用户名: 密码: 验证码:
高寒地区国家级牧场草地农业生态系统特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对青海省三角城种羊场草地农业生态系统中的气候、土壤、植被、植被光合效率、能流以及生态经济效益等方面进行了全面调查,结合TM影像资料,利用遥感及地理信息系统软件,对青海省三角城种羊场草地类型及其景观动态变化进行了研究,涉及遥感影像分析、地理数据库建模、草地类型波谱分析、草地资源调查等,进行了系统分析研究,取得了以下主要研究成果:
     青海省三角城种羊场草地类型主要包括高寒草原、高寒草甸、高寒荒漠、沼泽化草甸等,其中高寒草原和高寒草甸所占的面积最大,在畜牧业经济和生态保护中也最为重要。植被分布和土壤吸附水状况,代表不同草地型的优势种和亚优势种植物随着海拔高度上升,依次为海韭菜、鹅绒萎陵菜→芨芨草、羊茅→冷地早熟禾、紫花针茅→矮嵩草、小嵩草,表明该羊场草地型垂直分布特征明显;海拔越高,植物高度和地上生物量越低,说明高海拔的环境条件对草地生产能力的强硬制约性;不同海拔高度,不同土壤深度土壤吸附水达到等吸附量点的时间不同,海拔越高,达到等吸附量点的时间越早,证明同一地区的吸附水含量由于海拔差异而相差很大。
     在中度到重度退化进程中,草地植物群落随着退化程度的加重,其物种多样性呈减小的趋势,而建群种的重要值呈增大趋势。针茅型中度与重度退化样地植物群落物种多样性指数(a多样性指数,下同)分别为2.50、2.26,建群种的重要值分别为19.09、23.8。嵩草型中度与重度退化样地植物群落物种多样性指数分别为2.61、2.42,建群种的重要值分别为13.31、22.81。针茅型与嵩草型不同退化样地地上植物类群及总植物量季节动态均呈现明显的“单峰”曲线,其峰值同时出现在8月下旬,在植物生长季,主要植物类群地上植物量季节动态具有明显的差异。两草地型地上植物量季节积累动态曲线可用y=ea+bx(生长曲线)很好拟合。
     随着草地退化程度加重,针茅型样地禾草类在草群中所占比例下降(以植物干重为测度),杂草类在草群中所占的比例上升。群落干物质积累速率下降,最终导致草地净初级生产力的降低。嵩草型中度退化样地的净初级生产力高于重度退化样地,但由于在牧草返青期放牧使中度退化样地禾草类在草群中所占的比例小于重度退化样地。针茅型中度与重度退化样地地上植物量净生产量分别为104.99g/m2.a、48.38g/m2.a,下降达53.92%;嵩草型中度与重度退化样地地上净生产量分别为144.82g/m2.a、87.96g/m2.a,下降达39.26%。针茅型与嵩草型样地地下80%以上的植物量分布在0~20cm的土层中,用y=ax+b能够很好描述两草地型在生长季各土层中的平均植物量及其所占比例。在地下40cm深的土层中,针茅型中度与重度退化样地地下植物量的净生产量及周转值分别为849.6g/m2.a、32.45%、1346.05g/m2.a、51.93%;嵩草型中度与重度退化样地地下植物量的净生产量及周转值分别为787.13g/m2.a、26.08%、1190.6g/m2.a、51.33%。地下与地上植物量的比值随着草地退化程度加重而增大。针茅型中度与重度退化样地地下与地上植物量的比值分别为16.86、51.51;嵩草型中度与重度退化样地地下与地上植物量的比值分别为24.61、27.22。
     针茅型与嵩草型不同退化样地热值测定表明,群落地上部分热值大于地下部分,地上部分热值含量以牧草生长旺盛期最高,返青期最低,枯黄期次之。并且其热值含量均高于世界陆生植物的平均热值,地上、地下、全群落能量积累与植物量增长呈显著的线性正相关。草地净能空间分配率随着草地退化程度加重而减小。针茅型中度与重度退化样地分别为0.1667、0.0439;嵩草型中度与重度退化样地分别为0.2257、0.1049。随着草地退化程度的加重,植物群落地上部分对光能的转化效率减弱。两草地型对光能的转化效率:全群落,针茅型中度与重度退化样地为0.208%、0.317%,嵩草型中度与重度退化样地为0.216%、0.259%;地上部分,针茅型中度与重度退化样地分别为0.03%、0.013%;嵩草型中度与重度退化样地分别为0.04%、0.024%,地下部分,针茅型中度与重度退化样地分别为0.178%、0.303%,嵩草型中度与重度退化样地分别为0.177%、0.234%。
     在分析青海省三角城种羊场生态系统的自然、社会经济概况的基础上,运用能值理论与方法,通过对青海省三角城种羊场2002-2006年的净能值产出率(NEYR)、能值投入率(EIR)、环境负载率(ELR)和可持续发展能值指数(ESI)等指标的计算及趋势分析得出:青海省三角城种羊场生态系统投入的能值总量为5.00×1029sej,其中可更新环境资源、不可更新环境资源、不可更新工业辅助能及可更新有机能分别占系统输入能值总量的7.39%、7.68%、35.15%和49.77%。环境资源总投入占总能值投入的15.08%。在辅助能投入中,可更新的有机能占辅助能投入总量的58.61%。在环境资源总投入中,不可更新环境资源投入占其中的50.96%。青海省三角城种羊场能值投入率(EIR)值由2002年的0.0489缓慢增长至2006年的0.734,总体在0.05~0.07间浮动。青海省三角城种羊场能值产出率(EYR)由2002年的57.4上升至2005年的83.7,总体上处于波动上升态势,表明青海省三角城种羊场经济活动的能源利用效率在逐年提高,竞争力明显增强。青海省三角城种羊场能值投入率(EIR)值由2002年的0.0489缓慢增长至2006年的0.734,总体在0.05~0.07间浮动。这表明青海省三角城种羊场经济对外开放和利用外界各类“资源”程度较低。青海省三角城种羊场环境负载率(ELR)由2002年的31.3增至2006年的71.4,总体呈波动上升趋势,表明青海省三角城种羊场经济发展对其环境系统的压力逐步增加。青海省三角城种羊场能值—货币比(EDR)呈逐年上升趋势,由2002年的1.50×1014sej/$上升至2006年的7.98×1014sej/$,这主要是青海省三角城种羊场生产总值在2002—2006年间的增长缓慢,其经济系统的开发程度降低造成的。2002-2006年青海省三角城种羊场ESI值由58.46降至21.8,呈波动下降趋势,同期青海省三角城种羊场ELR由31.3增至71.4呈快速上升趋势。由ESI=NEYR/ELR等式可知,ESI的下降是由于2002-2006年青海省三角城种羊场环境负载率(ELR)的增长速率快于同期净能值产出率(NEYR)的增长速率。
     不同地被在TM影像上各波段的反射特征。通过对石山冰川、盐碱地、水库、裸地、高山草原、高寒草甸、河流、人工草地、湖泊和沼泽地10种不同地被类型及山地草原、山地草甸和高山草甸三种植被类型的波谱曲线调查研究结果发现:在TM1、TM2和TM3可见光波段,湖泊和沼泽地的反射率远远高于其它地被;而三种草地植被在可见光区的反射率差异不大,到红外光区,它们的反差才急剧加大。在TM4近红外波段,绿色植被反射率差异较大,为区分植被的理想波段。在TM5波段,高寒草甸、裸地和高寒草原的反射率远远高于其它地被。在TM6波段,各地被的反射率差异不大。
     不同土壤类型的土壤线。根据土壤在红外波段和近红外波段反射率之间的线性关系,将它们的相关性线性回归得到四种土壤类型的土壤线依次为:沼泽土:NIR=0.46R +13.91,相关性0.83;暗栗钙土:NIR = 0.44 R+22.66,相关性0.78;高山草原土:NIR = 0.52R +12.62,相关性0.80;高山草甸土:NIR =0.57 R + 6.91,相关性0.90。土壤线的斜率大小排列顺序为:高山草甸土>高山草原土>沼泽土>暗栗钙土,而截距为高山草甸土<高山草原土<沼泽土<暗栗钙土。
