用户名: 密码: 验证码:
湘黔地区早寒武世黑色岩系沉积学及地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国南方古生代广泛分布富有机质的黑色页岩,分布层位较多(如下寒武统牛蹄塘组底部的黑色页岩、奥陶系五峰组页岩、志留系龙马溪组黑色页岩、泥盆系深水台间盆地的黑色碳质、硅质页岩,以及二叠系的黑色页岩、硅质岩等),并伴有Mo、Ni、PGE、V、Au、Ag等贵重金属元素富集层,尤其是湘黔地区下寒武统牛蹄塘组底部的黑色页岩,作为瞬时灾变沉积物,可与全球大洋缺氧事件对比。贵州省遵义地区黄家湾和湖南张家界地区柑子坪剖面为该地区较典型的剖面,前人已进行了大量的岩石地层、生物地层、元素地球化学研究工作,但沉积学方面尚缺乏系统性与较深入研究,特别是关于以黄家湾剖面为代表的浅水沉积体系与柑子坪剖面为代表的深水相黑色页岩沉积体系之间的时空关系缺乏统一的认识,且有机地球化学研究涉及甚少。因此,本文从沉积学和地球化学两方面,特别是有机地球化学方面,探讨了湘黔地区下寒武统底部牛蹄塘组黑色岩系的成因以及相应的灾变事件—大洋缺氧事件,取得如下认识:
     (1)本文对研究区下寒武统地层进行了较全面的清理,重新厘定了研究区下寒武统地层系统。下寒武统自下而上划分为牛蹄塘组、明心寺组、金顶山组和清虚洞组,其时代经历了梅树村阶、筇竹寺阶、沧浪铺阶和龙王庙阶,与西伯利亚地区同期沉积相比,分别对应晚Tommotian、Atdabanian、Botonian和Toyonian期。
     (2)确定了研究区下寒武统岩石类型有碳酸盐岩、泥质岩和碎屑岩三大类。下寒武统下、中部泥质岩、粉砂岩及砂岩发育,且以泥质岩为主,少有碳酸盐岩发育,而上部清虚洞组灰岩(白云岩)发育。下寒武统牛蹄塘组黑色岩系主要由黑色页岩、石煤、硅质页岩、硅岩、粉砂岩、磷块岩、重晶石岩等组成,主要矿物组合为石英、伊利石和黄铁矿以及少量重晶石、磷灰石和方解石。从生物地层、岩石地层、年代地层来看,牛蹄塘组底部黑色页岩与南亚、西亚、欧洲、北美等地Tommotian期广泛分布的黑色页岩有很好的可对比性。
     (3)基于对地层清理、古生物以及岩石学特征的详细研究,研究区下寒武统可划分为碎屑岩海相和碳酸盐岩海相两个沉积体系组。碎屑岩海相又分为滨岸、内陆棚、外陆棚、斜坡亚相;碳酸盐岩海相主要为开阔台地亚相。从时空上看,地层由老到新,粒度逐渐变粗,水体逐渐变浅,从外陆棚-斜坡、内陆棚到滨海,最后为开阔台地相:从西向东,由浅水相区的滨岸到内陆棚,最后到深水相区的外陆棚到斜坡。
     (4)晚震旦世灯影组灰白色粉晶白云岩样品的SiO_2含量比较低,MgO、CaO、CO_2含量较高。牛蹄塘组黑色碳质泥岩、碳质页岩以SiO_2含量为主,其次为Al_2O_3和Fe_2O_3。微量元素含量具有如下特征:地层由老到新,从灯影组白云岩→牛蹄塘组磷块岩/硅质岩→多金属富集层,呈现出增加趋势,此后至黑色页岩又有回落。特征微量元素(如Mo、Ni、V、U等)及其比值(如V/(V+Ni)、V/Cr、Ni/Co、U/Th、δU等)显示这套富含有机质黑色页岩为热水沉积,其沉积环境为含氧量逐渐减少的贫氧-缺氧的还原环境。
     (5)稀土元素总量(∑REE)从6.67ppm变化到481ppm,平均含量为123ppm,轻稀土相对比较富集。经PAAS标准化的稀土配分模式曲线具有近于水平或略显右倾特征。灯影组Ce异常值均小于-0.10,代表当时海水处于氧化阶段。而牛蹄塘组底部和上部Ce异常值大于-0.10,接近0,代表弱的缺氧沉积环境。对于牛蹄塘组中部,其值小于-0.10,说明缺氧环境持续了一段时间后,海洋出现了一个短暂的充氧期。根据Ce异常和参考海平面,研究区晚震旦世-早寒武世可识别出3个主要海平面升降旋回。而Eu异常为0.002-1.16,大多数样品
The Paleozoic is marked by the occurrence of anomalously organic-carbon-rich laminated shales in large parts of South China and in the world as well. These sediments, enriched in the precious metal elements such as Mo, Ni, PGE, V, Au, Ag and so on, are distributed in widespread strata including the Niutitang Formation of the Lower Cambrian, Wufeng Formation of the Ordovician, Longmaxi Formation of the Silurian, Devonian and Permian. Especially, the black shales of the lower part of Niutitang Formation from the Hunan-Guizhou area were regarded as instantaneous and catastrophic deposition, coincident with the global Oceanic Anoxic Event (OAE). Therefore, this study on the black rock series possesses important theoretic significance and potential economic implication. Two typical sections of Huangjiawan (Guizhou Province) and Ganziping (Hunan Province) have been previously studied on litho- and biostratigraphy, elemental geochemistry, but the temporal and spatial relationships between the Huangjiawan shallow sedimentary systems tract and the Ganziping deep black shales sedimentary systems tract have not been reached unified views. Particularly, the records in organic geochemistry of the Early Cambrian (Tommotian) black shales in South China have received less attention. Based on above-mentioned circumstance, this paper chooses the Early Cambrian black shales in the Hunan-Guizhou area as studying object. Focusing on the sedimentology and geochemistry, especially the organic geochemistry, the present study discusses the genesis of Niutitang Formation black shales and Tommotian oceanic anoxic event, and draws the following conclusions.
    (1) On the basis of field works in the Hunan-Guizhou area, combining previous achievements, the Early Cambrian stratigraphical systems are built from lower to upper as follows: the Niutitang Formation, Mingxinsi Formation, Jindingshan Formation and Qingxudong Formation with mass occurrences of arthropods, sponges, trilobitas, bacterial colonies, etc. corresponding to Meishuchunian, Qiongzusian, Langcangpuian and Longwangmian, respectively. Compared with the contemporaneous deposits occurred in Siberian, the Early Cambrian in this area corresponds to Tommotian, Atdabanian, Botonian and Toyonian, respectively.
