用户名: 密码: 验证码:
绵竹市绵远河地区地震地质灾害发育规律及成因机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震崩塌、滑坡是常见的地震次生灾害,以其巨大的致灾力引起人们的广泛关注。在山岳地区,强烈地震诱发的滑坡、崩塌等灾害具有量大、面广的特点,造成的损失往往超过地震本身。
     研究区属于西部山区地形,地形地貌复杂,相对高差大,地形陡峻。区内岩性复杂,断裂构造发育,受龙门山中央断裂和山前断裂影响,研究区物理地质现象相当发育。
     本论文应用系统工程地质学的研究方法,在详尽了解区域地质构造环境及研究区的地质构造、环境的基础上,对研究区地质灾害进行详细调查,通过野外大量的调查对各种类型地质灾害分布规律进行分析,分析发现灾害点多是中小型规模,集中在800~1200m之间且密集分布于中央断裂和山前断裂附近,距离断层越远,灾害密度越不发育。然后对典型地质灾害点形成机制进行研究。经过研究发现地形地貌、地层岩性、地质构造以及地震力的影响对地震引起的崩塌滑坡等地质灾害有很大影响。地震动峰值加速度大的地方,地震滑坡密度、灾害点数量超过地震加速度小的地方,因此地震是导致大量地质灾害发生的最直接和最关键的因素,是导致地质灾害的外因,地形地貌、地层岩性、地质构造是内因。
     在地质灾害分布规律和形成机制和主控因素研究分析的基础上,本文研究了在地震作用下,不同坡体形态、不同斜坡类型、不同坡向、不同坡高条件下斜坡土体的地震动响应。在高烈度地震作用下(Ⅷ以上),在凹型坡的变坡点稍上位置会出现较大的变形,在坡面的拐点出现剪应变最大值;同向倾斜边坡比反向倾斜边坡稳定性差;在地震力作用下,坡面倾向与地震波传播方向相同时,灾害加重;坡高小于100m,动峰值加速度一般在1.1g左右,地形放大效应不明显,100~200m处,动峰值加速度一般在1.5~1.7g左右,地形放大效应明显。在地震作用下,不同岩体结构类型、不同地形地貌、不同坡向、不同地震波入射角、不同岩性和斜坡类型对斜坡岩体的地震动响应以及不同坡度和不同坡高下对斜坡孤石的地震动响应。岩体结构中,碎裂结构、层状结构和散体结构受地震作用影响最大,最容易发生崩塌和滑坡;坡面倾向与地震波传播方向相同时,震害加重;地震波入射角小于临界入射角时,结构面上某点将先发生剪切破坏,随着裂纹的延伸,边坡将沿着结构面失稳破坏;坡高不同,其地形放大效应也显著不同,坡高低于100m,其地形放大效应不明显,100~200m,地形放大效应明显,动峰值加速度集中在1.3~1.5g之间,高于200m,动峰值加速度一般在1.6g以上;当岩性软硬相间,容易形成软弱面或滑动面,如果斜坡是顺倾坡,在地震作用下则更容易发生滑坡。
     然后运用层次分析法结合地质灾害现状评估及其预测分析对研究区进行了地质灾害危险性综合评估,划分为5个区域,并提出了防治措施,对研究区内工程建设具有借鉴意义。
Landslides and collapse induced by earthquake are common forms of secondary disasters which has caused widely concerned with its enormous power hazards. In mountain areas, landslides, collapse and other disasters induced by earthquake with large quantities and wide range often caused more damage than the earthquake itself.
     The study area locating in the western part of China has the following characteristics: mountainous terrain, complex landforms, relative uneven altitude difference, and steep terrain. There are complex lithological characters in the region.The geological phenomena are considerable development, which are influenced by faults of central Longmen Mountain and piedmont.
     In this thesis, using research methods of systems engineering geology, based on detailed understanding of geological and structural environment of the study area and the region, investigation of geological disasters, and analysis of the distribution laws of different types of geological disasters shows that disasters are main small and medium-scale, which concentrate on from 800m to 1200m and distributed in the neighborhood of the faults of central and piedmont, and the further away from the faults, the less density development of disaster. Then the formation mechanism of typical geological disaster is studied. The research indicates that topography, stratum lithology, geological structure and seismic force have a significant impact on landslides and other geological disasters induced by earthquake. The place where the acceleration value of seismic peak is larger has denser landslide and more number of disasters. Thus the earthquake is the most direct and critical factor leading to a large number of geological disasters and is also the exterior factor, while the inner factors are topography, stratum lithology, and geological structure.
