科学进展,2006,25(1): 24-33.
    [145]卿太明.四川水土保持优良植物苎麻的开发利用[J].中国水土保持科学,2008,增刊,(S1): 70-72.
    [146]刘中田.苎麻在保持水土中的作用[J].中国水土保持科学,2008,增刊,(S1): 73-74.
    [147]毛红梅,裴明胜.近期人类活动对嘉陵江流域水沙量影响[J].水土保持学报,2002,16(5): 101-104.
    [148]中华人民共和国水利部编.中国河流泥沙公报2005[M].中国水利水电出版社,2006.
    [149]郭生练,徐高洪,张新田,等.长江三峡入库径流泥沙特性变化研究[J].水资源研究,2003,24(4): 519-523.
    [150]张信宝,文安邦.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报,2002,(4): 56-59.
    [151]李忠泰.西汉水流域泥沙特征[J].甘肃水利水电技术,2006,42(4): 369-371.
    [152]张明波,黄燕,郭海晋,等.嘉陵江西汉水流域水保措施减水减沙作用分析[J].泥沙研究,2003,(1): 70-74.
    [153]陈晖,张红,徐高洪,等.基于遥感、DEM技术的西汉水水土流失变化分析[J].人民长江,2006,37(12): 12-15.
    [154]黄诗峰,钟邵南,徐美.基于GIS的流域土壤侵蚀量估算指标模型方法—以嘉陵江上游西汉水流域为例[J].水土保持学报,2001,15(2): 105-106.
    [155]唐晓平.嘉陵江流域的水土流失及其防治对策[J].四川师范学院学报(自然科学版),1999,20(2): 148-155.
    [156]邓贤贵,华国春,黄川友.李子溪流域泥沙流失规律及工程效益分析[J].四川联合大学学报(工程科学版),1997,1(6): 26-35.
    [157]长江水文网.http://www.cjh.com.cn/index.asp.
    [158]邓贤贵.嘉陵江中下游典型流域泥沙流失规律及长治工程效益分析[J].水电站设计,1997,13(3): 43-49.
    [159] Xu Quan,Chen Songsheng,Xiong Ming,et al. Characterization and causation of runoff and sediment variation in the Jia Lingjiang River Basin[J].International Journal of Sediment Research,2007,22(2): 228-237.
    [160] Higgitt D.L,Lu X.X. Challenges in relating land use to sediment yield in the Upper Yangtze[J].Hydrobiologia,1999,410: 269-277.
    [161] Zhong Xianghao,Shi Guoyu,Xu Quanxi,et al. Analysis on river sediment changes of the upper reaches of Yangtze River[J].Wuhan University Journal of Natural Sciences,2005,10(4): 621-627.
    [162] Higgitt D.L , Lu X.X. Sediment delivery to the three gorges:1.Catchment controls[J]. Geomorphlogy,2001,41: 143-156.
    [163] Lei Xiaozhang,Cao Shuyou,Jiang Xiaohua. Impacts of Soil water conservation in Jia Ling River on sedimentation of the Three Gorges Reservoir[J]. Wuhan University Journal of Natural Sciences,2006,11(4): 922-928.
    [164]长江水利委员会水文局,北京国沙科技咨询中心.长江上游岷江及嘉陵江等河流的来水来沙情况和变化趋势调查报告[R].2004.
    [165]国务院三峡工程建设委员会办公室泥沙课题专家组,中国长江三峡工程开发总公司泥沙专家组.长江三峡工程泥沙问题研究(1996-2000,第四卷)—长江三峡工程上游来沙与水库泥沙问题(一)[M].北京:知识产权出版社,2000.
    [166]齐永青,张信宝,贺秀斌.川中丘陵区和三峡地区小流域侵蚀产沙的塘库沉积137Cs断代[J].地理研究,2006,25(4): 641-648.
    [167]贺秀斌,张信宝,文安邦.川中丘陵区侵蚀产沙的尺度单元及其研究方法[J].水土保持通报,2004,24(3): 18-20.
    [168]郭声波.四川历史上农业土地资源利用与水土流失[J].中国农史,2003,(3): 113-117.
    [169]余剑如,史立人,冯明汉,等.长江上游的地面侵蚀与河流泥沙[J].水土保持通报,1991,11(1): 9-17.
    [170]陈渭忠.弥江湍江榉溪——盐亭三河[J].四川水利,1997,18(5): 61-62.
    [171]陈渭忠.凯江三源[J].四川水利,1996,17(6): 57-58.
    [172]朱志芳,龚固堂,许熙辉,等.基于RS/GIS的平通河流域土地利用格局变化及其分形分析[J].四川林业科技,2009,30(1): 24-28.
    [173]焦菊英,景可,李林育,等.应用输沙量推演流域侵蚀量的方法探讨[J].泥沙研究,2008,(4): 1-7.
    [174] Walling D.E. The sediment delivery problem[J]. Journal of Hydrology,1983,65(1-3): 209-237.
    [175] Robinson A.R. Relationships between soil erosion and sediment delivery[A]. Erosion and solid matter transport in inland waters[C].International Asssociation of Hydrology Science,1977,No.122,159-167.
    [176] Maner S.B. Factors influencing sediment delivery ratios in the Blackland Prairie land resource area[M]. USDA Soil Conservation Service,Fort Worth,Tex962,10pp.
    [177] Haith D.A.,Tubbs L.J. Watershed loading functions for nonpoint sources[J]. Journal of the Environmental Engineering Division,1981,107(1): 121-137.
    [178]孙虎,唐克丽.城镇建设中人为弃土降雨侵蚀实验研究[J].土壤侵蚀与水土保持学报,1998,4(2): 29-35.
    [179]余剑如.长江上游地面侵蚀与河流泥沙问题的探讨[J].人民长江,1987,(9): 21-29.
    [180]张信宝,柴宗新.长江上游水土流失治理的思考[J].水土保持科技情报,1996,(4): 7-9.
    [181]文安邦,张信宝,王玉宽,等.云贵高原区龙川江上游泥沙输移比研究[J].水土保持学报,2003,17(4): 139-141.
    [182]张光科,刘东,方铎.山区流域坡面径流侵蚀和泥沙输移分析[J].四川联合大学学报(工程科学版),1997,1(6): 12-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700