    (2) Rock types of the Early Cambrian strata consist of carbonates, argillaceous rocks and clastic rocks. The argillaceous rocks, siltstones and sandstones were devoloped in the lower-middle Lower Cambrian with a few intercalated limestones horizons, while the limestones and/or dolomites in the Qingxudong Formation of the upper Lower Cambrian. The Niutitang Formation important black rock series of the Lower Cambrian, are composed of black shales, stone coal, siliceous shales, silicalites, siltstones, phosphorites, baritic rock. Their mineral compositions are mainly quartz, illite and pyrite with subordinate barite, apatite and calcite. According to the bio-, litho- and chronostratigraphy, the synchronous black shale facies also occurred in South and West Asian, European, North Amercian and so on.
    (3)The Lower Cambrian sedimentary facies in the study area were characterized by clastic
引文
Aharon, P., Lieu, T. C., 1992. An assesment of the Precambrian-Cambrian transition event on the basis of carbon isotope records. In: Schidlowski, M., et al. (Eds. ), Early Organic Evolution-Implications for Mineral and Energy Resources, Springer, Berlin, 212-224.
    Anderson, R. F., Fleisher, M. Q., LeHuray, A. P., 1989. Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochim. Cosmochim. Acta, 53:2215-2224.
    Aquino Neto, F. R., Trendel, J. M., Restle, A., Connan, J., Ourisson, G., 1983. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. In: Advances in Organic Geochemistry 1981 (Eds. Bjorφy, M., et al. ), John Wiley & Sons, New York, 659-676.
    Arthur, M. A., Dean, W. E., Stow, D. A. V., 1984. Models for the deposition of Mesozoic-Cenozoic fine-grained organic-carbon-rich sediment in the deep sea. In D. A. V. Stow and D. J. W. Piper, Fine grained sediments: deep-water processes and facies, Geological Society (London) Special Publication 14. Oxford: Black-well Scientific, 527-560.
    Arthur, M. A., Sageman, B. B., 1994. Marine black shales: depositional mechanism and environments of ancient deposits. Annual Review of Earth and Planetary Science, 22:499-551.
    Arthur, M. A., Schlanger, S. O., Jenkyns, H. C., 1987. The Cenomanian - Turonian Oceanic Anoxic Event, palaeoleanographic carbon organic matter production and preservation, Brooks, J. & Fleet, A. J. (Eds), Marine Petroleum Source Rocks, 26:401-420.
    Banerjee, D. M., Schidlowski, M., Siebert, F., Brasier, M. D., 1997. Geochemical changes across the Proterzoie-Carnbrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:183-194.
    Barfod, G. H., Albarede, F., Knoll, A. H., et al., 2002. New Lu-Hfand Pb-Pb age constraints on the earliest animal fossils. Earth and Planertary Science Letters, 201:203-212.
    Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res., 79: 37-55.
    Bau, M., Koschinsky, A., Dulski, P., Hein, J. R., 1996. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim. Cosmochim. Acta, 60:1709-1725.
    Berner, R. A., Raiswell, R., 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 12:365-368.
    Berry, W. B. N., Wilde, P., 1978. Progressive ventilation of the oceans-An explanation for the distribution of the Lower Paleozoic black shales. Amer. Jour. Sci., 278: 257-275.
    Bischoff, J. L., Rosenbauer, J. R., 1976. Recent metalliferous sediments in the North Pacific Manganese Nodule Area. Earth Planet. Sci. Lett., 33: 379-388.
    Blanc, P. H., Connan, J., 1992. Origin and Occurrence of 25-norhopane: a statistical study. Org. Geochem., 18(6): 813-812.
    Bonatti, E., Kraemer, T., Rydell, H., 1972. Classification and genesis of submarine iron-mangnese deposits. In: Horn, D. R. (Eds. ), Ferromanganese Deposits of the Ocean Floor, Harriman, Aren House, 473-489.
    Bostrom, K., I983. Genesis of Ferromanganese deposits-diagnostic criteria for recent and old deposits. Rona, P. A., Bostrom, K., Laubier, L., Jr, Smith, K. L., Hydrothermal Processes at Seafloor Spreading Centers. New York: Plenum Press, 473-489.
    Bostrom, K., Kramenmer, T., Gantner, S., 1973. Provenance and accumulation rates of opaline silica, Al, Fe, Ti, Mn, Ni and Co in Pacific pelagic sediment. Chem. Geol., 11(1/2): 123-148.
    Bralower, T.J., Thierstein, H.R., 1987. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology, 12: 614-618.
    Brasier, M.D., Shields, G, Kuleshov, V.N., Zhegallo, E.A., 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: neoproterozoic-early Cambrian of southwest Mongolia. Geol. Mag., 133: 445-485.
    Brasier, M.D., Sukhov, S.S., 1998. The falling amplitituede of carbon isotope oscillations through the Lower to Middle Cambrian: Northern Siberia data. Canadian Journal of Earth Sciences, 35: 353-373.
    Brassell, S.C., Eglinton, G, Maxwell, J.R., et al., 1978. Natural background of alkanes in the aquatic environment. Hutzinger, O., et al., Aquatic Pollutanta: Transformation and Biological Effects. Oxford: Pergamon Press, 69-86.
    Bratton, J.F., Berry, W.B.N., Morrow, J.R., 1999. Anoxia predates Frasnian - Famennian boundary mass extinction horizon in the Great Basin, USA. Palaeogeogr. Palaeoclimatol Palaeoecol., 154: 275-292.
    Brewer, P.G, Spencer, D.W., 1974. Distribution of some trace metals in the Black Sea and their fluxes between dissolved and particulate source. In the Black Sea-Geology, Chemistry, and
    
    Biology (Eds. Degens, E.T., Ross, D.A.); American Association of Petroleum Geologists, Memoir, 20: 137-143.
    Brogger, W.C., 1886. On the age of Olenellus Zone in north America. Geologiska Foreningens Forhandlingar, 101(3): 182-213.
    Brookins, D.G, 1989. Aqueous geochemistry of rare earth elements. In: Lipin, B.R., McKay, GA. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Min. Soc. Am., Rev. Mineral. 21, 221-225.
    Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implication for the geological record. Chemical Geology, 113: 67-88.
    Cao Changqun, Wang Wei, Jin Yu, 2002. Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China. Chinese Science Bulletin, 47(13): 1125-1129.
    
    Chappe, B., Michael, W, Albrecht, B., 1979. Molecular fossiles of archaebnacteria as selective degration products of kerogen. Org. Geochem., 265-274.
    Chen Lan, Yi Haisheng, Hu Ruizhong, et al., 2005. Organic Geochemistry of the Early Jurassic Oil Shale from the Shuanghu Area in Northern Tibet and the Early Toarcian Oceanic Anoxic Event. Acta Geologica Sinica (English edition), 79(3): 392-397.
    Chen Yongquan, Jiang Shaoyong, Ling Hongfei, et al., 2003. Pb-Pb isotope dating of black shales from the Lower Cambrian Niutitang Formation, Guizhou Province, South China. Progress in Natural Science, 13(10): 771-776.