     Based on formation mechanism of distribution laws and the analysis of controlling factors in geological disasters, this paper has studied on the ground motion response of slope soil under the conditions of the different slope morphology, different types of slope, different direction of slope, different highness of slope impacting on earthquake. Under high-intensity earthquake (Ⅷabove), above the Change Point location of concave slope will appear larger deformation, and the inflexion of the slope occurs the maximum shear strain; contrasting reverse tilt with the tilt slope, the former has poor stability; in the seismic force, in the same direction of the slope inclination and seismic wave propagation, the density of geological disasters are becoming more; slope height is less than 100m, the acceleration of moving peak value is about 1.1g peak, topographic amplification effect is not obvious, while in 100 ~ 200m height, the peak value is about from1.5g to 1.7g, topographic amplification effect is obvious. In the earthquake, the different types of rock structure, different topography, different direction of slope, different incident angle of seismic wave, different types of lithology and slope have different seismic response to rock slopes and different grade and slope height have different ground motion response to boulders. Rock structure, cataclastic texture, layered structure and the granular structure are mostly affected by the earthquake, and most easily caused to collapse and landslide; at the same direction of slope orientation and seismic wave propagation, the damage caused by earthquake aggravates; when the incident angle of seismic wave is less than the critical incident angle, a certain point of structural surface occurs with shear failure first, with the crack extension along the structural surface, slope will become instability and be finally failure; Slope height is different, while the terrain amplification was also significantly different. When the slope height is less than 100m, the terrain is not obvious amplification, and 100 ~ 200m height, the terrain amplification is obvious and the acceleration of moving the peak value clearly focused on range from 1.3g to 1.5g. When the height is more than 200m, the acceleration of moving the peak value is above 1.6g; when hard rock alternate with soft one, it is easy to form a soft surface or sliding surface, and if the slope is weak interface slope, it becomes much more easily causing landslide under the condition of earthquake.
     Then combining AHP with assessment and prediction analysis of geological disasters in the study area, the synthetical evaluation of geological disaster hazard has been studied and has divided into 5 regions, at last preventive measures have been proposed, which have significant using for reference to the construction of the study area.
引文
[1]张永双,雷伟志,石菊松.四川5.12地震次生地质灾害的基本特征初析[J].地质力学学报.2008,6(2):109-116.
    [2]宋战平.“5·12”汶川地震四川绵竹震害调查及相关问题的讨论和思考[J].西安建筑科技大学学报,2008,10:625-630
    [3]倪红升.四川绵竹市地质灾害灾情分析[J].地质学刊,2008,32(4),27l一274.
    [4]祁生文.边坡动力响应分析及应用研究[博士学位论文][D].北京:中国科学院地质与地球物理研究所,2002
    [5]徐桂弘.地震诱发滑坡的危险性分析与预测[J].内陆地震,2008.6,2:188-192.
    [6]陈晓兰,卢国胜.地震诱发滑坡的机理研究[J].安徽农业科学,2009.37(18):8612–8613.
    [7] JIBSON RW.HARP EL.MICHAEL JA. A method for producing digital probabilistic seismic landslide hazard maps [J]. Engineering Geology,Special Issue.2000.58(3/4):271 - 289.
    [8] KEEFER DV. Landslides caused by earthquakes[J]. Geological Society of America Bulletin,1984.95(4):406 - 421.
    [9] KEEFER DV.WILSON RC. Predicting earthquake - induced landslides, with emphasis on arid semiarid environments[C]//SADLER P.M, Landslides in a semi2arid environment with emphasis on the inland Valleys of Southern California. California: Publications of the Inland Geo logical Society,1989.
    [10] NEWMARKNM.Effects of earthquakes on Dam sand Embankments[J].Geo Technique,1965,15(2):139 - 160.
