用户名: 密码: 验证码:
基于多参数反演的油气检测方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震反演始终是地震勘探中的核心技术,特别是随着地质条件的日趋复杂和成本的急剧上升。目前地震技术的应用不再限于构造形态的描绘,而是己经深入到了储层描述阶段,直至含油气性检测等。近年来,地震油气检测技术在油气勘探中发挥着越来越重要的作用,有关油气检测的分析、参数提取、标定等技术得到了快速发展。
     地震反演的目的是根据地震资料,对地下岩石的波阻抗和其它储层参数进行估算,描述地下岩层的岩性和含流体的性质,为油气资源的勘探开发服务。传统的叠后地震反演只能得到波阻抗信息,使其解决地质问题的能力受到限制,也很难满足开发阶段对油藏精细描述的需要。叠前地震反演技术是勘探地球物理领域正在兴起的一项新技术,该技术在有些国家已经成为油气储层预测中不可缺少的手段,成为地震属性分析和反演研究的热点。叠前地震反演技术充分利用不同角度的叠前AVA地震道上丰富的振幅、频率等信息,可以得到除波阻抗之外的很多其它弹性参数的信息,大大丰富了描述储层的手段,增强了对复杂储层的描述和流体检测的能力,对储层预测和油藏描述具有重要意义。
     本文的研究目的是通过不同角度(近、中角度)叠加数据的反演,获取纵横波速度比、泊松比等重要的弹性参数,用于油气检测。在研究过程中,考虑到反演中构建低频信息首先要作好井资料本身的标准化问题,根据实践经验,提出了一种考虑深度影响的标准化方法。在进行叠前地震反演和叠前地震属性分析时,需要有准确的纵横波测井速度曲线,而在实际生产中往往缺乏横波速度信息,针对横波资料缺乏的问题,研究了目前常用的几种横波速度预测方法的基本原理,包括:经验公式法、模型正演估算法、基于Biot-Gassmann方程的约束反演法,并作了相应的分析。在应用实例中采用约束反演法对叠前反演所必须的横波速度进行了预测,该方法考虑了压实效应,计算每个深度点时只与当前点有关,有物理机理保证,提高了横波速度的预测精度。接下来,对弹性阻抗(EI)及广义弹性阻抗(GEI)的提出,进行了相应的研究。广义弹性阻抗(GEI)克服了弹性阻抗(EI)关于P波与S波速度比从浅到深保持某一常数不变的假设,随着入射角的变化,其量纲不会发生太大变化,所以不需要像弹性阻抗(EI)那样做归一化处理。
     在反演方法上,本文研究了有色反演技术,它是在有色滤波技术的基础上发展起来的一种新的反演方法。有色反演技术的优点是不需要初始模型约束,反演分辨率较高,反演过程中人为因素少。利用不同角度的叠前AVA角道集叠加数据,采用有色反演技术可以获得不同角度的广义弹性阻抗(GEI),通过不同角度的广义弹性阻抗(GEI)数据联合计算就可以提取纵横波速度比、泊松比等重要的弹性参数。
     最后通过应用实例,对同一工区的不同角度的角道集资料,采用有色反演技术进行广义弹性阻抗(GEI)反演,联合计算提取了纵横波速度比、泊松比等弹性参数,并用这些弹性参数对该地区进行油气检测,取得了良好的效果,证实了该方法在复杂储层描述以及流体检测方面具有明显的优势,表明这种多参数反演的油气检测方法具有广阔的应用前景。
The seismic inversion is always the key technology in the seismic exploration, especially with more and more complex geological conditions and the steep rise of the exploration cost. At present, the application of seismic technology is no longer confined to describing the structure; it has entered into the field of reservoir characterization; even to oil-bearing test, etc. In recent years, seismic oil and gas testing technique is playing a more and more important role in the process of oil field prospecting and development. Analysis of the oil and gas detection, parameter extraction and calibration, etc. these techniques have been developed rapidly.
     The seismic inversion aimed at predicting the impedance and other parameters about reservoir property from seismic data. These estimations are then used for characterizing reservoir,determine the lithology of rock and finding out the existence and the type of fluid contained in the rock porosity and thus used for the exploration and development of oil and gas resource. The conventional post-stack seismic inversion can only obtain the impedance and this has limited its capability of solving geology problems and it can't meet the demand of refined characterization of reservoir for the developing stage. The technology of pre-stack seismic inversion is a new technology that is emerging in geophysical exploration field.In some countries this technology has become an indispensable means of oil and gas reservoir prediction, and the hot spot of seismic attribute analysis and inversion study. The technology of pre-stack seismic inversion takes full advantage of abundant amplitude, frequency and other information in different angles pre-stack AVA seismic trace.It can obtain much more elastic parameters other than acoustic impedance,it can provide more way to characterizing reservoir and has enhanced the capability of describing complex reservoir and detection of fluid,which has important significance in reservoir prediction and reservoir characterization.