    Chicarelli, M., Aquino Neto, F.R., Albrecht, P., 1988. Occurrence of four stereoisomeric tricyclic terpane series in immature Brazilian shales. Geochim. Cosmochim. Acta, 52(8): 1955-1959.
    Choi, J.H., Hariya, Y, 1992. Geochemistry and depositinal environment of Mn oxide deposits in the Tokoro Belt, Northeastern Hokkaido, Japan. Economic Geology, 87: 1265-1274.
    
    Clark, R.C., Blumer, M., 1967. Distribution of n-paraffins in marine organisms and sediment. Liminology and Oceanography, 12(12): 79-87.
    Clarke, J.M., 1904. Naples fauna in western New York, pt.2.-Albaby. New York State Mus. Men. 6: 454.
    Clauer, N., 1981. Rb-Sr and K-Ar dating of Precambrian clays and glauconites. Precambrian Research, 15:331.
    Cooper, J.R., et al., 1974. Isotope and elemental geochemistry of Black Sea sediments. In: The Black Sea. American Association of Petroleum Geologists, Memoir, 20: 554.
    Coveney, Jr.R.M., Mourowchick, J.B., Grauch, R.I., et al., 1992. Gold and platinum in shales with evidence againist extraterrestrial sources of metals. Chemical Geology, 99: 102-114.
    Coveney, Jr.R.M., Nansheng, C, 1991. Ni-Mo-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States. Mineralium Deposita, 26(2): 83-88.
    Cowie, J.W., 1986. Guidelines for boundary stratotypes. Episodes, 9: 78-82.
    Creaney, S., Passey, Q.R., 1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framwork. AAPG Bulletin, 77: 386-401.
    Cronan, D.S., 1980. Underwater Minerals. Academic press, London, 362.
    Dean, W.E., Arthur, M.A., Stow, D.A.V., et al., 1984. Diagenetic patterns in Atlantic Cretaceous black shales and multicoloured claystones, with emphasis on DSDP Site 530, southern Angola Basin. In W.W.Hay, J.C.Sibuet et al. (Eds.), Initial Reporta DSDP 75, 819-844.
    DeBaar, H.J.M., 1991. On cerium anomalies in the Sargasso Sea. Geochim. Cosmochim. Acta, 55: 2981-2983.
    DeBaar, H.J.M., Bacon, M.P., Brewer, P.G., Bruland, K.W., 1985. Rare earth elements in the Pacific and Atlantic Oceans. Geochim. Cosmochim. Acta, 49: 1943-1959.
    Derenne.S., Largeau, C, Casadeall, E., Berkaloff, C, Rousseau, B., 1991. Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: origin of ultralaminae. Geochimica et Cosmochimica Acta, 55: 1041-1050.
    Dymond, J., Corliss, J.B., Stillinger, R., 1976. Chemical composition and metal accumulation rates of metalliferous sediments from site 319, 320, 321. Init. Rep. D.S.D.P., X X XIV: 575-588.
    Dymond, J., Suess, E., Lyle, M., 1992. Barium in deep sea sediments: a geochemical proxy for paleoproductivity. Paleoceanography, 7: 163-181.
    Elderfield, H., Greaves, M.J., 1982. The rare earth elements distribution in seawater. Nature, 296: 214-219.
    Fan Delian, 1983. Polyelements in the Lower Cambrian black shale series in southern China. In: Greecs, S.A. eds. The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies. Athens: Theophrastus Publications, 447-474.
    Fan Delian, Yang Ruiying, Huang Zhongxiang, 1984. The Lower Cambrian black shale series and iridium anomaly in south China. In: Developments in Geosciences, Contribution to 27 International Geological Congress, Moscow, 215-224.
    Farrimond, P., Eglinton, G, Brassell, S. C, et al., 1990. The Cenomanian -Turonian anoxic event in Europe: an organic geothemical study. Mar Petrol Geol., 7: 75-89.
    Force, E.R., 1984. A relation among geomagnetic reversals, seafloor spreading rate, paleoclimate, and black shales. Am. Geophys.Union Trans., 65: 18-19.
    Friedman, I., O'Neil, J.R., 1977. Data of geochemistry. Compilation of stable isotope fractionation factors of geochemical interest. U. S. G S. Professional Paper. 440-kk.
    Fu Jiamo, Sheng Guoying, Xu Jiayou ,et al., 1990. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Org. Geochem., 16: 769-779.
    Galois, R.W., 1976. Coccolith blooms in the Kimmeridge Clay and the origin of North Sea oil. Nature, 259, 473-475.
    Ganeshram, R.S., Pedersen, T.F., Calvert, S.E., Murray, J.W., 1995. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature, 376: 755-758.
    
    Gauthier-Lafaye, F., Bros, R., Stille , P., 1996. Pb-Pb isotope systematics on diagenetic clays: an example from Proterzoic black shales of the Franceville basin (Gabon). Chemical Geology, 133: 243-250.
    German, C.R., Elderfield, H., 1990. Rare earth elements in the NW Indian Ocean. Geochim. Cosmochim. Acta, 54: 1929-1940.
    German, C.R., Holliday, B.P., Elderfield, H., 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim. Cosmochim. Acta, 55: 3553-3558.
    Geyer, G, Landing, E., 1995. The Cambrian of the Moroccan Atlas region. In: Morocco'95. The Lower-Middle Cambrian standard of western Gondwana. Introduction. Field Guide, Abstracts and Proceedings of the first conference of the Lower Cambrian stage subdivision working group and IGCP project 366: Ecological Aspects of the Cambrian radiation. (Ed. Geyer, G. and Landing, E.) Beringeria, special Issue, 2: 7-46.
    Geyer, G, Shergold, J., 2000. The quest for internationally recognized divisions of Cambrian time. Episode, 23: 188-195.
    Goldberg, E., 1961. Chemistry in the oceans. In: M. Sears (Editor), Oceanography. American Association of Advanced Science, Washington, D.C., 583-597.
    Goldberg, T., Strauss, H., Guo, Q., et al., 2003. The late Neoproterozoic to early Cambrian sulphur cycle: an isotopic investigation of sedimentary rocks from the Yangtze platform. Progress in Natural Science, 13(12): 946-950.
    Goodfellow, W.D., et al., 1986. Environment of formation of the Howards Pass (XY) Zn-Pb deposit, Selwyn Basin, Yukon. In: Mineral Deposits of the Northern Cordillera. Canadian Institute of Mining and Metallurgy, Special Volume, 37: 19.
    Gradau, A.W., Coonell, M.O., 1917. Were the graptalite, as a rule, deep or shallow water deposits? Geol. Soc. Amer. Bull, 28: 959 -964.
    Grantham, P.J., 1986. The occurrence of unusual C_(27) and C_(29) sterane predominances in two types of Omm crude oil. Organic Geochemistry, 9; 1-10.