     对ETM遥感影像各个波段分析结果表明1、2、3波段间彼此高度相关, 4、5、7波段间有一定相关性;在波段7、5、4、3处,草地类型波谱曲线变化幅度大,宜用作草地分类;利用数字高程模型,辅助草地生态序列分布规律,结合遥感光谱特征进行了草地类型,对解决草地类型间因光谱重叠而难以区分的难题找到了可行方法。依据RVI和NDVI两个植被指数对植被生长状况与草地产草量有不同的敏感度,采用微积分方法,化整为零,按盖度区间,计算植被指数同产草量的线性方程,使遥感预测产量与草地实际产量的相关性更好。
     对青海省三角城种羊场景观生态系统的系统耦合结果发现,系统耦合可根据干扰性质分为自然耦合和人为耦合。自然耦合是人为耦合的基础,系统生态生产力的提高取决于人为耦合的优化过程。
The grassland types and their landscape dynamic of pastoral-agriculture ecological system in Sanjiaochen Sheep Breeding Farm Qinghai Province were studied through the thorough investigation. The data about climate, soil, vegetation, conversion efficiency of solar radiation, energy storage as well as the ecological benefit were collected. The technologies applied in this research were TM image, remote sensing and geographic information system(GIS). The images taken by the remote sensor were analyzed, the modeling of the geographic database was built, the characters of the spectrum of the grasslands were analyzed and the investigations of the grassland resources were conducted. The data systematic analysis presented the results as following:
     Grassland types in Sanjiaocheng Sheep Breeding Farm mainly are Alpine steppe、Alpine meadow、desert steppe etc. Among them Alpine steppe and Alpine meadow not only occupy the largest area compare to other types but also play an important role in livestock production as well as ecological protection. In terms of vegetation distribution characteristics and soil hygroscopic water conditions, dominant species and sub-dominant species that represent different grassland types in different altitudes ( from 3100m to 3700m ) are in order as follows:Triglochin maritimum , Potentilla anserine→Achnatherum splendens,Festuca ovina→Poa crvmophila,Stipa purpurea→Kobresia humilis,Kobresia humilis. Vertical distribution zonation of grassland type was clearly showed here; higher the elevation is, lower plant height and aboveground biomass are, it is certified that fierce environment condition in high altitude puts special stress on grassland productivity. The equilibrium of hygroscopic water in different soil level is not reached simultaneously at different altitude. Higher the elevation is,earlier this equilibrium is reached. It is proved that there are remarkable differences in hygroscopic water content within a small area due to elevation events.
     The species diversity(a diversity index)of plant community decreased and important value increased with the aggravation of degraded degree. The diversity indexes of Stipa purpurea community with moderate and heavy degradation were 2.50、2.26 respectively,the important value of dominant species were 19.09、23.8 respectively. The diversity indexes of Kobresia capillifolia community with moderate and heavy degradation were 2.6069,2.4167 respectively,the important value of dominant species were 13.31、22.81 respectively. Season dynamic of abovegroung population phytomass of Stipa purpurea and Kobresia capillifolia grassland types take on single apex curve,the value of apex appeared in the last ten day of August,the phytomass of aboveground population of two grassland types have clear difference. The equation y=ea+bx simulate season dynamic curve of aboveground phytomass of Stipa purpurea and Kobresia capillifolia grassland type well.