     Purpose of this paper is to obtain primary-shear wave velocity ratio, Poisson's ratio and other important elastic parameters for hydrocarbon detection,by using inversion results of different angles (near, medium angle) stack data. In the course of the study,taking into account a problem that the construction of low-frequency information in the inversion first to make the standardization of the well data itself, according to practical experience, a standardized method to consider impact of the depth is proposed. When carrying out pre-stack seismic inversion and pre-stack seismic attribute analysis, it requires accurate logging velocity curve of primary and shear wave. In the actual production, we often lack the S-wave velocity information,this paper studys currently several methods of shear wave velocity prediction and their basic principles for the problem of lack shear wave data.including: empirical formula, the model forward estimation method, constrained inversion method based on Biot-Gassmann equation, and make relevant analysis. In the application example,we predict S-wave velocity that pre-stack inversion demands,using constrained inversion method.The method takes into account the compaction effect, as calculated each depth point is only related to the current point,it has a physical mechanism to ensure and improves shear velocity prediction accuracy. Next, making a study of the corresponding for origin of the elastic impedance (EI) and the generalized elastic impedance (GEI).Generalized elastic impedance (GEI) overcomes the problem that velocity ratio of P-wave and S-wave maintains a constant from shallow to deep on elastic impedance (EI).With the incidence angle changes, it will not be much change in the dimension, so you do not need make normalization as same as elastic impedance (EI).
     On the inversion method, this paper studys colored inversion technology, it is a new inversion method that is developed on the basis of the colored filter technology.Colored inversion technique has the advantage that it does not require constraint of the initial model,and has higher resolution of inversion, less human factors during inversion. Using stack data of different angles pre-stack AVA angle gather, to obtain generalized elastic impedance (GEI) of different angles by colored inversion technology.Through joint calculation of generalized elastic impedance (GEI) of different angles,we can extract primary-shear wave velocity ratio, Poisson's ratio and the other important elastic parameters.
     Finally in an application example, using colored inversion technology makes generalized elastic impedance (GEI) inversion for angle gather data of the different angles on the same work area,then extract the primary-shear wave velocity ratio, Poisson's ratio and the other important elastic parameters by joint calculation,and using these elastic parameters make oil and gas detection in the region that has achieved good results, which confirmed that the method has the obvious advantage in complex reservoir description and fluid testing,and showed that hydrocarbon detection method of this multi-parameter inversion has broad application prospect.
引文
[1] Knott C.G.Reflection and refraction of elastic waves with seismological applications[J].Philosophy Magazine,1899:48,64-97,567-569.
    [2] Zoeppritz K.Uber Erdbebenwellen.On the refleetion and propagation of seismic waves[J].Gottinger Nachrichten,1919:66-84.
    [3] Nafe J.E.Reflection and transmission coefficients at a solid-solid interface of high velocity contract[C].Bulletin of the Seismological Society of America,1957 47:205-219.
    [4] Aki K.,Richards P.G.Quantitative seismology:Theory and methods[M]:W.H.Freeman and Co.,1980.
    [5] Bortfeld R.Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves[J].Geophysics Prospect,1961:485-505.
    [6] Hilterman F.j.Seismic Lithology[M].SEG-Continuing Education,1983.
    [7] Shuey R.T. A simplification of the Zoeppritz equations[J].Geophysics, 1985,50:609-614.
    [8] Smith G.C. and Gidlow P.M.Weighted stacking for rock property estimation and detection of gas[J].Geophysics Prospect,1987,35:993-1014.
    [9] Fatti J.L.,Smith G.C.,Vail P.J.,Strauss P.J.,and Levitt P.R.Detection of gas in sandstone reservoirs using AVO analysis[J].Geophysics,1994,59:1362-1376.
    [10] Zheng X.United formulas for reflection and transmission in potential[C].Presented at the 62nd Annual International SEG Meeting,New Orleans,Expanded Abstract,1992:1282-1284.
    [11] Ursin B. and Tjaland E.A strategy for approximating the Zoeppritze quations[C].55th Mtg.:Eur.Assn.of Exploration Geophysics.,Session,1993,P027.
    [12] Ramos A.C.B and Castagna l,P.Useful approximations for converted-wave AVO[J]. Geophysics,2001,66:1721-1734.
    [13] Patrick Connolly.Elastic impendanee[J].The Leading Edge,1999,18(4):438-452.
    [14] Whitcombe D N.Elatic impedance normalization[J].Geophysics,2002,67:60-62.
    [15] Whitcombe D N.,et at.Extended elastic impedance for fluid and lithology prediction[J],Geophysics,2002,67:63-67.
