用户名: 密码: 验证码:
延川南煤储层地应力条件及其对煤层气产能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地应力是影响煤储层渗透性及煤层气井产能的重要因素。应用煤层气开发地质学、岩石(体)力学和渗流力学等多学科理论,针对鄂尔多斯盆地延川南区块实际,应用三维地震、钻井等勘探成果,通过实验分析、理论研究和数值模拟计算等方法,根据延川南区块断裂特征与构造格局,分析了含煤地层构造应力场分布及其演化规律,自中生代以来先后主要经历了2期构造应力场作用:第一期构造应力场在区内最发育,最大挤压应力方向为北西-南东向;第二期应力场最大挤压应力方向为北东—南西向。
     利用目前煤层气勘探开发井的测试资料,系统分析了现今地应力的大小、方向及其应力状态和煤储层压力及煤储层渗透性分布规律。1000m以浅煤储层地应力状态主要表现为σv>σhmax>σhmin,最小水平主应力小于16MPa,现今地应力处于拉伸应力状态;1000m以深煤储层地应力状态转化为σhmax≥σv≥σhmin,最小水平主应力大于16MPa,现今地应力转化为挤压应力状态。现今最大水平主应力方向主要以NEE-SWW方向为特征。
     通过应力敏感性试验分析,建立了煤储层渗透性与现今地应力和有效地应力之间的相关关系和模型,揭示了煤层气井排采过程中煤储层渗透性动态变化规律。煤储层渗透性受控于现今地应力的大小和所处的应力状态。当煤层深度小于1000米时,现今地应力状态处于伸张带,煤储层渗透性相对较好,煤储层试井渗透率平均大于O.1n-1.On×10-3μm2;当煤层深度大于1000米时,现今地应力状态转化为压缩带,煤储层试井渗透率平均为0.01n~0.1n×10-3μm2。煤层埋藏深度小于1000m区域,现今地应力状态处于伸张带,煤储层渗透性相对较好,是煤层气勘探开发的有利区(带)。煤储层渗透率随着有效压力的增加按负指数函数规律降低。
     在分析研究区现今地应力的基础上,跟踪研究区煤层气井试采动态资料,分析了煤储层应力对煤层气井产能影响的程度,煤储层的应力敏感性对煤层气井的产能有很大的影响,随着生产压差的增加,气井的产量增加幅度较小,并逐渐趋向稳定,放大生产压差并不能获得最大产量。
The in-situ stress is a key factor affects permeability of coal reservoir and the production of coalbed methane (CBM) well. Coal bed methane development geology, rock mechanics, percolation mechanics and other multi-disciplinary theories were comprehensively used, according to the reality of Yanchuannan block in the Ordos Basin, through the methods of experimental analysis, theoretical study and numerical simulation, the fracture development features and its coupling relations and the distribution and evolution of tectonic stress field of coal reservoir at Yanchuannan block were analyzed. The structure in-situ stress field include two stages since Mesozoic. The frist is obvious and Maximum extrusion stress direction is NW-SE.The second stage Maximum extrusion stress direction is NE-SW.
     According to the test data of CBM exploration and development wells, the magnitude, direction and stress state of current in-situ stress and the distribution of coal reservoir pressure and permeability were systematically analyzed. Below1000m depth,the in-situ stress condition of coal reservoir is σv>σhmax>σh min and the minimum principal stress less than16MPa. Above1000m depth,the in-situ stress condition of coal reservoir is σhmax≥σhmax≥σhmin and the minimum principal stress more than16MPa.
     The correlations and their models between current in-situ stress and coal reservoir permeability were established according to analysis of stress sensitivity test, the dynamic variation of coal reservoir permeability in the process of CBM production was revealed. Coal reservoir permeability depend on the strength and condiction of in-situ stress.Permeability reduce with effective stress in terms of negative exponent.The exploration area is favorable which buried depth below1000m, tension in-situ stress condition.
     Based on the analysis of in-situ stress, combined with well test dynamic data, the influence degree of coal reservoir stress to CBM wells production was analyzed which provide scientific basis for Sinopec CBM exploration and development. The coal reservoir stress sensitivity have great influence with coalbed methane (CBM) well production. with the increase of drawdown pressure, gas well production increase amplitude is lesser, and gradually tend to be stable.