    Grantham, P.J., Posthuma, J., DeGroot, K., 1980. Variation and significance of the C_(27)and C_(28) triterpane content of a North Sea core and various North Sea crude oils. In: Douglas, A.G, Maxwell, J.R. (Eds.), Advances in Organic Geochemistry 1979. New York: Pergamon Press, 29 -38.
    Gundlach, H., Marchig, V, 1982. Ocean floor "metalliferous sediments" -two possiblities for genesis. In: GCAmstutz (Editor), Ore Genesis 1980. Springer, Heidelberg, 200-210.
    Gustafsson, M., Holbourn, A., Kuhnt, W., 2003. Changes in Northeast Atlantic temperature and carbon flux during the Cenomanian/Turonian paleoceanographic event: the Goban Spur stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 3182:1-16.
    Habicht, K.S., Canfield, D.E., 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim. Cosmochim. Acta, 61: 5351-5361.
    Han, J., Calvin, M., 1969. Hydrocarbon distribution of alage and bacteria and microbiological activity in sediments. Nat. Acad. Sci. Proc, 64: 436-443.
    Hans-Joachim Rohl, Annette Schmid-Rohl, Wolfgang Oschmann , Andreas Frimmel, and Lorenz Schwark, 2001. The Posidonia shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 165,27-52.
    Harland, W.B., 1992. Stratigraphic guidance and regulation: A critique of current tendrencies in stratigraphic codes and guides. Bulletin of the Geological Society of America, 104: 1231-1235.
    Harries, P.J., Kauffman, E.G, Hansen, T.A., 1996. Models for biotic survival following mass extinction. In: Hart, M.B. (Eds.), Biotic recovery from mass extinction events. Geological Society Special Publication No. 102,41-60.
    Hayes, J.M., Popp, B.N., Takigiku, R., et al., 1989. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation[J]. Geochim Cosmochim Acta, 53: 2961-2972.
    Herbert, T.D., Stallard, R.F., Fischer, A.G, 1986. Anoxic events, productivity rhythms and the orbital signature in a mid-Cretaceous deep-sea sequence from central Italy. Paleoceanpgraphy, 1: 495-506.
    Hogdahl, O.T., Melson, S., Bowen, V.T., 1968. Neutron activation analysis of lanthanide elements in seawater. Advances in Chemistry, 73: 308-325.
    
    Holland, H.D., 1979. Metals in black shales-a reassessment. Econ. Geol., 74: 1676.
    Holser, W. T., Schidlowski, M., Mackenzie, F. T., et al., 1988. Biogeochemical cycles of carbon and sulfur. In: Cregor, C. B., et al. eds. Chemical Cycles in the Evolution of the Earth. New York: John Wiley & Sons, 105-174.
    Huang, W.Y., Meinschein, W.G, 1978. sterols in sediments from Baffin Bay, Texas. Geochem. Cosmochim. Acta, 42(9): 1391-1396.
    Huc, A.Y., 1995. Paleogeography, paleoclimatology and source rocks AAPG studies in geology no. 40. Tulsa: AAPG, 347.
    Ilyin, A.V., 1998. Rare-earth element geochemistry of 'old' phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chem. Geol., 144: 243-256.
    Isozaki, Y, 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science, 276:235-238.
    Israelson, C, Halliday, A.N., Buchardt, B., 1996. U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale. Earth and Planertary Science Letters, 141: 153-159.
    Jegorova, L.N., Repina, L.N., Suvorova, N.P., 1983. Lower Cambrian stage subdivision of the Siberia, Atlas of fossilts. Transactions of the Institute of Geology and Geophysics, 558 : 1-216. (in Russian).
    Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. J. of Geol. Soc, 137(2): 171-188.
    Jenkyns, H.C., 1985. The early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. Geol. Rundsch., 74: 505-518.
    Jenkyns, H.C., 1988. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. Am. J. Sci., 288: 101-151.
    Jiang Shaoyong, Yang Jinghong, Ling Hongfei, et al., 2003. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13(10): 787-794. Jiang, Z.S., Fowler, M.G., Philp, R.P., 1990. Polycyclic alkane in biodegraded oil from the Klamayi oilfieds, Northwestern China. Org. Geochem., 15(1): 47-61.
    Jones, B., et al., 1994. Comparision of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129.
    Kaiho, K., 1992. Global changes of paleogeue aerobic/anaerobic benthic foraminifera and deep-sea circulation. Palaeogeogr. Palaeoclimatol Palaeoelol., 83: 65-85.
    Kaiho, K., Kajiwara, Y., Kaiho, K., et al., 1999. Oceanic primary productiuity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery. Palaeoceanography, 14:511-524.
    Kaufman, A. J., Knoll, A. H., 1995. Neopreoterozoic variation in the C-isotopic composition of seawater stratigraphie and biogeochemical implications. Precambrian Research, 73: 27-49.
    Keil, R. G., Montlucon, D. B., Prahl, F. G., Hedges, J. I., 1994. Sorptive preseration of labile organic matter in marine sediments. Nature, 370: 549-552.
    Kimura, H., Matsumoto, R., Kakuwa, Y., Hamdi, B., Zibaseresht, H., 1997. The Vendian-Cambrian δ~(13)C record, North Iran: evidence for overturning of the ocean before the Cambrian explosion. Earth Planet. Sci. Lett., 147: 1-7.
    Kleemann, G., Poralla, K., Englert, G., et al., 1990. Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpane from a prokaryote. Journal of General Microbiology, 136:2551-2553.
    Kump, L. R., 1989. alternative modeling approaches to the geochemical cycles of carbon, sulfur, and strontium isotopes. Amercian Journal of Science, 289: 390-410.
    Kump, L. R., 1991. Interpreting carbon-isotope excursions: Stranglove oceans. Geology, 19: 299-302.
    Kunio Kaiho, Takashi Hasegawa, 1994. End-Cenomanian benthic foraminiferal extinctions and oceanic dyaoxic events in the northwestern Pacific Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 111: 29-43.
    Lallier-Verges, E., Hayes, J. M., Boussafir, M., Zaback, D. A., Tribovillard, N. P., Connan, J., Bertrand, P., 1996. Productivity-induced sulphur enrichment of hydrocarbon -rich sediments from the Kimmeridge Clay Formation. Chemical Geology, 134: 277-288.
    Landing, E., Bowring, S. A., Davidek, K. L., Westrop, S. R., Geyer, G., Heldmaier, W., 1998. Duration of the Cambrian: U-Pb ages of the volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences, 35: 329-338.
    Leggett, J. K., 1980. British Lower Palaeozoic black shales and their palaeoeeanographic significence. Jour. Geol. Sot., 137: 139-156.
    Lewan, M, D., Maynard, J. B., 1982. Factors controlling enrichment of vanadium and nickle in the Bitumen of organic sedimentary rocks. Geochim. Cosmochim. Acta, 46: 2547-2560.
    Lewan, M. D., 1986. stable carbon isotopes of amorphous kerogens from phanerozoic sedimentary rocks. Geochim. Cosmochim. Acta 50, 1583-1591.
