用户名: 密码: 验证码:
强风作用下输电线塔结构塑性疲劳破坏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高耸输电塔结构作为大型生命线工程的重要组成部分,风力是其主要的设计荷载。近年来输电线塔在强风作用下的倒塔破坏事件层出不穷,这不仅严重地影响着人们的生产建设,而且还会导致其它严重的次生灾害。因此,研究输电线塔结构在强风荷载作用下的倒塔破坏机理,确保风力作用下输电线路的正常工作,以及实时把握输电线塔结构的工作状态具有重要的工程意义。本文以汉江大跨越输电塔结构为研究背景,系统地研究了作用在输电线塔上的下击暴流强风荷载模型、输电线塔的非线性风振响应分析方法、输电塔杆件的塑性疲劳破坏模型、输电塔结构在强风荷载作用下的倒塔破坏过程以及长期风荷载作用下输电塔杆件的裂纹萌生疲劳寿命。
     本文研究了输电塔线耦联体系有限元模型的建立方法,并提出用带初应力空间四节点索单元来模拟输电线。分析了塔线耦合体系的动力特性,研究了输电线对输电塔结构动力特性的影响。编写了输电塔线体系有限元模型的建立、静力分析、动力分析的一系列程序,解决了应用一些有限元软件计算繁琐、收敛速度慢、不能考虑自定义索单元等缺陷,成功实现了快速、准确地计算输电塔线耦合体系的静动力响应。并比较了输电线对输电塔结构风振响应的影响。
     由于下击暴流强风荷载的作用是输电塔结构倒塔破坏的重要原因,在广泛研究下击暴流特征的基础上,本文提出了用确定性时变过程描述下击暴流平均风速、用调制非平稳随机过程描述下击暴流脉动风速的下击暴流力学模型,并提出了数值模拟下击暴流强风荷载时程的方法,为输电塔结构的分析和设计提供强风荷载模型。
     通过对一批钢结构试件进行塑性范围内的等位移幅循环加载,测得不同位移幅值作用下试件的滞回曲线,统计了不同位移幅值循环加载时的极限循环次数和极限耗能,并研究了低周疲劳循环过程中杆件刚度变化的规律。鉴于目前广泛应用的破坏准则的一些缺陷,在钢杆件低周疲劳试验的基础上,提出了输电塔结构杆件基于塑性疲劳(s-n)曲线的破坏模型,改进了目前应用的一些破坏准则的缺陷。
     本文研究了输电线塔结构在下击暴流强风荷载作用下的弹塑性动力分析方法,并结合本文提出的基于塑性疲劳(s-n)曲线的破坏模型,仿真了输电线塔结构在下击暴流强风作用下的倒塔破坏过程,为输电塔结构破坏机理和破坏过程的研究奠定了基础。
     本文建立了风力作用下输电塔结构安全预警中裂纹萌生疲劳寿命评估方法。通过“安全预警系统实时识别作用在输电塔结构上的实时风荷载…-实时求取风荷载作用下结构构件的应力响应时程——基于Miner疲劳累积损伤准则利用雨流计数法计算各构件的实际风致疲劳累积损伤”和“不在线确定结构所在地按其强度归类的风荷载等级——统计不同等级风荷载在每年内出现的概率特性及其样本——估算结构各构件在剩余时间中的疲劳累积损伤”的方法来估算结构杆件的裂纹萌生疲劳寿命。
Wind load is a very important designing load of high-rise transmission tower, which is the important component of large scale lifeline system. The collapse accidents of transmission towers occur now and then by wind excited, and high-rise transmission towers' safety is directly influenced national productivity and people's life. For a severe wind would be prone to bring out easy to result in elasto-plasticity behavior of the element, then induce the accumulated low-cycle fatigue damage and the collapse of the tower, studying on the structure's failure or collapse mechanism, realizing the structure's working status and insuring the security of service transmission symtem are very significant questions for discussion. Taking the Hanjiang long span transmission tower as the engineering background, the simulation method of downburst wind loads, analysis method of nonlinear transmission system's wind-induced response, spatial steel element's low-cycle fatigue failure model, the failure process of transmission tower under the severe wind load and long-standing wind induced crack initiation fatigue life evaluation technology are studied in this paper.