     The dry weight ratio of the grasses of Stipa purpurea type to community decreased but that of forbs increased with the aggravation of degradation. The rate of dry matter accumulation decreased,which finally lead to decreasing net primary production. The net production of above-ground phytomass of moderate-degraded plot of Kobresia capillifolia type was more than heavy-degraded plot,because of grazing in germination,the grasses percentage of moderate degraded plot of Kobresia capillifolia type was less than heavy-degraed plot. The net production of above-ground phytomass of Stipa purpurea community with moderate and heavy degradation were 104.99g/m2.a、48.38 g/m2.a respectively. The net producion of above-ground phytomass of Kobresia capillifolia community with moderate and heavy degradation were 144.82g/m2.a、87.96g/m2.a respectively. The more than 80% belowground phytomass distributed at 0~20cm soil layer,the equation y=ax+b simulate mean phytomass and its percentage of individually soil layer at growing period. Under the 40 centimeter deep soil layer,the net production and turnover value of belowground-ground phytomass of Stipa purpurea community with moderate and heavy degeneration were 849.6g/m2.a、32.45%、1346.05g/m2.a、51.93% respectively. Those of below-ground phytomass of Kobresia capillifolia with moderate and heavy degradation were 787.13 g/m2.a、26.08%、1190.6g/m2.a、51.33% respectively.The ratio of below-ground phytomass to above-ground phytomass increased with the aggravation of degradation. The ratios of below-ground phytomass to above-ground phytomass of Stipa purpurea community with moderate and heavy degradation were 16.86、51.51 respectively. The ratios of below-ground phytomass to above-ground phytomass of Kobresia capillifolia community with moderate and heavy degradation were 24.61、27.22 respectively.
     The measures of caloric value of every plot showed that:The caloric value of above-ground more than that of below-ground,the caloric value of above-ground was the highest on the forage flourishing stage,the lowest on green up period,on the withering stage in the second level. the caloric value of above-ground more than that of the terraneous. The energy storage of above-ground,under-ground and total community were linear positive significance to the biomass. The net production of spatial distribution decreased with the aggravation of degraded degree. The net production of spatial distribution of Stipa purpurea community with moderate and heavy degradation were 0.1667、0.0439 respectively,that of Kobresia capillifolia community with moderate and heavy degradation were 0.2257、0.1049 respectively.The conversion efficiency of solar radiation of above-ground decreased with the aggravation of degradation.The conversion efficiency of solar radiation of above-ground of Stipa purpurea community with moderate and heavy degradation were 0.03%、0.013% respectively , that of below-ground were 0.178%、0.303% respectively,that of total community were 0.208%、0.317% respectively. The conversion efficiency of solar radiation of above-ground of Kobresia setchwaneusis community with moderate and heavy degeneration were 0.04%、0.024%,that of below-ground were 0.177%、0.234% respectively,that of total community were 0.216%、0.259%.
     Based on the analysis of nature and social economy status of SanJiaocheng sheep breeding farm eco-system in Qinghai Province,the emergy theory and method were applied to calculate and analyze the NEYR,RIR,ELR and ESI of the SanJiaocheng sheep breeding farm during the year 2002-2006: The total emergy quantity input on the San Jiaocheng sheep breeding farm was 5.00×1029sej, including renewable environment resources、non-renewable environment resources、non-renewable industry attached energy and renewable organic energy which occupied the total input emergy of 7.39%、7.68%、35.15% and 49.77% respectively. The input environment resources occupied 15.08% of the total emergy. In the input attached energy,the renewable organic energy occupied 58.61% of the total input attached energy. In the input environment resources,the non-renewable environment resources occupied 50.96% of the total input environment resources. The EIR of San Jiaocheng sheep breeding farm in Qinghai Province increased from 0.0489 in 2002 to 0.734 in 2006 gradually,and the overall EIR fluctuates between 0.05 and 0.07. The EYR of SanJiaocheng sheep breeding farm in Qinghai Province increased from 57.4 in 2002 to 83.7 in 2005,and the overall tendency of EYR was on the rise,which indicated that the energy efficiency of economic activity on Sanjiaocheng sheep breeding farm in Qinghai Province increased year by year,and the competitive ability obviously enhanced. The EIR of SanJiaocheng sheep breeding farm in Qinghai Province increased from 0.0489 in 2002 to 0.734 in 2006 gradually,and the overall EIR fluctuates between 0.05 and 0.07,which indicated that the degree of economy opening to the outside world and the utilization of various outside“resources”was low in that area. The ELR of SanJiaocheng sheep breeding farm in Qinghai Province increased from 31.3 in 2002 to 71.4 in 2006, and the general tendency was on the rise,which indicated that the pressure of economic development on the environmental system increased gradually in that area. The EDR of SanJiaocheng sheep breeding farm in Qinghai Province showed a tendency of rising year by year,it increased from 1.50×1014sej/$ in 2002 to 7.98×1014sej/$ in 2006,this mainly because that the gross agricultural production of that area increased slowly during the year 2002-2006 and the decreased exploiting degree of economic system. During the year 2002-2006 the ESI of SanJiaocheng sheep breeding farm in Qinghai Province decreased from 58.46 to 21.8,the general tendency was on the decrease,and the ELR increased from 31.3 to 71.4 at the same period,which showed a rapid rising tendency. From the equation ESI=NEYR/ELR thus it can be seen that the decrease of ESI during the year 2002-2006 was due to the growth rate of ELR was higher than that of NEYR at the same period on the SanJiaocheng sheep breeding farm in Qinghai Province. Reflection characteristics of TM image bands for different objects. Ten objects were chosen for their band comparison,including rocky mountain glacier,saline and alkaline area,reservoir,bare land, alpine steppe,alpine,meadow,river,artificial grassland,lake and swamp. Three vegetation types were also selected for plant band comparison,such as alpine steppe,alpine meadow and mountain meadow. The results showed: among TM1,TM2,and TM3 bands,spectral reflectance of bog and lake is much higher than that of other objects. There is no significant difference among these three types of vegetation. While within band 4,spectral reflectance of green plants is different from each other,therefore,band 4 is good at distinguishing different vegetation. As for band 5,spectral reflectance of alpine meadow,bare land and alpine grassland is much higher than other objects. As for band 6,there is no distinctive variation for all objects.