    Li Renwei, Xiao Qiyun, Shen Junfeng, et al., 2003. Rhenium-Osmium isotope constrains on the age and source of the platinum mineralization in the Lower Cambrian black rock series of Hunan-Guizhou provinces, China. Science in China (Series D), 46(9): 919-927.
    Liu, Y. G, Miah, M. R. U., Schmitt, R. A., 1988. Cerium, a chemical tracer for paleo-oceanic redox condition. Geochim. Cosmochim. Acta, 52: 1361-1371.
    Liu, Y. G, Miah, M. R. U., Schmitt, R. A., 1989. Authors reply. Reliability of the reported stability constant for CePO_4~0, as related to Ce redox formulations in seawater. Geochim. Cosmochim. Acta, 53: 1477-1479.
    MacRae, N.D., Nesbitt, H.W., Kronberg, B.I., 1992. Development of a positive Eu anomaly during diagenesis. Earth Planet. Sci. Lett., 109: 585-591. Mao Jingwen, Lehmann, B., Du Andao, et al., 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au
    
    Mineralization in Lower Cambrian black shales of South China and its geologic significance. Economic Geology, 97: 1051-1061.
    Marchig, V., 1978. Brown clays from Central Pacific-Metalliferous sediments or not? Geol. Jahrb., D30: 3-25.
    Marchig, V., Gundlach, H., Moller, P., Schley, F., 1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology, 50:241-256.
    Mazumdar, A., Banerjee, D.M., Schidlowski, M., Balaram, V., 1999. Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India). Chemical Geology, 156: 275-297.
    McCollum, L.B., Sundberg, F.A., 1999. Biostratigraphy of the traditional Lower-Middle Cambrian boundary interval in the outer shelf Emigrant Formation, Split Mountain Eastsection, Esmeralda County, Nevada. In: Palmer, A.R., ed. Laurentia 99, V field conference of the Cambrian stage subdivision w orking Group, International Subcommission on Cambrian Stratigraphy. Boulder, Colorado, 29-34.
    McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin B.R. and Mckay GA.(Eds.), Geochemistry and mineralogy of rare earth elements. REV. Mineral., 21: 169-200.
    Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Org. Geochim., 27: 213-250.
    Moczydlowska, M., 1999. The Lower-Middle Cambrian boundary recognized by acritarchs in Baltica and at the margin of Gondwana. Boll. Soc. Paleont. Ital., 38(2-3): 207-225.
    Mohammad Tahir Shah, Charles J. Moon, 2004. Mineralogy, geochemistry and genesis of the ferromanganese ores from Hazara area, NW Himalayas, northern Pakistan. Journal of Asian Earth Sciences, 23: 1-15.
    Moldowan, J.M., Fago, F.J., Carlson, R.M., et al., 1991. Rearranged hopanes in sediments and petroleum. Geochimica et Cosmachimica Acta, 55: 3333-3353.
    Moldowan, J.M., Sundararaman, P., and Schoell, M., 1986. Sentivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany, in Leythaeuser, D., and Rullfltter, J.I. (Eds.), Advances in Organic Geochemistry 1985: Organic Geochemistry, 10:915-926.
    Montanez, I.P., Osleger, D.A., Banner, J.L., et al., 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today, 10(5): 1-7.
    Morad, S., Felitsyn, S., 2001. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: implication for the Cambrian oceanic anoxia and phosphogenesis. Sedimentary Geology, 143: 259-264.
    Morford, J.I., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta, 63: 1735-1750.
    Murray, J.W., Brewer, P.G., 1977. Mechanisms of removal of manganese, iron and other trace elements from sea water, in Glasby, G.P., ed., Marine manganese deposits: Amsterdam, Elsevier, 238-291.
    Nath, B.B., Pluger, W.L., Roelandts, I., 1997. Geochemical constrains on the hydrothermal origin of ferromaganese incrustations from the Rodriguez triple junction, Indian Ocean. Geological Society of Landon, Special Publication, 119: 199-211.
    Nicholson, K., Nayak, V.K., Nanda, J.K., 1997. Mangaense ores of the Ghoriajhor-Monmunda area, Sundergarth District, Orissa, India: geochemical evidence for a mixed Mn source. Geological Society of Landon, Special Publication 119: 117-121.
    Ourisson, G, Rohmer, M., Poralla, K., 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology, 41: 301-333.
    Palmer, R.M., 1998. Why is intercontinental correlation with the Lower Cambrian so difficult? Revista la de Paleontologia (Diciembre): 17-21.
    Palmer, R.M., Repina, L.N., 1993. Through a glass darkly: Taxonomy, phylogeny and biostratigraphy of the Olenellina. The University of Kansas, Paleontological contributions (new series), 3: 1-35.
    Pan Jiayong, Ma Dongsheng, Cao Shuanglin, 2004. Trace element geochemistry of the Lower Cambrian black rock series from northwestern Hunan, South China. Progress in Natural Science, 14(1): 64-70.
    Pederson, T.T., Calvert, S.E., 1990. Anoxic vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks. AAPG Bull, 74:454-466.
    Peng Shanchi, 2003. Chronostratigraphic subdivision of the Cambrian of China. Geologica Acta, 1(1): 135-144.
    Peters, K.E., Moldowan, J.M., 1991. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry, 17: 47-61.
    Peters, K.E., Moldowan, J.M., 1995. The Biomarker Guide: Interpreting Molecular Fossolis in Petroleum and Ancient Sediments. Prentice Hall Inc, 236.
    
    Piper, D.Z., 1974. Rare earths in the sedimentary cycles: a summary. Chem. Geol., 14:285-304.
    Piper, D.Z., 1994. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chemical Geology, 114: 95.
    Qiunby-Hunt, M.S., Wilde, P., 1991. The provenance of low-calcic black shales. Miner. Deposita, 26: 113-121.
    Qiunby-Hunt, M.S., Wilde, P., 1994. Thermodynamic zonation in the black shale facies based on iron-maganese-vanadium content. Chemical Geology, 113:297-317.
    Raiswell, R., Buckley, F., Berner, R.A., et al., 1988. Degree of pyritization of oron as a palaeoenvirionmental indicator of bottom water oxygenation. J. Sediment. Petrol., 58: 812-819.
    Remane, J., Bassett, M.G, Cowie, J.W., Gohrbandt, K.H., Lane, H.R., Michelsen, O., Wang Naiwen, 1996. Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS). Episodes, 19(3): 78-81.
    Rhoads, D.C., Morse, J.W., 1971. Evolutionary and ecological significance of oxygen-deficient marine basins. Lethaia, 4: 413-428.
    Rullkotter, J., Wendisch, D., 1983. Microbial alternation of 17(H)-hopanes in Madagascar asphalts: removal of C-10 methyl group and ring opening. Geochem. Cosmochem. Acta, 46: 1545-1553.