引文
1.张新民、庄军,张遂安.中国煤层气地质与资源评价.科学出版社,2002
    2.贺天才,秦勇.煤层气勘探与开发利用技术.中国矿业大学出版社,2007
    3.刘洪林,赵国良,王红岩.中国高煤阶地区的煤层气勘探理论与实践.石油实验地质,2004.26(5):411~414
    4.刘焕杰.山西南部煤层气地质,中国矿业大学出版社,1998,江苏徐州,1998.
    5.秦勇.中国煤层气地质研究进展与述评.高校地质学报.2003,9(3):339-358
    6.傅雪海,秦勇,韦重韬.煤层气地质学.徐州:中国矿业大学出版社,2007
    7.雷群,李景明,赵庆波.煤层气地质认识、技术研究及应用.中国石油勘探开发研究院廊坊分院研究报告,2007.12
    8. Boyer C M.Coalbed mehane production potential in U.S.Basins.Journal of Petro. Tech.,1987, 39(7):821-834
    9. Boyer Ⅱ C M, Bai Q. Methodology of coalbed methane resource assessment. Int J Coal Geology,1998,35(1-4):349-368
    10. R. M. Bustin and C. R. Clarkson.Geological controls on coal bed methane reservoir capacity and gas content[J]. International Journal of Coal Geology,1998,38(1-2):3-26
    11. Scott A R.. Hydrogeologic factors affecting gas content distribution in coal beds[J]. Internationa] Journal of Coal Geology,2002,50(1-4):363-387
    12. Scott A R, Kaiser W R, Ayers W B. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and Nex Mexico:Implications for coalbed gas producibility. AAPG Bulletin, 1994,78(8):1186-1209
    13. Flores R M. Coalbed methane:From hazard to resource. Int J Coal Geology,1998,35(1-4): 3-26
    14. Fischer P A. Unconventional gas resources fill the gap in future suppliers. World Oil,2004, 225(8):41-44
    15. Repine Jr T E. Coalbed methane-A new West Virginia industry?:Mountain State Geology, Spring,1990 6-7.
    16. Rightmire C T, Eddy G E, Kirr J N (eds). Coalbed Methane Resources of the United States AAPG,1984.1-14
    17. Robert S E. North American coalbed methane development moves forward.2005,226(8): 57-59
    18. Gentzis, T.,2006. Economic coalbed methane production in the Canadian Foothills: solving the puzzle. Int J Coal Geology,65:79-62.
    19. Gatens M. Coalbed methane development: Practices and progress in Canada. J Canadian Petroleum Technology,2005,44(8):16-21
    20. NEB. Canada's Energy Future: Scenarios for Supply and Demand to 2025. Canada National Energy Board Report, Calgary, AB,2003
    21. Peng Y W, Qi Q X, Deng Z G, et al. Experimental research on sensibility of permeability of coal samples under confining pressure status based on scale effect[J]. Journal of the China Coal Society,2008,33 (5):509-513.
    22. Enever, J.R., Casey, D., Bocking, M.,1998. The role of in-situ stress in coal bed methane exploration. Paper presented at International Conference on Coal Seam Gas and Oil, Brisbane, Australia.
    23. Jack C. Pashin, Richard H. Groshong Jr.Structural control of coalbed methane production in Alabama[J]. International Journal of Coal Geology 38(1998)89-113
    24. Shige M. Coalbed methane growing rapidly as Australia gas supply. Oil and Gas Journal, 2005,103(28):32-36
    25.孟召平,田永东,李国富.煤层气开发地质学理论与方法.科学出版社,2010
    26.孟召平,程浪洪,雷志勇.淮南矿区地应力条件及其对煤层顶底板稳定性的影响[J].煤田地质与勘探,2007,35(1):21-25.
    27.李方全,王连捷.华北地区现今构造应力场[M].北京:地质出版社,1981,142-150.
    28.李方全.地应力测量[J].岩石力学与工程学报1985,4(1):95~111.
    29.蔡美峰,乔兰,李华斌.地应力测量原理和技术[M].北京:科学出版社,1995.
    30.张宏伟.采矿工程中的原岩应力测量[J].阜新矿业学院学报,1997,(6):25-29.
    31.康红普,林健,张晓.深部矿井地应力测量方法研究与应用[J].岩石力学与工程学报,2007,26(5):929~933.
    32.陈庆宣,王维襄,孙叶等.岩石力学与构造应力场分析[M].北京:地质出版社,1998.58-182.