     In this thesis, the finite element model establishment method of transmission line's cable-structure mixed system is studied. In order to simulate transmission line, a prestressed four-node isoparametric curved element is proposed and a series of its finite element formulas are derivated. Then cable-structure mixed system's dynamic characteristics are analyzed and cable's influence on the dynamic characteristics of the tower is studied. Cable-structure mixed system's nonlinear static and dynamic analysis method are studied, and calculating code is compile for the establishing the model of the system, static and dynamic analysis using Matlab. The method and its code conquered many problems such as complicated calculating, difficult to converge and unable to consider the user-defined cable element and make the calculating on the efficient and accurate way. Then, the influence of the cable on the wind-induced response of the structure is discussed.
     Based on multidimensional stochastic vibration theory, modified spectral representation method are studied to simulate multidimensional cross-correlation fluctuating wind loads acting on the transmission tower structure. After widely investigating the characteristic of the downburst, the mechanism model of downburst is studied, a deterministic-stochastic hybrid downburst model and the loads simulating method of this model are proposed to provide the practicable loads for elastic-plastic dynamic analysis of the transmission tower under the action of hurricane.
     A number of steel specimens were tested to get the hysteretic curve under different plastic strain amplitude in order to calculate respective amplitude's ultimate cyclic number and ultimate plastic strain energy. The descending rule of specimen' stiffness during cyclic process is also studied. For several drawbacks of the widely used damage models, steel component's failure model based on low-cycle fatigue s-n curve is proposed and then verified by low-cycle fatigue tests of many specimens. The experimented results of cyclic tension-compression of steel shows that the proposed models can accurately describe the failure process of the member and several drawbacks of the widely used damage models are improved.
     Combining with the failure criterion based on low-cycle fatigue s-n curve, the elastic-plastic dynamic analysis method of the cable-structure mixed system under the action of downburst is studied, and the collapse process of tower is displayed under the action of downburst. All of this laid a solid foundation for the research of damage mechanism and failure process of transmission tower.
     Based on the fatigue cumulative damage theory, the real time crack initiation fatigue life evaluation method in wind-induced transmission tower's safe warning is proposed. By "identifying real time wind loading acted on the transmission tower by structure's safe warning system--obtaining the element's stress response time history by analyzing the nonlinear model--calculating each element's wind-induced real time cumulative damage" and "classifying the wind loading of the structure on site into many levels by its intensity--calculating probability characteristic of wind's appearance--evaluating crack initiation fatigue life", the real time residual crack initiation fatigue life is evaluated.
引文
[1]项立人.应该加快我国特高压输电前期工作研究[J].电网技术,1996,20(2):54-58.
    [2]P McCarthy,M Melsness.Severe weather elements associated with September 5,1996 hydro tower failures near Grosse Isle,Manitoba,Canada.Manitoba Environmental Service Centre,Environment Canada,1996,21 pp.
    [3]Hawes H,Dempsey D.Review of recent Australian transmission line failures due to high intensity winds.Proceedings of the Task Force of High Intensity Winds on Transmission Lines,Buenos Aires,1993:19-23.
    [4]D Dempsey,H White.Winds wreak havoc on lines[J].Transmission and Distribution World,1996,48(6):32-37.
    [5]谢强,张勇,李杰.华东电网500 kV任上5237线飑线风致倒塔事故调查分析[J1.电网技术,2006.30(10):59-63.
    [6]Holmes J D,Oliver S E.An empirical model of a downburst[J].Engineering Structures,2000,22:1167-1172.
    [7]Fujita T T.Tornadoes and downbursts in the context generalized planetary scales[J].Journal of Atmospheric Science,1981,38:1511-1534.
    [8]Oseguera R M,Bowles R L.A simple analytic 3-dimensional downburst model based on boundary layer stagnation flow.NASA Technical Memorandum 100632,July,1988.
    [9]Vicroy D D.Assessment of microburst models for downdraft estimation[J].Journal of Aircraft,1992,29:1043-1048.
    [10]Wood G S,Kwok K C S.An empirically derived estimate for the mean velocity profile of a thunderstorm downburst[C].7th AWES.Workshop.Auckland,1998.