    [11] PAPADOPOULOS G. A, PLESSA A. Magnitude distance relations for earthquake-induced landslide in Greece [J]. Engineering Geology, Special Issue,2000,58(3/4):387-397.
    [12] PrestininziA.,and Romeo R. Earthquake induced ground failures in Italy[J].Engineering Geology,Special Issue,2000,58(3-4).
    [13] Miles SB, Ho CL. Rigorous landslide hazard zon ation using Newmark’s method and stochastic ground motion simulation[J].Soil Dynamics and Earthquake Engineering,1999,18:305-323.
    [14]李忠生.国内外地震滑坡灾害研究综述[J].灾害学.2003,4:65-71.
    [15]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报.1997,2:26-30.
    [16]周本刚,王裕明.中国西南地区地震滑坡的基本特征[J].西北地震学报,1994,16(1).
    [17]陈晓利等.1976年龙陵地震诱发滑坡的影响因子敏感性分析[J].北京大学学报(自然科学版).2009,45(1):104-110.
    [18]唐川,朱静,张翔瑞.GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究,2001,24(1):73-81.
    [19]胡广韬.滑坡动力学[M].北京:地质出版社.1984.
    [20]辛鸿博,王余庆,1999,岩土边坡地震崩滑及其初判准则[J].岩土工程学报,21(5),591~594.
    [21]毛彦龙,胡广韬,赵法锁,等.地震动触发滑坡体滑动的机理[J].西安工程学院学报,1998,20(4):47-50,54.
    [22]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433-443.
    [23]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报.2008,(12).
    [24]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社.1994.
    [25]王运生等.汶川大地震山地灾害发育的控制因素分析[J].工程地质学报.2008,16(6):761-763.
    [26]林成功.台湾921集大地震滑坡动力分析研究[D].重庆大学博士论文,2003.
    [27]唐军平.云南新平咪合代滑坡工程地质特征及成因机理研究[D].西南交通大学硕士研究生学位论文.2008.
    [28]中华人民共和国区域地质调查报告(比例尺:1:20万)德阳幅.四川省地质局第二区域测量队.1975.
    [29]祁生文等.地震边坡稳定性的工程地质分析[J].岩石力学与工程报.2004,23(16):2792-2797.
    [30]许强,黄润秋.5.12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报.2008,(6):721-729.
    [31]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报.2008,(12)
    [32]韩金良,吴树仁等.5.12汶川8级地震次生地质灾害的基本特征及其形成机制浅析[J].地学前缘.2009,5(3):306-326.
    [33]潘桂棠.汶川八级地震的区域地质构造背景[J].决策咨询通讯,2008,(3):1-8.
    [34]李树德,任秀生等.地震滑坡研究[J].水土保持研究.2001,6(2):24-25.
    [35]鲍叶静,高孟潭等.地震诱发崩塌滑坡危险区初步预测[J].中国地震.2004,3(1):89-94.
    [36]丁彦慧,王余庆,孙金忠等.2000,地震崩滑预测方法及其工程应用研究[J].工程地质学报,8(4),475~480.
    [37]胡广韬,戴鸿麟.滑坡动力学[M].北京:地质出版社,1995.
    [38]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报,1997,6(1):27-32.
    [39]杨涛.四川地区地震崩塌滑坡的基本特征及危险性分析[J].山地学报,2002,20(2):406-421.
    [40]徐桂弘.地震诱发滑坡的危险性分析与预测[J].内陆地震,2008,6:188-192.
    [41]尹紫红.地震作用下的滑坡稳定性分析[J].铁路建筑,2008,9:65-67.
    [42]张永双,雷志伟等.四川5.12地震次生地质灾害的基本特征初析[J].地质力学学报,2008,6:109—116.
    [43]乔建平,赵宇.滑坡危险度区划述评[J].山地学报,2001,19(2):157-160.
    [44]四川省地质工程集团公司.绵竹市地质灾害调查与区划报告[R].2006.
    [45]唐军平.云南新平咪合代滑坡工程地质特征及成因机理研究[D].西南交通大学硕士研究生学位论文.2008
    [46]张鹏等.近断层地震动与汶川地震灾区滑坡破坏特征分析[J].南京工业大学学报(自然科学版).2009,31(1):55-59.
