用户名: 密码: 验证码:
钢筋混凝土框架结构基于能量抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文全面阐述了基于能量抗震设计方法的研究现状,针对钢筋混凝土框架结构基于能量抗震设计方法进行了系统深入的研究。主要研究工作和成果如下:
     (1)抗震分析用地震动强度指标选取。通过分析SDOF系统和MDOF系统主要地震响应与已有的不同地震动强度指标之间的相关性的方法,对已有的主要地震动强度指标在抗震分析中的适用性进行了分析,并给出了合理建议。
     (2)静力弹塑性分析方法在RC框架结构中的适用性。以逐步增量弹塑性时程分析结果为基础,分析了传统定侧力推覆分析和多模态推覆分析方法对结构地震响应的准确性,为结构变形和累积滞回耗能的研究奠定基础。
     (3)结构屈服后刚度对地震响应的影响。研究了结构参数和地面运动参数对剪切型MDOF系统地震响应的影响,讨论总结了提高结构屈服后刚度的方法。在此基础上,针对RC框架结构,提出框架结构应尽量形成整体型屈服机制。
     (4) RC框架结构“强柱弱梁”机制的研究。介绍了世界主要国家规范“强柱弱梁”设计方法,并针对我国规范设计方法所存在问题进行了研究,同时,对“强柱弱梁”设计方法提出了相应的改进建议。
     (5) RC框架结构最大层间位移和构件变形预测。提出了具有整体型屈服机制的RC框架结构弹塑性层间位移预测简化方法,既避免了大量弹塑性时程分析,又可以近似考虑地震响应的离散性。
     (6) RC框架结构累积滞回耗能分布简化计算方法。统计分析了具有不同柱梁抗弯承载力比的RC框架结构累积滞回耗能分布规律,并针对符合损伤模式控制的RC框架结构,提出了累积滞回耗能分布简化计算方法。
     (7) RC框架基于能量的抗震设计方法。基于本文的研究成果,采用变形和累积滞回耗能双重指标,并结合基于位移抗震设计方法与现有梁、柱构件的含累积耗能指标的损伤模型,建议了RC框架结构基于能量抗震设计方法,并通过算例说明了设计方法的应用。与时程分析方法的对比结果表明,所设计结构各抗震水准下的承载力、变形和累积滞回耗能性能明确,满足性能目标。
In this thesis, the state of the art of the energy-based seismic design methodology is expatiated. The analysis and design method based on deformation and energy response of seismic structures is studied and the main achievements of this dissertation are as follows:
     1. Based on elasto-plastic single-degree-of-freedom (SDOF) and elasto-plastic multi-degree-of-freedom (MDOF) systems, the correlation between different structural seismic responses and variant intensity indices is analyzed using 60 earthquake records. According to the analysis of the correlation, the rational ground motion intensity indices for seismic analysis purpose are suggested.
     2. Based on the results of the incremental dynamic analysis (IDA), the accuracy of traditional pushover analysis and modal pushover analysis (MPA) to the seismic responses of RC frame structures, especially to the deformation of structures, are analyzed and compared. Finally, the applicability of the commonly-used nonlinear static analysis procedures for RC frame structures is summarized.
     3. The influence of post-yielding stiffness to the seismic response of structures is studied with 19,600 nonlinear time-history analysis cases mainly based on MDOF systems, and the methods of improving post-yielding stiffness of structures are summarized. It is indicated that, the seismic structures should have enhanced behavior after the structure yielding. For RC frames, the total failure mechanism of structures is preferred.
     4. The design methods for weak-beam-strong-column RC frames in several national codes are introduced, and the problems in Chinese code are summarized and studied. It is shown that, the excessive amount of reinforcement of beam, the case-in-place floor slabs, the value of column-to-beam strength ratio and several other uncertain factors may influent the weak-beam-strong-column design. Finally, the design suggestions are proposed and the design method is improved.