    [11]Lizhong Chen,Chris W Letchford.A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure[J].Engineering Structures 2004,(26):619-629.
    [12]F H Proctor.Numerical simulations of an isolated microburst.Part 1:dynamics and structure[J].Atmos.Sci.,1988,(45):3137-3159.
    [13]R E Selvam,J D Holmes.Numerical simulation of thunderstorm downdrafts[J].Wind Eng.Ind.Aerodyn,1992,(44):2817-2825.
    [14]J D Holmes.Physical modeling of thunderstorm downdrafts by wind tunnel jet[C].Second AWES Workshop,Monash University,21-22 February 1992,29-32.
    [15]R Cassar.Simulation of a thunderstorm downdraft by a wind tunnel jet[R].Summer Vacation Report, DBCE 92/22 (M) CSIRO, Australia, February 1992.
    [16]G S Wood, K C S Kwok, N A Motteram, D.F.Fletcher.Physical and numerical modeling thunderstorm downbursts[J].Wind Eng.Ind.Aerodyn.2001, (89) : 535-552.
    [17]A Sengupta, P P Sarkar, G Rajagopalan.Numerical and physical simulation of thunderstorm downdraft winds and their effects on buildings[C].First American Conference on Wind Engineering,4-6 June 2001,Clemson,SC.
    [18]Letchford C W, G Illidge.Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet[C].in: Larsen,Larose,Livesey (Eds.) ,Wind Engineering into the 21st Century, Balkema, Rotterdam, 1999.
    [19]C W Letchford, C Mans.Translation effects in modeling thunderstorm downbursts[C].Fourth International Colloquium on Bluff Body Aerodynamics and Applications, 11-14,September 2000,Bochum,Germany, 175-178.
    [20]M S Mason, C W Letchford, D L James.Pulsed wall jet simulation of a stationary thunderstorm downburst, Part A: Physical structure and flow field characterization [J].Journal of Wind Engineering and Industrial Aerodynamics, 2005, (93) :557-580.
    [21]M T Chay, C W Letchford.Pressure measurements on a building model in a simulated downburst flow[C].First American Conference on Wind Engineering, 4-6, June 2001,Clemson, SC.
    [22]M T Chay.Physical Modeling of thunderstorm downbursts for Wind Engineering applications[D].ME Thesis, Texas Tech University, July 2001.
    [23]C W Letchford, M T Chay.Pressure distributions on a cube in a simulated thunderstorm downburst.Part A: moving downburst observations[J].Journal of Wind Engineering and Industrial Aerodynamics, 2002, (90) :733-753.
    [24]C W Letchford, M T Chay.Pressure distributions on a cube in a simulated thunderstorm downburst.Part B: moving downburst observations[J].Journal of Wind Engineering and Industrial Aerodynamics, 2002, (90) :733-753.
    [25]Selvam R P,Holmes J D.Numerical simulations of thunderstorm downdrafts[J].Journal of Wind Engineering and Industrial Aerodynamics, 1992,41-44:2817-2825.
    [26]G S Wood, K C S Kwok, N A Motteram, D F Fletcher.Physical and numerical modeling of thunderstorm downbursts[J].Wind Eng.Ind.Aerodyne,2001, (89) : 535-552.
    [27]H Hangan, D Roberts, Z Xu, J Kim.Downburst simulation, Experimental and numerical challenges[C].Proceedings of the 11th International Conference on Wind Engineering,Lubbock, Texas, Electronic Version,2003.
    [28]Chay M T,Albermani F,Wilson R.Numerical and analytical simulation of downburst wind loads[J].Engineering Structures,2006,(28):240-254.
    [29]Ballio G,Maberini F,Solari G.60 year old 100m high steel tower limit states under wind actions[J].Journal of Wind Engineering and Industrial Aerodynamics,1992,43(3):2089-2100.
    [30]Momomura Y,Marukawa H,Okamura T,et al.Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area[J].Journal of Wind Engineering and Industrial Aerodynamics,1997,72:241-252.
    [31]Okamura T,Ohkuma T,Hongo E,et al.Wind response analysis of a transmission tower in a mountanious area[J].Journal of Wind Engineering and Industrial Aerodynamics,2003,(91):53-63.