     Soil lines of different soil types. According to linear relationship between spectral reflectance of infrared band and near-infrared band,their correlative relationships were linear regressed to get soil lines of 4 soil types: Swamp: NIR=0.46R +13.91,relevance 0.83; Dark chestnut soil: NIR = 0.44 R+22.66, relevance 0.78; Mountain steppe soil: NIR = 0.52R +12.62, relevance 0.80; Mountain meadow soil: NIR =0.57R + 6.91,relevance 0.90. As we can see from the comparison of different soil lines,slope: alpine meadow soil>alpine steppe soil>swamp soil>dark chestnut soil; intercept: alpine meadow soil     An analysis on each band of the ETM image was made,result showed that band 1,2 and 3 were related to each other greatly,band 4,5 and 7 were only related in some extent. The spectral curves of different grasslands changed greatly near band 7,5,4 and 3,which could be infered that these bands could be used in the classification of the grasslands. The type of grassland changed with the changing of the topographic factor in a regular order,based on the theory,this experiment used the DEM assistanted with the distribution of the ecological sequence of the grassland,combined with the characters of the spectrum of the RS to plot out the grasslands,which provided a possible way to solve the problem that it was difficult to plot out different grasslands because of the overlapping of the spectrum.With the changing of the coverage of the vegetation,the sensitivity of RVI and NDVI to the productivity of the grassland and the growing status of the vegetation was different. The calculous mathematics was adopted to break up the whole into parts to compute the linear equation between the vegetation index and the productivity according to different ranges of coverage,results showed that the relativity between the mathematical model and the real productivity of the grassland had become better than anyother methods ever used.
     A study on the coupling action was made about the landscape ecology of the San Jiaocheng sheep breeding farm,the result showed that the coupling action between the alp meadow and the mountains meadow was direct,it was same to the mountains meadow and the mountains campo,while it was indirect between the alp meadow and the mountains campo and the coupling action of them needed the medium of the roads or water system,or the indirect action of the herding behavior of the livestocks. The number of the grassland types in the mountains campo was more than that in any others’,and it was same to the naked spot. The coverage and the productivity of the grassland were lower,which means that the grassland in the mountains campo was in the stage of degeneration. The coupling of the system could be divied into natural coupling and artificial coupling,at the same time,the natural coupling was the base of the artificial coupling,and the improvement of the ecological productivity of the system depended on the optimized process of the aritificial coupling.
引文
1. Becker,J. 1996. Hungry ghosts: China's secret famine. London: John Murray.CCICED[C]. (China Council for International Cooperation on Environment and Development,1996): Proceedings: the fourth meeting(1995). Beijing: CCICED.
    2. Bedidi A,Cervelle B,Madeira J,et al. Moisture Effects on Visible Spectral Characteristics of Lateritic Soils[J]. Soil Sci,1992(153): 129-141.
    3. CSCPRC(Committee on Scholarly Communication with the People's Republic of China[C].).1992. Grasslands and grassland sciences in northern China. Washington,DC: National Academy Press.
    4. Cincotta,R. P.,Zhang Y. and X. Xingmin. 1992. Transhumant alpine pastoralism in northeastern Qinghai Province: an evaluation of livestock population response during China's agrarian economic reform [J]. Nomadic Peoples,30: 3-25.
    5. Clarke, G. E. 1987. China's reforms of Tibet, and their effects on pastoralism[J]. University of Sussex, Brighton, United Kingdom, Institute of Development Studies, Discussion Paper, 237: 63-131.
    6. Costanza R, Arge, D.The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387:253-260.
    7. Coupland R T.Grassland ecosystems of the world:analysis of grasslands and their uses (part2:natral temperature grasslands)[M]. Cambridge University Press, Cambridge: 1979.
    8. Daily G. Societal dependence on natural ecosystems [M]. Washington D C, USA: Island Press, 1997.
    9. Davidson A., Csillag F. The Influence of Vegetation Index and Spatial Resolution on a Two-Date Remote Sensing-Derived Relation to C4 Species Coverage [J]. Remote Sensing of Environment, 2001, 75(1):138-151.
    10. Davidson A, Csillag F. A comparison of three approaches for predicting C4 species cover of northern mixed grass prairie[J]. Remote Sensing of Environment. 2003, 86(1):70-82.
    11. De Ridder K. Remote sensing of parameters that regulate energy and water transfer at the land-atmosphere interface[J]. Physics and Chemistry of the Earth.2000, 25(2):159-165.
    12. Doherty J, Brown MT, Odum HT, et al. Emergy synthesis perspectives, sustainable development, and public policy options for Papua New Guinea[C]. In: A Research Report to the Cousteau Society. Gainesville, FL: Center for wetlands, University of Florida, 1992.
    13. Drandui, L. 1996. A comparative study on the animal husbandry of Qinghai and Tibet[J]. China Tibetology, 4: 31-42 (in Chinese). Ekvall, R. B. 1968. Fields on the hoof: nexus of Tibetan nomadic pastoralism[C]. New York: Holt Rinehart and Winston.