    Saelen, G, Tyson, R.V., Talbot, M.R., Telnaes, N., 1998. Evidence of recycling of isotopically light CO_2 (aq) in stratified black shale basins: contrasts between the Whitby Mudstone and Kimmeridge Clay formations, United Kingdon. Geology, 26: 747-750. Saelen, G, Doyle, P., Talbot, M.R., 1996. Stable-isotope analyses of belemnite rostra from the Whitby Mudstone Fm., England: surface water conditions during deposition of a marine black shale. Palaios, 11:97-117.
    Schidlowski, M, Eichmann, R., Junge, C.E., 1975. Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res., 2: 1-69.
    Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., et al., 1987. The Cenom0anian-Turonian oceanic anoxic event, I . Stratigraphy and distribution of organic carbon-rich beds and the marine δ~(13) C excursion. In: Brooks J and Fleet A J eds. Marine Petroleum Source Rocks, Geological Society Special Publication, Blackwell Scientific Publications, 26: 371-399.
    Schlanger, S.O., Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: cause and consequence. Geol. Mijinbown, 55: 179-184.
    Shaw, H.F., Wasserburg, GJ., 1985. Sm-Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochim. Cosmochim. Acta, 49: 503-518.
    Shen, Y., Schidlowski, M., 2000a. New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian-Cambrian boundary on the Yangtze platform and global correlations. Geology, 28: 623-626.
    Shen, Y, Schidlowski, M., Chun, X., 2000b. Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian. Paleogeogr. Paleoclimatal. Paleocol., 158:99-108.
    Shi Jiyang, et al., 1982. A biological marker investigation of petroleums and shales from the Shengli oilfield, The P.R.C.. Chemical Geology, 35:1-31.
    Shields, G, Stille, P., 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175: 29-48.
    Shimizu, H., Masuda, A., 1977. Cerium in chert as an indication of marine environment of its formation. Nature, 266 : 346-348.
    Shimizu, H., Tachikawa, K., Masuda, A., Nozaki, Y, 1994. Cerium and neodymium isotope ratios and REE patterns in seawater from the north Pacific Ocean. Geochim. Cosmochim. Acta, 58: 323-333
    Sholkovitz, E.R., Schneider, D.L., 1991. Cerium redox cycles and rare earth elements in the Sargasso Sea. Geochim. Cosmochim. Acta, 55: 2737-2743.
    Sinninghe Damste, J.S., Kening, F., Koopmans, M.P., et al., 1995. Evidence for gammacerane as an indicator of water column stratifation. Geochimica et Cosmochimica Acta, 59: 1895-1900.
    Steiner, M., Wallis, E., Erdtmann, B.D., Zhao Yuanlong, Yang Ruidong, 2001.
    
    Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169: 165-191.
    
    Stow, D.A.V., Huc, A.Y, Bertrand, P., 2001. Depositional processes of black shales in deep water. Marine and Petroleum Geology, 18: 491-498.
    Strauss, H., Des Marais, D.J., Hayes, J.H., et al., 1992. Concentrations of organic carbon and maturities and elemental compositions of kerogens. In: Schopf, J.W., Klein, C, eds. The Proterozoic Biosphere. Cambridge: Cambridge University Press, 95-100.
    Strom, K.M., 1939. Land locked water and the deposition of black muds. In: Trask, P.D.(eds.), Recent marrine sediments. Landon Thomas Murby, 365-375.
    Summons, R.E., Volkman, J.K., Boreham, C.J., 1987. Dinosterane and other steriodal hydrocarbons of dionflagellate origin in sediments and petroleum. Geochem. Cosmochim. Acta, 51(11): 3075-3082.
    Sundberg, F.A., McCollum, L.B., 1997. Oryctocephalids(Corynexochida: trilobite) of the Lower-Middle Cambrian boundary interval from Valifornia and Nevada. J. Palaeont, 71(6): 1065-1090.
    Sundberg, F.A., Yuan Jinliang, McCollum, L.B., Zhao, Yuanlong, 1999. Correlation of the Lower-Middle Cambrian boundary of South China and Laurentia. Acta Palaeontologica Sinica, 38 (Sup.): 508-513.
    Sverjensky, D.A., 1984. Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett., 67: 70-78.
    Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Blachwell, Oxford, 312.
    Thunell, R.C., Williams, D.F., Belyea, P.R., 1984. Anoxic events in the Mediterranean Sea in relation to the evolution of late Neogene climates. Marine Geology, 59, 1-4: 105-134.
    Toth, J.R., 1980. Deposition of submarine crusts rich in manganese and iron. Geological Society of America Bulletin, 91: 44-54.
    Twenhalef, W.H., 1939. Environments of orgin of black Shales. Amer. Assoc. Petro. Geol. Bull., 23: 1178-1198.
    Tyson, R.V., 1987. The genesis and palynofacies characteristics of marine petroleum source rocks. In: Brooks, J.R.V. and Fleet, A.J. eds. Marine Petroleum Source rocks, Geological Society Special Publication, Blackwell Scientific Publication, 26:47-68.
    Ulrich, E.O., Ruedemanna, R., 1911. Stratigraphic signifitance of the wide distribution of graptolitea. Geol. Soc. Amer. Bull, 22:231-237.
    Veizer, J., 1983. Chemical diagensis of carbonates: theory and application. In: Arthur, M.A., et al. eds. Stable Isotopes in Sedimentary Geology. S.E.P.M. Short Course, 10: 3-1-3-100.
    Venkatesan, M.I., 1989. Tetrahymanol: its widespread occurrence and geochemical signifiance. Geochimica et Cosmochimica Acta, 53: 3095-3101.
    Volkman, J.K., Maxwell, J.R., 1986. Acyclic isoprenoids as biological markers. In: BiologicalMarkers in the Sedimentary Record Elsevier. New York: 1-42.
    Wang Tieguan, Wang Chunjiang, Zhang Weibiao, et al., 2003. Initial organic geochemical investigation on Late Neoproterozoic-Early Cambrian sediments in the Yangtze region, China. Progress in Natural Science, 13(12): 936-941.
    Wapies, D.W., Cunningham, R., 1985. Shipboard organic geochemistry, Leg 80, DSDP, in: Pong W., Graciausky P C, eds. Initial Reports Deep Sea Drilling Project, U.S. Government Printing House, Washington, D.C., 80: 949-968.
    
    Wignall, P.B., 1991. Model for transgressive black shales? Geology, 19: 167-170.
    Wignall, P.B., Twitchett, R.T., 1996. Oceanic anoxia and the end Permian mass extinction . Science, 272: 1155-1158.
    Wilde, P., Quinby-Hunt, M.S., Erdtmann, B.D., 1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of anoxic facies. Sedimentary Geology, 101: 43-53.
    Wolff, G. A., Lamb, N. A., Maxwell, J. R., 1986. The origin and fate of 4-methyl steroids-Ⅱ. Dehydration of stanols and occurrence of C_(30)4-methyl steranes. Org. Geochem., 10(4): 965-974.