    [32]Harikrishna P,et al.Analytical and experimental studies on the gust response of a 52m tall steel lattice tower under wind loading[J].Computer and Structures.1999,(70):149-160.
    [33]楼文娟,孙炳楠.高耸格构式结构风振数值分析及风洞试验[J].振动工程学报,1996,(9):318-322.
    [34]楼文娟,孙炳楠.高耸塔架横风向动力风效应[J].土木工程学报,1999,(32):67-71.
    [35]楼文娟,孙炳楠.风与结构的耦合作用及风振响应分析[J].工程力学,2000,(17):16-22.
    [36]韩银全,梁枢果,邹良浩等.输电塔线体系完全气弹模型设计[C].第十三届全国结构风工程学术会议论文集(上册),2007,260-265
    [37]程志军,付国宏,楼文娟等.高耸格构式塔架风荷载试验研究[J].实验力学,2000,(15):51-55.
    [38]付国宏,程志军,孙炳楠等.架空输电线路风振试验研究[J].流体力学实验与测量,2001,15(1):16-21.
    [39]邓洪洲,朱松哗,陈晓明等.大跨越输电塔线体系气弹模型风洞试验[J].同济大学学报,2003,31(2):132-137.
    [40]邓洪洲,朱松哗,王肇民.大跨越输电塔线体系动力特性及风振响应[J].建筑结构,2004,34(7):25-28.
    [41]Loredo-Souza A.M,Davenport A G.A novel approach for wind tunnel modeling of transmission lines[J].Journal of Wind Engineering and Industrial Aerodynamics.2001,(89):1017-1029.
    [42]Loredo-Souza A M,Davenport A G.Wind tunnel aeroelastic studies on the behaviour of two parallel cables[J].Journal of Wind Engineering and Industrial Aerodynamics.2002,(90):407-414.
    [43]Davenport A G.Gust loading factors[J].Journal of the Structural Division,ASCE.1967,(93):11-34.
    [44]Solari G.Alongwind response estimation:closed-form solution[J].Journal of the Structural Division,ASCE.1982,(108):225-244.
    [45]Solari G.Analytical estimation of the alongwind response of structures[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,(14):467-477.
    [46]Kasperski M.Extreme wind load distributions for linear and nonlinear design[J].Engineering Structures.1992,(14):27-34.
    [47]Kasperski M,Niemann H J.The LRC method:a general method for estimating unfavourable wind load distributions for linear and nonlinear structural behaviour[J].Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44:1753-1763.
    [48]Kasperski M.Aerodynamics of low-rise building and codification[J].Journal of Wind Engineering and Industrial Aerodynamics,1993,(50):253-262.
    [49]Holmes J D.Along-wind response of lattice towers,part Ⅰ:derivation of expressions for gust response factors[J].Engineering Structures,1994,(16):287-292.
    [50]Holmes J D.Along-wind response of lattice towers,part Ⅱ:aerodynamic damping and deflections[J].Engineering Structures,1996,(18):483-488.
    [51]Holmes J D.Along-wind response of lattice towers,part Ⅲ:effective load distributions[J].Engineering Structures.1996,(18):489-494.
    [52]Loredo-Souza A.M,Davenport A G.The effects of high winds on transmission lines[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76:987-994.
    [53]Davenport A G.How can we simplify and generalize wind loads[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,54-55:657-669.
    [54]王肇民,Peil U.塔桅结构[M].上海;同济大学出版社,1989.
    [55]H Max Irvine.Cable Structures[M].The MIT Press,1981.
    [56]S Ozono,J.Maeda.In-plane dynamic interaction between a tower and conductors at lower frequencies[J].Eng Struct.,1992,14(4):210-216.
    [57]H Yasui,et al.Analytical study on wind-induced vibration of power transmission towers[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,83(2):431-441.
    [58]A.Merci,LSouza.The Behaviour of Fransmission Lines Under High Wind[D].the University of Western Ontario,1994
    [59]ALBERMANI F G A,KITIPORNCHAI S.Numerical simulation ofstructural behaviour of transmission towers[J].Thin-walled Structures,2003,167-177.