    14. Egbert, S.L., Park, S., Price, K.P., Lee R.Y., Wu, J., and Nellis, M.D. Using conservation reserve program maps derived from satellite imagery to characterize landscape structure[J]. Computers and Electronics in Agriculture.2002, 37(1-3):141-156.
    15. Goldstein, M. C. and C. M. Beall. 1990. Nomads of western Tibet: the survival of a way of life [M]. Berkeley: University of California Press.
    16. Hecht, S. and A. Cockburn. 1990. The fate of the forest: developers, destroyers and defenders of the Amazon[M]. London: Penguin Books.
    17. Higuchi, A., A. Kondoh and S. Koshi. Relationship among the surface albedo, spectral reflectance of canopy, and evaporative fraction at grassland and paddy field[J].2000, 26(7):1043-1046.
    18. Ho, P. 1998. Ownership and control in Chinese rangeland management since Mao: a case study of the free-rider problem in pastoral areas in Ningxia[C]. In: E. B. Vermeer, F. N. Pieke and W. L. Chong Eds., Cooperative and collective in China's rural development: between state and private interests. New York: M. E. Sharpe. 196-235.
    19. Hoffmann, R. S. 1991. The Tibetan Plateau fauna: a high altitude desert associated with the Sahara-Gobi [M]. In: J. A. McNeely and V. M. Neronov Eds., Mammals of the Palaearctic desert: status and trends in the Sahara-Gobian region. Moscow: Russian Academy of Sciences. 285-297.
    20. Hu, S. T., D. B. Hannaway and H. W. Youngberg [C]. 1992. Forage resources of China. Pudoc, Wageningen.
    21. Hudak AT. Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in South African Savanna[J]. Remote Sensing of Environment.December 1998, 66(3):317-330.
    22. Irish, Richard. 1998, Landsat 7 science data users’handbook [C]: Greenbelt, Maryland, Goddard Space Flight Center, electronic version.
    23. Kokaly, R. F., D. G. Despain, R. N. Clark, and K. E. Livo. Clarka and K. Eric Livoa. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data[J]. Remote Sensing of Environment. 2003,84(3):437-456.
    24. Koslov, P. 1889. Report. In: Proceedings of the Imperial Russian Geographic Society expedition to central Asia [C]. 1893-1895, led by V. I. Roborovskiy. St. Petersburg: Imperial Russian Geographic Society. 143.
    25. Lang B., Huang J. and Wang H. 1997. Report on the pasture and livestock survey in Hainan IFAD project area [C]. IFAD project report. Lattimore, O. 1940. Inner Asian frontiers of China [M]. Boston: Beacon Press.
    26. Li D. 1989. Annals of Qinghai's economic wildlife. Northwest Plateau Institute of Biology [C]. Chinese Academy of Science, Qinghai People's Publishing House, Xining. (in Chinese)
    27. Li O., Ma R. and J. R. Simpson. 1993. Changes in the nomadic pattern and its impact on the Inner Mongolian steppe grasslands ecosystem [J]. Nomadic Peoples, 33: 63-72.
    28. Long R. and Y. Ma. 1997. Qinghai's yak production system. In: D. J. Miller, S. R. Craig and G. M. Rana Eds., Conservation and management of yak genetic diversity [C]. Kathmandu: ICIMOD. 105-114.
    29. Ma Y. 1995. Outline of Qinghai Province's agricultural economy [M]. Xining: Qinghai People's Publishing House. (in Chinese)
    30. MacKinnon, J., M. Sha, C. Cheung, G. Cary, Z. Xiang and David Melville. 1996. A biodiveristy review of China [C]. Hong Kong: World Wide Fund for Nature (WWF).
    31. Mearns, R. 1996. Community, collective action and common grazing: the case ofpost-socialist Mongolia [J]. The Journal for Development Studies, 32: 283-325.
    32. Miller, D. 1995. Herds on the move: winds of change among pastoralists in the Himalayas and on the Tibetan Plateau [C]. Kathmandu: ICIMOD.
    33. Miller, D. J. And S. R. Craig (eds.). 1996. Rangelands and pastoral development in the Hindu Kush-Himalayas [C]. Kathmandu: ICIMOD.
    34. Muller E, Decamps H. Modeling Soil Moisture Reflectance[J]. Remote Sens. Envir., 2000, (76):173-180.
    35. Nouvellon, Y., Seen, D. L., Rambal, S., Begue, A., Moran, M. S., Kerr, Y., & Qi, J. G. Time Course of Radiation Use Efficiency in a Shortgrass Ecosystem[J]. Remote Sensing of Environment.2000, 71(1):43-55.
    36. Nouvellon, Y., Moran, M.S, Lo Seen, D., Bryant, R., Rambal, S., Ni, W., Begue, A., Chehbouni, A.,Emmerich, WE., Heilman, P, and J. Qi. Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets[J]. Remote Sensing of Environment. 2001, 78(1-2):131-149.
    37. Odum H T. SYSTEMS ECOLOGY: An int roduction[M] . New York : John wiley &sons ,1983.
    38. Odum H T. Self-organization , t ransformity and information[J ] . Science ,1988 ,242 :1132-1139.
    39. Odum H T. EMERGY: A Basis for public policy[M] . New York : Draft copy ,prepared for john wiley &sons ,1994.
    40. Odum H T. ENVIRONMENTAL ACCOUNTING: Emergy and decision making[M] . New York : John wiley &sons ,1996.
    41. Ren JZ,Hu ZZ et al. Zonation of grassland industry for sustainable ecological and economic development in China. Prospects of grassland science and industry for the 21st century[M].China grassland society,2001.1-10.