     5. A simplified procedure for evaluating the story drifts of RC frames with total failure mechanism is proposed based on several rational assumptions, which is relatively accurate compared with nonlinear static analysis procedures. The proposed estimating procedure can also reflect the dispersion of seismic responses and avoids the large amount of calculation of nonlinear time-history analysis. Consequently, the nonlinear static analysis procedure is used to estimate the deformation demand of structural elements by taking the evaluated story drift as target performance point of each story.
     6. The distribution of cumulated seismic hysteretic energy of RC frames with different column-to-beam strength ratios are studied based on 3-story, 6-story, 8-story and 10-story frames. The simplified calculating method is proposed according to the results of frames in line with the design requirements for deformation and seismic energy dissipation.
     7. Based on the two-stage design approaches and the failure criterion determined by deformation and hysteretic energy, the combined energy and displacement-based design methodologies are suggested. A practical example is used to illustrate the design procedure, and it is validated by time history analysis. The results indicate that the suggested energy-based seismic design method for the RC frames can provide adequate deformation and seismic energy dissipating capacities to achieve the designed performance objectives.
引文
[1]清华大学、西南交通大学、北京交通大学震害调查组.汶川地震建筑震害分析//汶川地震建筑震害调查与灾后重建分析报告,北京:中国建筑工业出版社, 2008.
    [2]王亚勇.汶川地震震害启示:抗震概念设计问题//汶川地震建筑震害调查与灾后重建分析报告,北京:中国建筑工业出版社, 2008.
    [3] GB50011-2001,建筑结构抗震设计规范.中国建筑工业出版社,北京, 2002.
    [4] Akiyama H. Earthquake resistant limit state design for buildings. Tokyo: University of Tokyo Press, 1985.
    [5] Fajfar P. Equivalent ductility factors, taking into account low-cycle fatigue. Earthquake Engineering & Structural Dynamics, 1992, 21(9): 837-848.
    [6] Fajfar P, Vidic T. Consistent inelastic design spectra: hysteretic and input energy. Earthquake Engineering & Structural Dynamics, 1994, 23(5): 523-537.
    [7] Fajfar P, Vidic T. Consistent inelastic design spectra: strength and displacement. Earthquake Engineering & Structural Dynamics, 1994, 23(5): 507-521.
    [8] Fajfar P, Vidic T., Fischinger M. Seismic demand in medium- and long-period structures. Earthquake Engineering & Structural, 1989, 18(4): 1133-1144.
    [9] Fajfar P, Vidic T, Fischinger M. A measure o Dynamics f earthquake motion capacity to damage medium-period structures. Soil Dynamics and Earthquake Engineering, 1990, 9(5): 236-242.
    [10] Nakamura T, Hori N, Inoue N. Evaluation of damaging properties of ground motions and estimation of maximum displacement based on momentary input energy. Journal of Structural and Construction Engineering (Transaction of AIJ), 1998, 513: 65-72.
    [11] Nurtug A, Sucuoglu H. Prediction of seismic energy-dissipation in SDOF systems. Earthquake Engineering & Structural Dynamics, 1995, 24(9): 1215-1223.
    [12] Sucuoglu H, Nurtug A. Earthquake ground motion characteristics and seismic energy-dissipation. Earthquake Engineering & Structural Dynamics, 1995, 24(9): 1195-1213.
    [13] Teran-Gilmore A. Performance-based earthquake-resistant design of framed buildings using energy concepts [PHD Dissertation]. Berkeley: Department of Civil Engineering, University of California at Berkeley, U.S.A., 1996.
    [14] Uang C M, Bertero V V. Use of energy as a design criterion in earthquake resistant design. Berkeley, California: Earthquake Engineering Research Center, 1988.
    [15] Bertero V V. Performance-based seismic engineering: a critical review of proposed guidelines// P. Fajfar and H. Krawinkler, eds. Seismic Design Methodologies for the Next Generation of Codes. Rorrerdam: AA Balkema, 1997: 1-32.
    [16] Bertero V V, Uang C M. Issues and future directions in the use of an energy approach for seismic-resistant design of structures// P. Fajfar and H. Krawinkler, eds. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings. Elsevier Applied Science, 1992.
    [17]胡聿贤.中国地震工程五十年.建筑结构, 1999, 10: 22-25.