    [60]Shehata A Y,Damatty A A E,et al.Finite element modeling of transmission line under downburst wind loading[J].Finite elements in analysis and design,2005,(42):71-89
    [61]李宏男等.输电塔-电缆体系的合理抗震简图[J].地震工程与工程振动,1989,10(2):73-87.
    [62]李宏男,王前信.大跨越输电塔体系的动力特性[J].土木工程学报,1997,30(5):28-36.
    [63]Liang S.G and others.An analysis ofwind induced responses for Dashengguan electrical transmission tower-line system across the Yangtze River[A].Proceedings of the 10th International Conference on Wind Engineering[C].Copenhagen,1999,565-570.
    [64]朱继华.输电塔线体系动力特性及风振响应的理论与实验研究[D].武汉,武汉大学土木建筑工程学院,2001.
    [65]Park Y J,Ang A H S.Mechanistic seismic damage model for reinforced concrete[J].Journal of Structural Engineering,ASCE,1985,110(4):722-739.
    [66]Park Y J,Ang A H S,Wen Y K.Seismic damage analysis of reinforced concrete buildings[J].Journal of Structural Engineering,ASCE,1985,10(4):740-756.
    [67]Satish Kumar,Tsutomu Usami.Damage Evaluation in Steel Box Columns by Cyclic Loading Tests.Journal of Structure Engineering,1996,122(6):626-634.,
    [68]Shen Zuyan,Dong Bao.An experiment-based cumulative damage mechanics model of steel under cyclic loading[J].Advances in Structural Engineering,1997(1):392-461
    [69]董宝,沈祖炎.空间钢构件考虑损伤累积效应的恢复力模型及试验验证[J].上海力学,1999,10(4):341-347.
    [70]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,32(11):41-49.
    [71]S.L.Mccabe,W.J.Hall.Assessment of Seismic Structural Damage.J.Struct.Engng.1989,ASCE 115,2166-2183
    [72]江近仁,孙景江.砖结构的地震破坏模型[J].地震工程与工程振动,1987(1).
    [73]陈永祁,龚思礼.结构在地震动时延性和累积性疲耗能的双重破坏准则[J].建筑结构学报,1986(1).
    [74]瞿伟廉,欧进萍,李桂青,高耸结构在风荷载作用下的可靠度分析[J].建筑结构学报,1984(4).
    [75]瞿伟廉,李桂青,自立式高耸结构抗风可靠性分析的改进方法[J].建筑结构学报,1988(5).
    [76]杜修力,欧进萍.钢筋混凝土结构低周疲劳效应对地震累积破坏的影响.见欧进萍主编.结构工程科学发展青年专家研讨会论文集.哈尔滨:国家自然科学基金委员会,1992.65-72.
    [77]刘伯权,白绍良,徐云中等.钢筋混凝土柱低周疲劳性能的试验研究[J].地震工程与工程振动,1998,18(4):82-89
    [78]刘伯权.钢筋混凝土抗震结构的破坏准则及可靠性分析[D].重庆:重庆建筑大学,1994.
    [79]江近仁,孙景江.考虑参数不确定性的结构动力可靠度分析[J].世界地震工程,1992,(1)1
    [80]高政国等.基于不同破坏准则的组合墙房屋抗震可靠性分析[J].建筑结构,2000,(10)1
    [81]Crandall S H,Mark W D.Random vibration in mechanical systems[M].New York,Academic press,1963.
    [82]Lutes C D,Corazao M,et al.Stochastic fatigue damage accumulation[J].Journal of structure engineering,1984,(110):2585-2601.
    [83]Jiao G,Moan T.Probabilistic analysis of fatigue due to Gaussian load processes[J].Probabilistic engineering mechanics,1990,(5):76-83.
    [84]Winterstein S R.Non-linear vibration models for extremes and fatigue[J].Journal of engineering mechanics,ASCE,1986,(114):1772-1790.
    [85]Bolotin V V.About life estimation at stationary random loads[M].Mashinostroenije,Moscow,1959.
    [86]Peil U.Fatigue of high and slender structures under wind load[J].Aspects in modern computational structural analysis,1997.
    [87]Huang X,Hancock J W.A reliability analysis of fatigue crack growth under random loading[J].Fatigue Fract.Eng.Mater.Struct.,1989,(12):247-258.