    42. Prezewalski, N. M. 1883. From Zaisan Lake through the Kham region of Tibet and the head of the Yellow River. Moscow.
    43. Rahman AF, Gamon JA, Sims DA, Schmidts M. Optimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grassland[J]. Remote Sensing of Environment.2003,84(2):192-207.
    44. Rango, A., M. Chopping, J. Ritchie, K. Havstad, W. Kustas, and T. Schmugge. Morphological Characteristics of Shrub Coppice Dunes in Desert Grasslands of Southern New Mexico derived from Scanning LIDAR[J]. Remote Sensing of Environment.2000, 74(1):26-44.
    45. Schaller, G. 1998. Wildlife of the Tibetan steppe [M]. Chicago: Univeristy of Chicago Press.
    46. Schmidtlein S, Sassin J. Mapping of continuous floristic gradients in grasslands using hyperspectral imagery[J]. Remote Sensing of Environment.2004, 92(1):126-138.
    47. Schram, L. M. 1954. The Monguors of the Kansu-Tibetan frontier: their origin, history, and social organization [J]. Transactions of the American Philogophical Society, New Series, 44: 1-136.
    48. Smith, A. T., N. A. Formozov, R. S. Hoffmann, C, Zheng and M. A. Erbajeva. 1996. Thepikas [M]. In: J. A. Chapman and J. E. C. Flux Eds., Rabbits, hares and pikas: status survey and conservation action plan. IUCN, Gland, Switzerland. 14-57.
    49. Steen E. Root and rhizome dynamics in a perennial grass crop during an animal growth cycle[J]. Journal of Agricultural Research, 1985, 15:25~30.
    50. Waring RH, Running SW. Forest ecosystem analysis at multiple scales [M]. New York:Academic Pres, 1998, 32, 240-242.
    51. Wei Z. 1986. Intensifying desertification of the northern part of Qinghai Province [J]. Environment of Qinghai, 1: 13-15.
    52. Wu N. 1997. Indigenous knowledge and sustainable approaches for the maintenance of biodiverity in nomadic society: experiences from the eastern Tibetan Plateau [J]. Die Erde, 128: 67-80.
    53. Xie L. 1997. Qinghai girding up against disasters. China Daily, 25 September 1997. Zhao S. 1994. The Qinghai-Xizang Plateau: its physical environment and economic development [J]. Chinese Journal of Arid Land Research, 5: 203-222.
    54. Yang, L., B.K. Wylie, L.L. Tieszen, B.C. Reed, An Analysis of Relationships among Climate Forcing and Time-Integrated NDVI of Grasslands over the U.S. Northern and Central Great Plains[J]. Remote Sensing of Environment.1998,65(1):25-37.
    55. Zhu Y. 1989. Qinghai Province's population distribution and natural conditions. In: Population, economy and ecological environment of east China, middle China and west China [M]. Shanghai: East China Normal University Press.
    56. Zoi K. Decomposition and nutrient release from C3 and C4 plant litters in a natural grassland [J]. Acta Oceologica, 1998, 19(2):115-123.
    57. H T Odum, Ecology and economy: Emergy analysis and public policy in Texas. In: PolicyResearch Project Report. L B. Johnson School of Public Affairs, The University of Texas at Austin, 1987, l: 78.
    58.鲍士旦,土壤农化分析(第三版)[M].,北京:中国农业出版社,2000.
    59.包文忠等.我国北方草地资源面临的生态危机及对策[J].中国草地,1998, (2): 68~71.
    60.陈洪滨、吕达仁,关于卫星遥感半干旱草原路面过程的方法和应用研究[J].气候与环境研究,1997,2(3),316~319.
    61.陈晋,陈云浩,何春阳,等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-422.
    62.陈全功,梁天刚,徐宗保.基于3S的甘肃省定西试验区生态环境本底调查及退耕还林还草监测[J].草业学报,2001,10(专辑):91-98.
    63.陈全功,卫亚星等.青海省达日县退化草地研究——退化草地遥感调查[J].草业学报,1998a,7(2):58-63.
    64.陈全功,卫亚星.青海省达日县退化草地研究[J].草业学报,1998b,7(2):58-63.
    65.程积民,黄土高原草地资源与建设[M].西安:陕西人民出版社,1993.
    66.董孝斌,高旺盛,严茂超.黄土高原典型流域农业生态系统生产力的能值分析—以安塞县纸坊沟流域为例[J].地理学报, 2004,9(2):223-229.
    67.甘淑,党承林,欧晓昆.云南山区NPP遥感监测研究中遥感图像预处理[J].2002, 24(3):229-233.
    68.宫鹏,史培军.对地观测技术与地球系统科学[M].北京:科学出版社,1996.
    69.郭庆华等.北方森林草原过渡带的遥感研究[J].北京大学学报(自然科学版),1999,35(4):550-557.
    70.何昌茂.面向新世纪,牧区畜牧业要大发展——关于加快发展我国草原畜牧业几个问题的探讨[J].四川草地,2000,(2):1~6.
    71.胡新博.草地光谱与牧草产量的相关分析[J].草食家畜,1996a,(4):43-47.
    72.胡新博,王承军等.新疆荒漠、半荒漠草地的遥感应用研究[J].草食家畜,1996b,(3):33-37.
    73.胡新博,王承军等.新疆荒漠、半荒漠草地的遥感应用研究[J].草食家畜(季刊),1996c,(3):33-37.
    74.胡自治,孙吉雄,李洋等.甘肃天祝主要高山草地的生物量及光能转化率[J].植物生态学报,1994,18(2):121-131.
    75.黄方,刘湘南等.基于遥感和GIS的松嫩沙地土地利用/覆被时空格局研究[J].中国沙漠,2003,23(2):136-141.