    [18] Otani S. Earthquake resistant design of reinforced concrete buildings - past and future. Journal of Advanced Concrete Technology, 2004, 2(1): 3-24.
    [19]周靖.钢筋混凝土框架结构基于性能系数抗震设计法的基础研究[博士学位论文].广州:华南理工大学建筑学院, 2006.
    [20]程光煜.基于能量抗震设计方法及其在钢支撑框架结构中的应用[博士学位论文].北京:清华大学土木工程系, 2007.
    [21] Bertero V V. Major issues and future directions in earthquake-resistant design// Proceeding of 10th World Conference on Earthquake Engineering. Madrid: 1994: 6407-6444.
    [22] Bertero R D, Bertero V V, Teran-Gilmore A. Performance-based earthquake-resistant design based on comprehensive design philosophy and energy concepts// Proceeding of 11th World Conference on Earthquake Engineering. Acapulco, Mexico: 1996, CD-ROM.
    [23] Applied Technology Council. Seismic Evaluation and Retrofit of Concrete Buildings (ATC-40). California: ATC, 1996.
    [24] European Committee for Standardization. Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings. Brussels: ECS, 2003.
    [25] Applied Technology Council. (FEMA273,274,356). NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings. Washington, D.C.: ATC, 1997.
    [26] Building Seismic Safety Council. FEMA-450. NEHRP Recommended Provisions and Commentary for Seismic Regulations for New Buildings and Other Structures. Washington, D.C.: BSSC, 2004.
    [27] International Conference of Building Officials. Uniform Building Code (UBC). Whittier, California: ICBO, 1997.
    [28] SEAOC Vision 2000 Committee. Performance-based Seismic Engineering of Building. Sacramento, California: Structural Engineers Association of California, 1995.
    [29] Priestley M J N. Direct displacement-based design of precast/prestressed concrete buildings. Pci Journal, 2002, 47(6): 66-79.
    [30] Borzi B, Calvi G M, Elnashai A. S., et al. Inelastic spectra for displacement-based seismic design. Soil Dynamics and Earthquake Engineering, 2001, 21(1): 47-61.
    [31] Calvi G M, Kingsley G R. Displacement-based seismic design of multi-degree-of-freedom bridge structures. Earthquake Engineering & Structural Dynamics, 1995, 24(9): 1247-1266.
    [32] Kowalsky M J. A displacement-based approach for the seismic design of continuous concrete bridges. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 719-747.
    [33] Kowalsky M J, Priestley M J N, Macrae G A. Displacement-based design of RC bridge columns in seismic regions. Earthquake Engineering & Structural Dynamics, 1995, 24(12): 1623-1643.
    [34] Lin Y Y, Chang K C, Tsai M H, et al. Displacement-based seismic design for buildings. Journal of the Chinese Institute of Engineers, 2002, 25(1): 89-98.
    [35] Medhekar M S, Kennedy D J L. Displacement-based seismic design of buildings - theory. Engineering Structures, 2000, 22(3): 201-209.
    [36] Medhekar M. S., Kennedy D. J. L. Displacement-based seismic design of buildings - application. Engineering Structures, 2000, 22(3): 210-221.
    [37] Panagiotakos T B, Fardis M. N. A displacement-based seismic design procedure for RC buildings and comparison with EC8. Earthquake Engineering & Structural Dynamics, 2001, 30(10): 1439-1462.
    [38] Paulay T. Displacement-based design approach to earthquake-induced torsion in ductile buildings. Engineering Structures, 1997, 19(9): 699-707.
    [39] Rubinstein M, Moller O, Giuliano A. Inelastic displacement-based design approach of R/C building structures in seismic regions. Structural Engineering and Mechanics, 2001, 12(6): 573-594.
    [40] Saatcioglu M, Razvi S R. Displacement-based design of reinforced concrete columns for confinement. ACI Structural Journal, 2002, 99(1): 3-11.
    [41] Sullivan T J, Priestley M J N, Calvi G. M. Direct displacement-based design of frame-wall structures. Journal of Earthquake Engineering, 2006, 10(SPEC. ISS. 1): 91-124.