    [16]甘利灯等.弹性阻抗的概念及其精度分析[C].第19届中国地球物理学会年会,2003:29-30.
    [17]甘利灯,赵邦六,杜文辉,李凌高.弹性阻抗反演及其在岩性和流体预测中的潜力分析[J].石油物探,2005.
    [18]马劲风.地震勘探中广义弹性阻抗的正反演[J].地球物理学报,2003,46(1):118-124.
    [19] Jinfeng Ma.Generalized Elastic Impedance[C].73th SEG Annual Meeting,Expanded Abstracts,AVO,2003:254-257.
    [20] MaJinfeng.Ray-path Elastic Impedance[C].CSEG National Convention,2004.
    [21] Castagna J P , Batzle M L , and Eastwood R L. . Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks[J].Geophysics,1985,50(4):571-581.
    [22] Tosaya C and Nur A. Effect of diagenesis and clay on compressional velocities in rocks[J].Geophysical Research Letters,1982,9(1):5-8.
    [23] Han D H, Nur A. and Morgan D. Effect of porosity and clay content on wave velocity in sandstones[J]. Geophysics,1986. 51(11):2093-2107.
    [24] Blangy J.P. and Nur A. A new look at ultrasonic shear velocities in sands[J]. SEG/EAEG summer research workshop, Big Sky, Montana. Expanded Abstracts, 1992:374-376.
    [25] Jorstad A,Mukerji T and Mavko G.Model-based shear-wave velocity estimation versus empirical regressions[J]. Geophysical Prospecting,1999,47(5):785-787.
    [26] Xu S Y and White R E. A physical model for shear-wave velocity predicting[J]. Geophysical Prospecting,1996,44(4):687-717.
    [27] Xu S Y, White R E. A new velocity model for clay-sand mixtures[J]. Geophysics Prospecting, 1995, 43(1):91-118.
    [28] Robert G K and Xu S Y.An approximation for the Xu-White velocity model[J].Geophyscis,2002,67(5):1406-1414.
    [29]郭栋,王兴谋,印兴耀,吴国忱.横波速度计算方法与应用[J].油气地球物理,2007,5(3):18-22.
    [30] Greenberg M L,Castagna J P.Shear-wave velocity estimation in porous rocks: Theoretical formulation , prelimulation, preliminary verification and applications[J]. Geophysical Prospecting,1992,40(2):195-209.
    [31]楚泽涵,陈丰,刘祝萍等.估算地层横波速度的新方法[J].测井技术,1995,19(5):313-318.
    [32]云美厚,管志宁.储层条件下砂岩纵波和横波速度的理论计算[J].石油物探,2002,41(3):289-292,298.
    [33] Lee M W. A simple method of predicting S-wave velocity[J]. Geophysics, 2006,69(6):161-164.
    [34]李庆忠.岩石的纵、横波速度规律[J].石油地球物理勘探,1992,27.
    [35]朱广生.地震资料储层预测方法(M).北京:石油工业出版社,1995.
    [36] Kuster G T,Toksoz M N. Velocity and attentation of seismic waves in two phase media:Part1,Theoretical formulation [J]. Geophysics,1974,39(5):587-606.
    [37] Gassmann F. Uber die elastizitat porous media [J]. Vier.der Natur.Gesellschaft in Zurich,1951,96(1):1-23.
    [38] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems[J].Proceedings of the Royal Society , 1957 , A241:376-396.
    [39]孙福利,杨长春,麻三怀等.横波速度预测方法[J].地球物理学进展,2008,23(2):470-474.
    [40] Santos L T,Tygel M. Impedance-type approximations of the P-P elastic reflection coefficient: Modeling and AVO inversion[J]. Geophysics, 2004,69(2):592-598.
    [41]孙鹏远,李彦鹏.一种简单的多参数地震反演方法[P].中国专利:CN101329405A, 2008-12-24.
    [42]陆基孟.地震勘探原理[M].北京:石油大学出版社,1993.
    [43] Seymour R H. Exploration of Reservoir Lithology away from Wells Use Seismic-Geologic Controls[C].第51届EAEG年会论文集,北京:石油工业出版社,1989:211-221.
    [44] Angeleri G P, Carpi R. Porosity prediction from seismic data[J]. Geophysics Prospect, 1982,30:580-607.
    [45] Ma,J.The Generalized Elastic Impedance Forward Modeling and inversion Method[J]. Journal of Chinese Geophysics, 2003 ,46:118~124.
    [46]杨帅,徐云霞.考虑深度变化的声波曲线标准化及应用[J].国外测井技术,2009.5.
    [47]高树芳,范玲等.测井曲线标准化方法及其对测井解释结果的影响[J].国外测井技术,2008.