    76.黄敬峰,王秀珍等.利用NOAA/ AVHRR资料监测北疆天然草地生产力[J].草业科学,1999,16(7):62-72.
    77.黄敬峰,王秀珍等.利用气象卫星AVHRR资料监测新疆北部天然草地牧草产量[J].农业工程学报,2000a,16(2):123-127.
    78.黄敬峰,王秀珍.天然草地牧草产量与气象卫星植被指数的相关分析[J].农业现代化研究,2000b,21(1):33-36.
    79.黄德华等.内蒙古锡林河流域不同植物群落类型地下部分生物量及其分布的比较研究[J].四川草原.,1986,(1): 56-59.
    80.贾幼陵.关于草畜平衡的几个理论和实践问题[J].草地学报, 2005,13(4): 265~268.
    81.江振蓝,沙晋明.福州市植被生态的遥感分析[J].福建地理,2003a,18(3):3-6.
    82.江振蓝,沙晋明.利用多时相TM影像分析福州市地表植被的变化[J].水土保持研究,2003b,10(4):69-71.
    83.巨天珍,索安宁.西部生态敏感地带分析与可持续发展探讨[J].甘肃环境研究与监测,2002,15(1):35-46.
    84.李建龙.遥感环境综合技术系统在草地资源动态监测与管理中的应用研究[J].八一农学院学报,1995,18(3):59-64.
    85.李建龙,蒋平等.RS,GPS和GIS集成系统在新疆北部天然草地估产技术中的应用进展[J].生态学报,1998,18(5):504-510.
    86.李建龙,蒋平.利用3S技术动态监测天山草地农业产量及其成因分析[J].安全与环境学报,2003a,3(2):9-12.
    87.李建龙,蒋平等. 3S技术在草地产量生态成因分析与农业资源估测中的应用研究[J].中国草地,2003b,25(3): 15-23.
    88.李文龙等.西部高寒湿地系统的草地资源保护与优化利用模式研究[J].西北植物学报, 2004,24(9): 1640-1645.
    89.李晓秀.北京山区生态系统稳定性评价模型初步研究[J].农村生态环境,2000,16(1):21-25.
    90.李镇清,任继周.草原生物适宜度模型及其应用[J].生态学杂志,1997,16 (3): 71-75.
    91.李自珍.应用生态学研究[M].兰州:甘肃科学技术出版社,1991.234-317.
    92.李自珍,杜国祯,惠苍.甘南高寒草地牧场管理的最优控制模型及可持续利用对策研究[J].兰州大学学报(自然科学版),2002,38(4):85~89.
    93.林慧龙,侯扶江.草地农业生态系统中的系统耦合与系统相悖研究动态[J].生态学报, 2004,24(6):1252-1258.
    94.林慧龙,任继周,傅华.草地农业生态系统中的能值分析方法评介[J].草业学报,2005, 14(4):1-7.
    95.刘志林.浅谈三角城种羊场草地生产及草地建设[J].青海草业,2000,9(3):30-33.
    96.刘学录,任继周.河西走廊山地绿洲荒漠复合系统耦合的景观生态学机制[J].应用生态学报,2002,12(8):979-984.
    97.龙瑞军,董世魁,胡自治.西部草地退化的原因分析与生态恢复措施探讨[J].草原与草坪,2005,113(6): 3-7.
    98.卢剑波.农业生态系统的持续性及其评价指标[J].生态学杂志,2000,19(2): 56-58.
    99.罗格平,周成虎等.干旱区绿洲土地利用与覆被变化过程[J].地理学报,2003,58(1):64-72.
    100.吕一河,傅伯杰.生态学中的尺度及尺度转换方法[J].生态学报,2001,21(12):2096-2105.
    101.马克平,周瑞昌,郭亚胜.小叶章草甸地下生物量形成规律的研究[J].草业科学,1992,9(2):24-28.
    102.马克平,生物群落多样性的测度方法,生物多样性研究的原理与方法[M].(中国科学院生命多样性委员会编),北京:中国科学技术出版社,1994,141-165.
    103.宇万太,于永强.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927~932
    104.牟新待,何业政,李希来,葛亚平.草原系统工程[M].北京:中国农业出版社,1995. 167-232.
    105.明温章,于丹,郭继勋.凋落物层对东北羊草草原微环境的影响[J].武汉植物学研究,2003,21(5):395-400.
    106.内蒙古农牧学院.草原管理学[M].北京:中国农业出版社,1999.
    107.年波,杨士剑,王金亮.植被遥感信息提取的最佳波段选择——以云岭中部山区为例[J].云南地理环境研究,2004,16(2): 18-21.
    108.彭敏,陈桂琛.青海湖地区植被演变趋势的研究[J].植物生态学与地植物学学报,1993,17(1):71-81.
    109.彭少麟,郭志华等. RS和GIS在植被生态学中的应用及其前景[J].生态学杂志,1999,18(5):52-64.
    110.裴浩,敖艳青.极轨气象卫星监测土壤干旱方法的研究.中国草地,1996,18(5):40-45.
    111.裴浩等.新的植被指数的探讨[J].内蒙古气象,1993(5):25-28.
    112.裴浩,范一大等.利用气象卫星监测草地雪情方法的研究[J].中国草地,1997,(4):22-25.
    113.裴浩,敖艳红.利用极轨气象卫星遥感监测草地生产力的研究—以内蒙古乌拉盖地区为例[J].干旱区资源与环境,1999,13(4):56-64.
    114.裴浩,李云鹏等.应用卫星遥感技术监测生态建设工程[J].遥感技术与应用,2003,18(4):221-225.