    33.钱鸣高,刘昕成.矿山压力及其控制[M].北京:煤炭工业出版社,1984.
    34. E. Hoek, E. T. Brown. Underground excavation in rock[M], the institute of mining and metallurgy, London,1980
    35. Kose H. Modeltheoretische Untersuchung der Gebirgsdruckverteilung beim Abbau[J], Gluckauf-Forschungshefte,1987,48 (1):17-22
    36.肖树芳,杨淑碧:岩体力学[M].北京:地质出版社,1987.68~90.
    37.韩军,张宏伟.淮南矿区地应力场特征[J].煤田地质与勘探,2009,37(1):17~21.
    38.尤明庆.水压致裂法测量地应力方法的研究[J].岩土工程学报,2005,27(3):350~353.
    39.韩金良,吴树仁,谭成轩,孙炜峰,张春山,丁原辰,彭华.东秦岭东江口花岗岩体水压致裂法与AE法地应力测量对比研究[J].岩石力学与工程学报,2007,26(1):81-86.
    40.刘允芳,刘元坤.单钻孔中水压致裂法三维地应力测量的新进展[J].岩石力学与工程学报,2006,25(增2):3816~3822.
    41.孟召平,田永东,李国富.沁水盆地南部煤储层渗透性与地应力之间关系和控制机理[J].自然科学进展,2009,19(10):1142~1148.
    42.秦勇,张德民,傅雪海,等.沁水盆地中-南部现代构造应力场与煤储层物性关系之探讨.地质论评,1999,45(6):576-583
    43.张广洋,胡耀华,姜德义等.煤的渗透性实验研究.贵州工学院学报,1995,24(4):65—68
    44. Enever J R E, Henning A. The relationship between permeability and effective stress for Australian coal and its implications with respect to coalbed methane exploration and reservoir modeling. Proceedings of the 1997 International Coalbed Methane Symposium,1997,13-22
    45. McKeeC R, Bumb A C, Koenig A. Stress Dependent permeability and porosity of Coal. Rocky Mountain Association of Geologist,1998,143-153
    46.唐书恒.煤储层渗透性影响因素探讨.中国煤田地质,2001,13(1):28—33
    47.孟召平,田永东,李国富.沁水盆地南部地应力场特征及其研究意义.煤炭学报,2010,35(6):975-981
    48. Zhaoping Meng, Jincai Zhang, Rui Wang.In-situ stress, pore pressure, and stress-dependent permeability in the Southern Qinshui Basin. International Journal of Rock Mechanics & Mining Sciences 48 (2011),122-131
    49.陈振宏,王一兵,郭凯,等.高煤阶煤层气藏储层应力敏感性研究.地质学报,2008,82(10):1390-1395
    50.何应付,张亚蒲,刘学伟.煤层气藏单相气体渗流特征实验研究.中国煤层气,2009,6(1):10-
    51.李相臣,康毅力,罗平亚.煤层气储层变形机理及对渗流能力的影响研究.中国矿业,2009, 18(3):99-102
    52.周创兵,熊文林.地应力对裂隙岩体渗透特性的影响.地震学报,1997,19(2):154—163
    53.孟召平.不同成岩作用程度砂岩物理力学性质三轴试验研究.岩土工程学报,2003,25(2):140—143
    54.韩军,张宏伟.淮南矿区地应力场特征.煤田地质与勘探,2009,37(1):17—21
    55.孟召平,彭苏萍.焦作矿区二煤储层特征评价.中国矿业大学学报,1998,27(2):162—166
    56.王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展.地质科技情报,1995,14(1):53—59
    57.傅雪海,秦勇,韦重韬.煤层气地质学.徐州:中国矿业大学出版社,2007,73—88
    58.孙广忠.岩体结构力学.北京:科学出版社,1988,43-67
    59.孟召平,陆鹏庆,贺小黑.沉积结构面及其对岩体力学性质的影响.煤田地质与勘探,2009,37(1):33—37
    60.吴元燕,陈碧玉.油矿地质学.北京:石油工业出版社,1996,170—179
    61.连承波,李汉林.地应力对煤储层渗透性影响的机理研究.煤田地质与勘探,2005,33(2):30—32
    62.冯三利,叶建平,张遂安.鄂尔多斯盆地煤层气资源及开发潜力分析[J].地质通报,2002,21(1):658—662.