    [88]Chaudhury G K,Dover W.Fatigue analysis of offshore platforms subject to sea wave loading[J].International journal of fatigue,1985,(7):13-19.
    [89]Chow C L,Li D L.An analytical solution for fast fatigue assessment under wide-band random loading[J].International journal of fatigue,1991,(5):395-404.
    [90]Wirsching P H.Fatigue under wide band random stresses[J].Journal of the structural division,1980,(106):1593-1607.
    [91]Holmes J D.Fatigue life under along-wind loading:closed-form solutions[J].Engineering structures,2002,(24):109-114.
    [92]Robertson A P,Holmes J D,Smith B W.Verification of closed-form solutions of fatigue life under along-wind loading[J].Engineering structures,2004,(26):1381-1387.
    [93]王之宏.桅杆结构的风振疲劳分析[J].特种结构,1994,(11):3-8.
    [94]屠海明,邓洪洲.基于频域的桅杆结构风振疲劳分析[J].特种结构,1999,(15):34-36.
    [95]欧进萍,叶骏.结构风振的概率疲劳累积损伤[J].振动工程学报,1993,(6):164-169.
    [96]邓洪洲,温应龙,何鹏飞.格构式桅杆顺风向风振疲劳可靠性分析[J].特种结构,2004,(21):31-35.
    [97]Paris P C,Gomez M P,Andrson W E.A rational analytic theory of fatigue[J].The trend in engineering,1961,(13):9-14.
    [98]Dolinski K.Fatigue crack growth with retardation under stationary stochastic loading[J].Engineering fracture mechanics,1987,(27):279-290.
    [99]Dolinski K.Formulation of a stochastic model of fatigue crack growth[J].Fracture engineering of material structures,1993,(16):1007-1019.
    [100]Bogdanoff J L,Kozin F.Probabilistic models of cumulative damage[M].Wiely,New York,1985.
    [101]Lin Y K,Yang J N.A stochastic theory of fatigue crack propagation[J].AIAA,1985,(23):117-124.
    [102]屠海明,邓洪洲.桅杆结构风振疲劳分析[J].四川建筑科学研究,2001,(27):6-8.
    [103]徐志宏,邓洪洲.桅杆结构纤绳与杆身连接拉耳风致疲劳寿命预测[J].特种结构,2004,(21):25-27.
    [104]李宏男,白海峰.高压输电塔-线体系抗灾研究的现状与发展趋势[J].土木工程学报,2007,(02).
    [105]张勇.输电线路风灾防御的现状与对策[J].华东电力,2006(03)
    [106]陈波.高耸塔架结构振动反应的智能混合控制[D].武汉理工大学,2003
    [107]李素超,李惠.大跨越输电塔线耦联体系的动力特性及风振响应[C].第十三届全国结构风工程学术会议论文集(上册),2007.
    [108]刘群,杨进春,周粼波.高压架空输电线路钢结构塔架与导线风致耦合振动现象研究[J].中国电力,1997(09).
    [109]W C Knudson.Static and dynamic analysis of cable net structures[D].Doctoral dissertation,University of Califormia,Berkely,Califormia,1971.
    [110]H J Ernst.Der Modul von Seilen unter Beruksichtigung des Durchhanges[J].Der Bauingenieur,1965,40(2):52-55.
    [111]杨孟钢,陈政清.基于U.L.列式的两节点悬链线索元非线性有限元分析[J].土木工程学报,2003,36(8):63-68
    [112]唐建民,沈祖炎,钱若军.索穹项结构非线性分析的曲线索单元有限元法.同济大学学报,1996,24(1):6-10.
    [113]刘北辰.工程计算力学理论与应用[M].北京:机械工业出版社,1994.
    [114]杨必峰,马人乐.输电塔线体系的索杆混合有限元法[J]同济大学学报(自然科学版),2004.(03)
    [115]胡松,何艳丽,王肇民.大挠度索结构的非线性有限元分析[J].工程力学,2000,17(2):36-43.