    115.青海省农业资源区划办公室编著.青海土壤[M]..中国农业出版社,1997.
    116.青海省草原总站.青海省草地资源统计册[M].西宁:青海科技出版社,1986.
    117.任海,彭少麟,刘鸿先等.鼎湖山植物群落及其主要植物的热值研究[J].植物生态学报,1999,23(2):148-154.
    118.任继周.草原调查与规划[M].北京:农业出版社,1989.28-31.
    119.任继周,万长贵.系统耦合与荒漠——绿洲草地农业系统[J].草业学报,1994,3(3):1-8
    120.任继周,胡自治,牟新待,姜润萧,葛文华.草地农业生态学[M].北京:中国农业出版社,1995.
    121.任继周、贺达汉等,荒漠—绿洲草地农业系统的耦合与模型[J].草业学报,1995,4(2):11-19.
    122.任继周,朱兴运.中国河西走廊草地农业的基本格局和它的系统相悖.草业学报, 1995, 4(1): 69-80.
    123.任继周主编.草业科学研究方法[M].北京:中国农业出版社,1996.
    124.任继周,南志标,郝敦元.草业系统中的界面论[J].草业学报, 2000,9 (1): 1-8.
    125.任继周,李向林等.草地农业生态学研究进展与趋势[J].应用生态学报,2002,13(8):1017-1021.
    126.尚占环,龙瑞军,马玉寿.青藏高原江河源区生态环境安全问题分析与探讨[J].草业科学,2007,24(3):1-7.
    127.史培军,李博等.大面积草地遥感估产技术研究[J].草地学报,1994,2(1):9-13.
    128.苏金明,傅荣华,周建斌等,统计软件SPSS系列使用实战篇[M].北京:电子工业出版社,2002.
    129.隋春花,蓝盛芳.广州城市生态系统能值分析研究[J].重庆环境科学, 2001,23(5):4-6.
    130.唐启义,冯明光,实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    131.涂军,喻歌农等.巴颜喀拉山高寒草地及其退化的遥感研究[J].资源开发与市场,1998,14(3):126-129.
    132.王国宏,任继周,张自和.河西山地绿洲荒漠植物群落多样性研究[J].草业学报,2002,11(1):1-3.
    133.王生耀,王堃.青海草地农业生态系统内系统耦合性分析[J].草业与畜牧,2006,128(7):5-6.
    134.王艳荣,雍伟义.戈壁针茅(Stipa gobica)荒漠草原近地面反射光谱特征与产草量的相关分析[J].内蒙古大学学报(自然科学版),1996,27(5):664-669.
    135.魏克家,施玉辉.青海省草地生态平衡问题的探讨[J].四川草地,2000,(3): 9-12.
    136.吴精华.中国草原退化的分析及其防治对策[J].生态经济,1995,(5): 1-6.
    137.武高林,杜国祯.青藏高原退化高寒草地生态系统恢复和可持续发展探讨[J].自然杂志, 2007,29(3):159-164.
    138.徐建华,段舜山.农业生态经济系统分析[M].兰州:兰州大学出版社,1991.165-203.
    139.许殿元,丁树柏等.遥感图象信息处理[M].北京:宇航出版社,1990.
    140.严茂超.生态经济学新论[ M].北京:中国致公出版社,2001: 258-266.
    141.颜长珍,王一谋,冯毓荪等.宁夏沙地遥感宏观动态研究[J].中国沙漠,2003,23(2):132-135.
    142.杨文义,王英舜等.利用遥感信息建立草原冷季载畜量计算模型的研究[J].中国农业气象,2001,22(1):39-42.
    143.张娜,梁一民.黄土丘陵区天然草地底下/地上生物量的研究[J].草业学报,2002,11(2): 72-78.
    144.张洪亮,张洪玉等. GIS支持下青海湖地区草地蝗虫发生的气候因子[J].地理学与国土研究,2002,18(1):64-66.
    145.张学勇.应用NOAA/AVHRR遥感资料对阿拉善草地进行动态监测的研究[J].甘肃农业大学学报,1997,32(3):252-256.
    146.赵士洞,罗天祥.区域尺度陆地生态系统生物生产力研究方法[J].资源科学,1998,20(1):23-34.
    147.钟诚,何晓蓉等.遥感技术在西藏那曲地区草地退化评价中的应用[J].遥感技术与应用,2003,18(2):99-102.
    148.中国科学院内蒙古草原生态系统定位站.草原生态系统研究-Ⅰ[C].北京:科学出版社,1985.
    149.中国科学院水土保持研究所.黄土高原杏子河流域自然资源与水土保持[M].西安:陕西科学技术出版社,1986.
    150.中国植被编辑委员会,吴征镒,中国植被[M].北京:科学出版社,1980.
    151.邹亚荣,张增祥等.GIS支持下内蒙古草场动态变化及其环境背景分析[J].遥感技术及应用,2002,17(10):250-254.
    152.朱瑜馨,赵军,曹静.祁连山山地生态系统稳定性评估模型[J].干旱区研究, 2002,19(4):33-37.
    153.青海省地方志编纂委员会,青海省志(畜牧志)[M].黄山书社,1998,12
    154.青海省农业厅,农牧区经营管理工作实用手册[M].2000,12
    155.青海省农业资源区划办公室,中国科学院西北高原生物研究所,青海植物名录[M].青海人民出版社,1998,6
    156.青海省草原总站,青海省草地资源统计册[M].1988
    157.青海省草原总站,全国重点牧区青海省环湖片草地资源资料统计[M].1985,12
    158.赖瑞华,农牧渔良种场经营管理[M].农业出版社,1989,6
    159.青海省刚察县人民政府,青海省海北州农牧业区划大队,刚察县农牧业区划[M].1984,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700