    [47]徐开礼,朱志澄.构造地质学[M].地质出版社,1989.
    [48]黄润秋,张倬元,王士天著.高边坡稳定性的系统工程地质研究[M].成都科技大学出版,1991.
    [49]汪华斌.蒙特卡罗模拟在区域地震滑坡灾害评价中应用[J].岩土力学,2007,28(12):2564-2569.
    [50]王赞军,江志萍,张家庆,等.滑坡危险性分析中地震动的概率性估算及地震滑坡的危险性评判[J].高原地震,1998,10(1):40-46.
    [51]丁彦慧,王余庆.地震崩塌滑坡预测防腐及其工程应用研究[J].工程地质学报,2000,8(4):475-480.
    [52]谢毓寿,蔡美彪主编.中国地震历史资料汇编(第1、2、3、4卷).北京:科学出版社,1985
    [53]国家地震局,兰州地震研究所,宁夏自治区地震队.1920年海源大地震[M].北京:地震出版社,1980.
    [54]胡聿贤.地震工程学[M].北京:地震出版社,2005,109~114.
    [55]黄润秋,裴向军,李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报,2008,16(6):730~741.
    [56]钱培风.竖向地震力[J].地震工程与工程振动,1983,3(2):44~54.
    [57]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社.2001.
    [58]中华人民共和国国土资源部,滑坡防治工程设计与施工技术规范DZ/T0219-2006[S].
    [59]傅少君,陈乾锐.边坡滚石运动影响因素浅析自然灾害学报[J].武汉大学学报,2009,12(6):795~798.
    [60]祁生文,伍法权.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792~2797.
    [61]万洪,胡春林.地震荷载作用下岩质边坡稳定性分析[J].建材世界,2009,30(3):106~109.
    [62]秋仁东,石玉成.高边坡在水平动荷载作用下的动力响应规律研究[J],世界地震工程,2007,23(2):131~138.
    [63]孙进忠,陈祥.岩土边坡地震崩滑的三级评判预测[J].地震研究,2004,27(3):256~264.
    [64]杜晓丽,戴俊.岩质边坡稳定性分析中地震波理论的应用研究[J].三峡大学学报,2009,31(2):55~58.
    [65]李金湘,陈岐范.复杂条件下的岩土体边坡稳定性分析[J],矿山压力与顶板管理,2005,5:103~105.
    [66]任自铭,姚令侃.坡面形态对地震作用下土质边坡稳定性影响[J].路基工程,2008,5:5~7.
    [67]杨金灿.土质边坡变形及稳定性的影响因素分析[J].海峡科学,2009,9:44~46.
    [68]张伟锋.危岩体危险性评价及防治对策研究—以雅砻江锦屏一级水电站为例[M].成都理工大学硕士研究生论文,2007.
    [69]王存玉.地震条件下二滩水库岸坡稳定性研究[A].见:岩体工程地质力学问题(七)[C].北京:科学出版社,1987.
    [70]郭素芳.危岩体的分类及其风险性评价—以大渡河黄金坪水电站地下厂房后山高边坡为例[M].成都理工大学硕士研究生论文,2008.
    [71]杨志法,赵汝斌.安县西部地震次生地质灾害及工程地质力学问题思考[J].岩石力学与工程学报,2008,27(9):1807-1813.
    [72]郝海,踪家峰.系统分析与评价方法[M].北京:经济科学出版社,2007.
    [73]王莲芬,许树柏著.层次分析法引论[M].北京:中国人民大学出版社,1990.6 .
    [74] (美)萨迪(Saaty,Thomas L.)著,张录译.领导者:面临挑战与选择—层次分析法在决策中的应用[M].北京:中国经济出版社,1993.5.
    [75]赵焕臣,许树柏等.层次分析法――一种简易的新决策方法[M].北京:科学出版社,1986.9:28-43.
    [76]赵纪生,魏景芝等.汶川8级地震滑坡崩塌机制[J],震灾防御技术,2008,3(4):379-383.
    [77]徐光兴,姚令侃等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624-632.
    [78]黄润秋,邓荣贵等.高边坡物质运动全过程模拟[M].成都:成都科技大学出版社1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700