    Wood, D. A., Joron, J. L., Treuil, M., 1979. Are-appraisal of the use of trace elements to classify and discriminate between magma series erupted in deferent tectonic settings. Earth Planet. Sci. Lett., 45: 326-336.
    Wright, J., Schrader, H., Holser, W. T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta, 51: 637-644.
    Yarincik, K. M., et al., 2000. Oxygenation histroy of bottom waters in the Cariaco Basin, Venezuela, over the past 578000 years: Results from rebox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 15(6): 593.
    Zhu Maoyan, Zhang Junming, Steiner, M., Yang Aihua, et al., 2003. Sinian-Cambrian stratigraphic framework for shallow to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science, 13(12): 951-960.
    包建平,1996.未降解原油和生油岩中的25-降藿烷系列.科学通报,41(20):1875-1878.
    陈南生,杨学增,刘德汉等,1982.中国南方下寒武统黑色页岩和砂质岩系及其共生的层状矿床.沉积矿床,1(2):39-51.
    陈致林,李素娟,1994.甲藻甾烷—一种生源和沉积环境的生物标志物.石油勘探与开发,21(3):60-65.
    邓宏文,钱凯,1993.沉积地球化学与环境分析.兰州:甘肃科学技术出版社,154.
    范德廉,杨秀珍,王连芳,陈南生,1973.某地下寒武统含镍铝多元素黑色岩系的岩石学及地球化学特点.地球化学,(3):143-164.
    范璞,孟仟祥,程学惠,李景贵,1988.指示沉积古环境的生物标志化合物.中国科学院兰州地质研究所生物、气体地球化学开放研究实验室研究年(1987).兰州:甘肃科学技术出版社:48-78.
    范善发,徐芬芳,1986.沉积岩和原油中的C_(15)-C_(20)类异戊二烯烃的分布与成熟的关系.有机地球化学论文集.北京:科学出版社:68-73.
    傅家谟,陈德玉,刘德汉,1985.茂名油页岩中生物输入的生物标志化合物.地球化学,(2):99-114.
    傅家谟,盛国英,1992.分子有机地球化学与古气候、古环境研究.第四纪研究,4:306-317.
    傅家谟,盛国英,许家友等,1991.应用生物标志化合物参数判别古沉积环境.地球化学,1:1-12.
    贵州108队1分队,1976.中华人民共和国 区域地质调查报告(1:20万)遵义幅(G-48-Ⅴ)(地质部分),20-43.
    贵州108队4分队,1974.中华人民共和国 区域地质调查报告(1:20万)湄潭幅(G-48-Ⅵ)(地质部分),10-28.
    贵州省地质矿产局,1982.中华人民共和国地质矿产部 地质专报(一)区域地质(第7号)贵州省区域地质志.北京:地质出版社,1-665.
    侯读杰,王铁冠,1995.陆相湖盆沉积物和原油中的甲藻甾烷.科学通报,40(4):332-335.
    湖南省地质矿产局,1982.中华人民共和国地质矿产部 地质专报(一)区域地质(第8号)湖南省区域地质志.北京:地质出版社,1-664.
    华阿新,黄第藩.华北中上元古界有机质成烃作用及生物标志物特征.中国科学院兰州地质研究所生物、气体地球化学开放研究实验室研究年报(1988-1989).北京:科学出版社,10-43.
    黄第藩,张大江等,1989.论4-甲基甾烷和孕甾烷的成因.石油勘探与开发,3:8-15.
    姜月华,岳文浙,业治铮,1993.古大陆斜坡方向的确定方法.矿物岩石,13(2):78-84.
    姜月华,岳文浙,业治铮,1994.华南下古生界缺氧事件与黑色页岩及有关矿产.有色金属矿产与勘查,3(5):272-278.
    李建林,1990.扬子地区晋宁期板块构造的探讨.地质科学,(3):215-223.
    李任伟,李哲,王志珍,林大兴,1988.分子化石指标在中国东部盆地古环境分析中的应用.沉积学报,6(4):108-118.
    李任伟,卢家烂,张淑坤,雷加锦,1999.震旦纪和早寒武世黑色页岩有机碳同位素组成.中国科学(D辑),29(4):122-128.
    李胜荣,高振敏,1995.湘黔地区牛蹄塘组黑色岩系稀土特征—兼论海相热水沉积岩稀土模式.矿物学报,15(2):225-229.
    李胜荣,肖启云,申俊峰等,2002.湘黔下寒武统铂族元素来源与矿化年龄的Re-Os同位素制约.中国科学(D辑),32(7):568-575.
    李胜荣,杨承运,陈其英,1999.湘西黑色岩系地球化学特征和成因意义.岩石矿物学杂志,18(1):26-37.
    李有禹,1997.湖南大庸慈利一带下寒武统黑色页岩中海底喷流沉积硅岩地地质特征.岩石学报,13(1):121-126.
    廖卫华,2001.中国晚泥盆世F/F生物集群灭绝事件及其后的生物复苏的研究,中国科学(D辑),31(8):663-668.
    刘宝珺,许效松,潘杏南,黄慧琼,徐强,1993.中国南方古大陆沉积地壳演化与成矿.北京:科学出版社,1-231.
    刘文均,卢家烂,2000.湘西下寒武统有机地化特征—MVT铅锌矿床有机成矿作用研究(Ⅲ).沉积学报,18(2):290-296.
    刘之远,1942.遵义桐梓两县地质纲要.国立浙江大学文科研究所史地学部丛刊.
    卢衍豪,朱兆玲,钱义元等,1982.中国寒武纪地层对比及说明书.北京:科学出版社,28-54.
    罗惠麟,蒋志文,唐良栋,1994.中国下寒武统建阶层型剖面.昆明:云南科技出版社,1-183.
    罗惠麟等,1984.中国云南晋宁梅树村震旦系-寒武系界线层型剖面.昆明:云南人民出版社.
    毛景文,张光第,杜安道等,200 1.遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re-Os同位素年龄测定—兼论华南寒武系底部黑色页岩多金属成矿作用.地质学报,75(2):234-244.
    潘杏南,赵济湘,1988.裂谷作用与康滇地区的构造演化.成都地质矿产研究所所刊,第9号,70-75.
    彭善池,Babcock,L.E.,林换令,陈永安,祁玉平,朱学剑,2004.寒武系全球排碧阶及芙蓉统底界的标准层型剖面和点位.地层学杂志,28(2):104-114.
    彭善池,袁金良,赵元龙,2000.台江阶—我国寒武系一个新的年代地层单位.地层学杂志,24(1):53-54.
    彭善池,周志毅,林天瑞,1999.关于建立中国寒武纪年代地层系统的建议.现代地质,31(2):242.
    彭善池,周志毅,林天瑞,袁金良,2000.寒武纪年代地层的研究现状和研究方向.地层学杂志,24(1):8-27.