    [48]王志章,熊琦华,宋杰英等.测井资料标准化及应用效果[J].测井技术.
    [49]冷洪涛,刘军,刘波.谈油田勘探开发中发的测井标准化[J].石油工业技术监督,2003.
    [50]葛华,郑伟(译).测井标准化:方法和准则[J].测井技术信息,2005.
    [51]谭茂金,范宜仁,张晋言.测井数据标准化方法研究及软件设计[J].物探化探计算技术,2006.
    [52]鲁红,李建民,杨清山.进行声波测井资料校正的一种方法[J].大庆石油地质与开发,1996.
    [53] Barnes A E. Another look at NMO stretch[J]. Geophysics, 1992,57(5): 749-751.
    [54]乔悦东,高云峰,安鸿伟.基于Xu-White模型的优化测井横波速度预测技术研究与应用[J].石油天然气学报,2007,29.
    [55]张杨.利用Xu-White模型估算地震波速度[J].成都理工大学学报(自然科学版),2005,32.
    [56]赵德勇.佐普里兹弹性阻抗正反演理论研究[D].西北大学,2006.
    [57]李凌高.叠前反演方法[D].北京:中国石油勘探开发研究院,2005.
    [58]杨春峰.地震叠前反演技术及应用[D].北京:中国地质大学,2008.
    [59]撒利明.储层反演油气检测理论方法研究及其应用[D].广州:中国科学院广州地球物理化学研究所,2003.
    [60]王炳章.地震岩石物理学及其应用研究[D].成都理工大学,2008.
    [61]孙鹏远.AVO技术新进展[J].勘探地球物理进展,2005,28.
    [62] Brain.H.Russel and DanHampson.叠后地震反演方法的比较[D].61st SEG Meeting,1993.
    [63] Jinfeng Ma.The extending of elastic impedance and generalized elastic impedance[C],CPS/SEG Beijing 2004 Intemational GeoPhysical Conefrence and Expolsion,Beijing,China.
    [64] Subhashis Mallikc.A simple approximation to the P-wave reflection coeffieient and its implication in the inversion of amplitude variation with offset data[J].Geophysics,1993,VOI.58(4):544-552.
    [65] Yanhgua Wang.Approximations to the Zeoppritz equations and their use in AVO analysis[J].GeoPhysics,1989,Vol.54(6):680-688.
    [66]郑晓东.Zeoppritz方程的近似及其应用[J].石油地球物理勘探,1991,26(2):129-144.
    [67]唐湘容,贺振华,黄德济.扩展弹性阻抗理论入射角与实际入射角的等效关系研究[J].石油物探,2008,47.
    [68]田振平.叠前波阻抗反演方法[J].石油地球物理勘探,1995,30.
    [69]王保丽,印型耀,张繁昌.弹性阻抗反演及应用研究[J].地球物理学进展,2005,20.
    [70]曹谊,娄晓东(编译).弹性波阻抗反演[J].油气地球物理,2003.
    [71]王振国,陈小宏,王学军等.AVO方法检测油气应用实例分析[J].石油地球物理勘探,2007.
    [72]雷茂盛,陈裕明,刘杰.地震多参数油气检测方法[J].大庆石油地质与开发,1998.
    [73]牟永光.地震勘探资料数字处理方法[M].石油工业出版社,1981.
    [74]许伯勋,白旭滨,于常青.地震勘探信息技术——提取、分析和预测[M].地质出版社,2001.
    [75]陈颙,黄庭芳,刘恩儒.岩石物理学[M].中国科学技术大学出版社,2009.
    [76]李庆忠.走向精确勘探的道路—高分辨地震勘探系统工程剖析[M].石油工业出版社,1994.
    [77]赵政章,赵贤正,王英民等.储层地震预测理论与实践[M].科学出版社,2005.
    [78]王家映.地球物理反演理论[M].北京:高等教育出版社,2002.
    [79]王家映.地球物理资料非线性反演方法讲座(一)——地球物理反演问题概述[J].工程地球物理学报,2007,4(1):1-3.
    [80]王家映.地球物理学[M].武汉:中国地质大学出版社,1985.
    [81]王家映.地球物理学中的反演理论[J].地球科学,2000,9(3):133-147。
    [82]杨文采.地球物理反演和地震层析成像[M].北京:地质出版社,1989.
    [83]杨文采.地震道的非线性混沌反演——理论和数值试验[J].地球物理学报,1993。
    [84]傅淑芳,刘宝诚.地震学教程[M].北京:地震出版社,1991.
    [85]赵铭海.常用叠后波阻抗反演技术评价[J].油气地质与采收率,2004,11(1):36-38.
    [86] M.格劳尔.地震岩性学[M].北京:石油工业出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700