    63.接铭训.鄂尔多斯盆地东缘煤层气勘探开发前景[J].天然气工业,2010,30(6):1—6.
    64.张泓,白清昭,张笑薇,等.鄂尔多斯聚煤盆地的形成及构造环境[J].煤田地质与勘探,1995,23(3):1—9.
    65.赵靖舟,王力,孙兵华,等.鄂尔多斯盆地东部构造演化对上古生界大气田形成的控制作用[J].天然气地球科学,2010,21(6):875—881.
    66.王锡勇,张庆龙,王良书,等.鄂尔多斯盆地东缘中一新生代构造特征及构造应力场分析[J].地质通报,2010,29(8):1168—1176.
    67.张泓,孟召平,何宗莲.鄂尔多斯煤盆地构造应力场研究[J].煤炭学报,2000,25(增刊):1—5.
    68.何自新.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003.
    69.杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002.
    70. Terzghi K. Theoretical Soil Mechanics. Wiley,New Youk,1943
    71. Fatt I., Davis D.H.Reduction in Permeability with Overburden Perssure[J]. Journal of Petroleum Technology,1952,4(12):34-41
    72. M.Latchie A S, Hemstick R A, Joung L W.The effective compressibility of reservoir rock and its effect on permeability[J]. Journal of Petroleum Technology,1952,10(6):49-51
    73. Biot M A,General theory on three-dimensional consolidation[J]. Journal of Applied Physics,1941(12):155-164
    74. Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid. Journal of Applied Physics,1956(27):457-467.
    75. Biot M A. Deformation of viscoelastic plates derived from thermodynamles[J]. Journal of Applied Physics,1955(98):1869-1870
    76. Biot M A. Mechnics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics,1962(33):1482-1498
    77. Lubinski A. Theory of elasticity for porous bodies displaying a strong pore structure. Proc. 2nd U.S. National Congress of Applied Mechanics.1954:247-256
    78. Geertsma J. The effect of fluid pressure decline on volumetric changes of porous rocks. Trans AIME.1957,210(1):31-340.
    79. Jose G. Numerical simulation of coupled fluid-flow/geomechnical behavior of tight gas reservoirs with stress sensitive permeability[C].SPE39055,1997:1-15
    80.贾文瑞.低渗透油田开发部署中几个问题的研究[J].石油勘探与开发,1995,,22(4):47-51
    81.伍向阳.静水压力下砂岩孔隙度变化实验研究[J].地球物理学报,1995,38(增刊1):275-280
    82.张广洋,胡耀华,姜德义等.煤的渗透性实验研究[J].贵州工学院学报,1995,24(4):65-68
    83.王厉强.低渗透变形介质油藏流入动态关系及应用研究.成都理工大学博士学位论文,2007
    84. J. Zhang, W. B. Standifird, J. C. Roegiers, et al.Stress-Dependent Fluid Flow and Permeability in Fractured Media:from Lab Experiments to Engineering Applications[J]. Rock Mech. Rock Engng.,2007,40(1):3-21
    85. Gangi A F. Variation of whole and fractured porous rock permeability with confining pressure[J]. Int.J.RockMech.Min. Sci.& Geomech.Abstr.,1978,15(3):249-257
    86. Walsh J B. Effect of pore pressure and confining pressure on fracture permeability [J]. Int J. RockMech.Min.Sci.& Geomech.Abstr.,1981,18(2):429-435
    87. Li S P, Li Y S, Wu Z Y. Permeability-strain equations corresponding to the complete stress-strain path of Yinzhuang sandstone[J]. Int J. Rock Mech. Min. Sci.& Geomech. Abstr., 1994,31(4):383-391
    88. Witherspoon PA, Wang JSY, Iwai K, Gale JE. Validity of cubic law for fluid flow in deformable rock fracture. Water Resour Res 1980;16:1016-1024.
    89. Barton N, Bandis S, Bakhtar K. Strength deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci 1985;22:121-140.
    90. Zimmerman RW, Bodvarsson GS. Hydraulic conductivity of rock fractures. Transp Porous Media 1996;23:1-30.
    91. Zimmerman RW. Coupling poroelasticity and thermoelasticity. Int J Rock Mech Min Sci 2000; 37:79-87.
    92. Min KB, Rutqvist J, Tsang CF, Jing L. Stress-dependent permeability of fractured rock masses:a numerical study. Int J Rock Mech Min Sci 2004;41(7):1191-1210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700