    蒲心纯,周浩达,王熙林等,1993.中国南方寒武纪岩相古地理与成矿作用.北京:地质出版社,1-174.
    钱逸,尹恭正,1984.贵州早寒武世早期小壳动物化石研究.地层古生物论文集(13辑).北京:地质出版社
    全国地层委员会,1962.中国的寒武系.全国地层会议学术报告汇编.北京:科学出版社
    任纪舜,1990.论中国南部的大地构造.地质学报,64(4):275-288.
    尚惠云,姜乃煌,1984.陆相原油及生油岩中的特征生物标志物—伽马蜡烷.沉积学报,2(4):84-88.
    史继扬,1986.陆相沉积物和原油中的β胡萝卜烷和伽马蜡烷.有机地球化学论文集.北京:科学出版社.
    史继扬,向明菊,1991.五环三萜烷的物源和演化.沉积学报,9(增刊):26-33.
    宋振亚,陈庸勋,高玲,沈平,1988.硅藻土沉积物、萜类生物标志化合物特征.中国科学院兰州地质研究所生物、气体地球化学开放研究实验室研究年报(1987),兰州:甘肃科学技术出版社,228-239.
    田海芹,1998.中国南方寒武岩相古地理及编图.北京:地质出版社,1-130.
    万晓樵,刘文灿,李国彪,李艳,2003.白垩纪黑色页岩与海水含氧量变化—以西藏南部为例.中国地质,30(1):36-47.
    汪啸风,李华芹,陈孝红,1999.末前寒武系年代地层研究:问题,进展与建议.现代地质,13(2):379-384.
    王成善,陈洪德,寿建峰等,1998.中国南方海相二叠系层序地层与油气勘探.成都:四川科学技术出版社,1-144.
    王成善,张哨楠,1987.藏北双湖地区油页岩的发现.中国地质,(8):29-31.
    王鸿祯,杨巍然,刘本培,1986.中国华南地区地壳构造发展的轮廓,华南地区古大陆边缘构造史.武汉:武汉地质学院出版社,1-272.
    王铁冠,1990.中国科学(B辑),(10):1077-1085.
    王铁冠,盛国英,陈军红,傅家谟,1994.甲基三环萜烷与甲基四环萜烷的鉴定及其生源意义.科学通报,39(10):933-935.
    王铁冠等,1990.生物标志物地球化学研究.武汉:中国地质大学出版社,1-146.
    吴朝东,陈其英,雷家锦,1999.湘西震旦一寒武纪黑色岩系的有机岩石学特征及其形成条件.岩石学报,15(1):453-461.
    吴朝东,杨承运,陈其英,1999.湘西黑色岩系地球化学特征和成因意义.岩石矿物学杂志,18(1):26-39.
    吴朝东,曾凡刚,雷家锦,赵瑞,1999.湘西黑色页岩多种形态硫的分离与同位素指示意义.科学通报,44(6):661-665.
    吴庆余,刘志礼,盛国英等,1987.前寒武纪富藻燧石层中的生物标志化合物.中国科学院地球化学研究所有机地球化学开放研究实验室研究年(1986),贵阳:贵州人民出版社,111-121.
    项礼文,李善姬,南润善,郭振明等,1981.中国的寒武系 中国地层4.北京:地质出版社,1-198.
    徐怀大等译,1988.硅质碎屑岩层序及其地震表示的定量地质模拟(Jerveg M.T.),Wilgus,C.K.等编.层序地层学原理(海平面变化综合分析).北京:石油工业出版社,56-58.
    许玩宏,张忠英,沈平,孟仟祥,1997.贵州三都早奥陶世同高组下燕高页岩断的生物标志化合物.沉积学报,15(3):72-77.
    杨瑞东,赵元龙,郭庆军,1999.贵州早寒武世早期黑色页岩中藻类及其环境意义.古生物学报,38(增刊):145-156.
    杨瑞东,朱立军,王世杰,袁金良,赵元龙,2002.贵州台江中、下寒武统界线附近碳同位素负异常的生物和地层意义.中国科学(D辑),32(6):500-506.
    于炳松,陈建强,李兴武,林畅松,2002.塔里木盆地下寒武统底部黑色页岩地球化学及其岩石圈演化意义.中国科学(D辑),32(5):374-382.
    于炳松,王梨栋,陈建强,陈晓林,梁世友,刘忠宝,林畅松,2003.塔里木盆地北部下寒武 统底部黑色页岩形成的次氧化条件.地学前缘,10(4):545-550.
    袁金良,赵元龙,1999.西南地区下寒武统划分与对比—兼论早寒武世系列生物群的时代.古生物学报,38(增刊):116-128.
    袁金良,赵元龙,王宗哲,周震,陈笑媛,1997.贵州台江八郎下、中寒武统界线及三叶虫动物群.古生物学报,36(4):494-524.
    云南地质局,1974.云南省区域地层表(初稿).
    曾凡刚,程克明,1998.华北地区下古生界海相烃源岩饱和烃生物标志物地球化学特征.地质地球化学,26(3):25-32.
    曾明果,1998.遵义黄家湾镍钼矿地质特征及开发前景.贵州地质,15:305-310.
    张爱云,伍大茂,郭丽娜等,1987.海相黑色页岩建造地球化学与成矿意义.北京:科学出版社,240.
    张春昱,1980.中国板块构造轮廓.中国地质科学院院刊,2(1):13-20
    张勤文等,1984.在前寒武纪和寒武纪界线上的地质事件,国际交流地质学术论文集(1).北京:地质出版社,144-149.
    张全忠,李昌文,1984.安徽贵池高坦寒武纪三叶虫.中国地质科学院南京地质矿产研究所所刊,5(4):78-84.
    张文堂,1964.中国中、下寒武统的界线并讨论一些褶颊虫类三叶虫.中国科学院南京古生物研究所编,1-38.
    张文堂,1973.云南东部的寒武纪地层.西南地层古生物通讯(第三号).
    张文堂,1997.寒武纪生命扩张及澄江动物群的意义.地学前缘,4(3-4):117-121.
    张文堂,朱兆林,林焕令,1980.中国寒武系的分界、分带及对比.国际交流地质学术论文集(4)(为二十六届国际地质大会撰写),地层古生物.北京:地质出版社
    赵元龙,Steiner,M.,杨瑞东,Erdtmann,B.D.,郭庆军等,1999.贵州遵义下寒武统牛蹄塘组早期后生生物群的发现及重要意义.古生物学报,38(Sup.):132-139.
    中国科学地球化学研究所,1982.有机地球化学.北京:科学出版社,1-125.
    中国科学院地质古生物研究所,1964.贵州北部的古生物地层,黔北地层现场会议.1-123.
    周志毅,袁金良,1982.试谈中国与世界主要类型寒武系的对比.中国科学院南京地质古生物所丛刊,5:289-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700