    [116]张相庭,结构风压和风振计算[M],同济大学出版社,1985
    [117]瞿伟廉.高层建筑和高耸结构的风振控制设计[M].武汉:武汉测绘科技大学出版社,1991
    [118]刘学利,王肇民.高耸结构空间相关风场的模拟研究[J].四川建筑,2000,(04)
    [119]Shehata,A.Y.,El Damatty,A.A.Assessment of the failure of an electrical transmission line due to a downburst event[C].Structural Reliability in a Changing World-Proceedings of the 2006 Electrical Transmission Conference,2006,27-38
    [120]P.McCarthy,M.Melsness.Severe weather elements associated with September 5,1996hydro tower failures near Grosse Isle,Manitoba,Canada.Manitoba Environmental Service Centre,Environment Canada,1996,21pp.
    [121]D.Dempsey,H.White,Winds wreak havocon lines,Transmission and Distribution World,48(6),June 1996,32-37.
    [122]Holmes JD.Modeling of extreme thunderstorm winds for wind loading of structures and risk assessment.Wind Engineering into 21st Century,Proceedings,10th International Conference on Wind Engineering,Copenhagen,Denmark,21-24 June.1999,1409-1415.
    [123]Eric Savory,Gerard A.R.Parke,Mostafa Zeinoddini,Norman Toy,Peter Disney.Modeling of tornado and microburst-induced wind loading and failure of a lattice transmission tower.Engineering Structures 23(2001)365-375
    [124]C.W.Letchford,C.Mans,M.T.Chay.Thunderstorms—their importance in wind engineering(a case for the next generation wind tunnel)[J].Journal of Wind Engineering and Industrial Aerodynamics,90,(2002),1415-1433.
    [125]Davenport AG.The dependence of wind load upon meteorological parameters.Proceedings of International Seminar on Wind Efectson Buildings and Structures.Toronto,Canada:University of Toron to Press,1968,19-82.
    [126]Simiu E,Scanlan RH.Wind efects on structure.New York,NY:John Wiley&Sons,Inc,1986.
    [127]Kaimal JC,et al.Spectral characteristics of surface-layer turbulence[J].Journal of the Royal Meteorological Society,London,England 1972,98,563-589.
    [128]李宏男,白海峰.高压输电塔-线体系抗灾研究的现状与发展趋势[J].土木工程学报,2007,(02).
    [129]GBT 15248-1994金属材料轴向等幅疲劳试验方法
    [130]Coffin L.F.The effect of frequency on high temperature low-cycle fatigue[C].In Proceedings of Air Force Conference on Fracture and Fatigue of Aircraft Structures.AFDL-TR-70-144,1970:301-312
    [131]张国栋,苏彬.高温低周应变疲劳的三参数幂函数能量方法研究[J].航空学报,2007,(02)
    [132]王建平,邹银生.结构非线性动力分析中恢复力拐点的非迭代处理方法[C].第三届全国地震工程会议集.北京:科学出版社.1982.
    [133]朱镜清.非线性动力分析的拐点处理方法[J].地震工程与工程振动.1982.1(3):15-23.
    [134]孙业扬,余安东.高层建筑杆系—层间模型弹塑性动态分析[J].同济大学学报,1980(1):87-93.
    [135]瞿伟廉,王锦文,谭业伟,汪震.基于疲劳累积损伤的输电塔结构剩余寿命估算[J].武汉理工大学学报,2007,(01)
    [136]孙静.桅杆结构疲劳状态的安全预警[D].武汉理工大学,2006.
    [137]Miner M,Cumulative damage in fatigue[J].Trans ASME,1945,67:A 159.
    [138]邓洪洲,屠海明,王肇民.桅杆结构随机风振疲劳研究[J].土木工程学报,2003
    [139]阎楚良,卓宁生,高镇同.雨流法实时计数模型[J].北京航空航天大学学报,1998,(05).
    [140]瞿伟廉,滕军,项海帆,钟珞,刘晖,汪菁,李功标.风力作用下深圳市民中心屋顶网架结构的智能健康监测[J].建筑结构学报,2006,(01).
    [141]屠海明,邓洪洲.桅杆结构风振疲劳分析[J].四川建筑科学研究,2001,27(2):6-8
    [142]姚卫星.结构疲劳寿命分析[M].国防工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700