    [42] Whittaker A, Constantinou M, Tsopelas P. Displacement estimates for performance-based seismic design. Journal of Structural Engineering, ASCE, 1998, 124(8): 905-912.
    [43]钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构. 2001, 31(4): 3-6.
    [44]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计.建筑结构学报. 1999, 20(3): 42-49.
    [45]经杰.双重结构基于位移抗震设计方法的研究[博士学位论文].北京:清华大学土木工程系, 2002.
    [46]罗文斌,钱稼茹. RC框架弹塑性位移的解构规则与构件的目标侧移角.工程力学. 2003, 20(5): 32-36.
    [47]徐福江.钢筋混凝土框架-核心筒结构基于位移抗震设计方法研究[博士学位论文].北京:清华大学土木工程系, 2006.
    [48]史庆轩.钢筋混凝土结构基于性能的抗震设计理论与应用研究[博士学位论文].西安:西安建筑科技大学土木工程学院, 2002.
    [49]罗文斌.钢筋混凝土框架基于位移的抗震设计原理及方法[博士学位论文].北京:清华大学土木工程系, 2002.
    [50]李应斌.钢筋混凝土结构基于性能的抗震设计理论与应用研究[博士学位论文].西安:西安建筑科技大学土木工程学院, 2004.
    [51]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[博士学位论文].重庆:重庆大学土木工程学院, 2004.
    [52] Manfredi G. Evaluation of seismic energy demand. Earthquake Engineering & Structural Dynamics, 2001, 30(4): 485-499.
    [53] Teran-Gilmore A, Avila E, Rangel G. On the use of plastic energy to establish strength requirements in ductile structures. Engineering Structures, 2003, 25(7): 965-980.
    [54] Uang C M, Bertero V V. Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics, 1990, 19(1): 77-90.
    [55] Vidic T, Fajfar P. Behavior Factors Taking into Account Cumulative Damage// Proceedings of Tenth European Conference on Earthquake Engineering. Vienna: 1994: 959-964.
    [56]肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因素分析.重庆建筑大学学报, 1996, 18(2): 21-33.
    [57] Zahrah T F, Hall W J. Earthquake energy absorption in SDOF structures. Journal of Earthquake Engineering, 1984, 110(8): 1757-1772.
    [58]陈永祁,龚思礼.结构在地震动时延性和累积塑性耗能的双重破坏准则.建筑结构学报, 1986, 1: 35-48.
    [59]欧进萍,何政,吴斌,等.钢筋混凝土结构基于地震损伤性能的设计.地震工程与工程振动, 1999, 19(1): 21-30.
    [60] Housner G. Limit design of structures to resist earthquakes// Proceedings of the 1st World Conference on Earthquake Engineering. Oakland: Califormia, 1956: 1-12.
    [61] Housner G W. Behavior of structures during earthquake. Journal of the Engineering Mechanics Division, 1959, 85(4): 109-129.
    [62] Park Y J, Ang A S, Wen Y. Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, 1985, 111(4): 740-757.
    [63] Daali M L, Korol R M. Low-cycle fatigue damage assessment in steel beams. Structural Engineering and Mechanics, 1995, 3(4): 341-358.
    [64] Riddell R, Garcia J E. Hysteretic energy spectrum and damage control. Earthquake Engineering & Structural Dynamics, 2001, 30(12): 1791-1816.
    [65] Akbas B, Shen J, Hao H. Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective. Structural Design of Tall Buildings, 2001, 10(3): 193-217.
    [66] Chou C C, Uang C M. Establishing absorbed energy spectra - an attenuation approach. Earthquake Engineering & Structural Dynamics, 2000, 29(10): 1441-1455.
    [67] Chou C C, Uang C M. A procedure for evaluating seismic energy demand of framed structures. Earthquake Engineering & Structural Dynamics, 2003, 32(2): 229-244.
    [68] Shen J, Akbas B. Seismic energy demand in steel moment frames. Journal of Earthquake Engineering, 1999, 3(4): 519-559.
    [69]白绍良,黄宗明,肖明葵.结构抗震设计的能量分析方法研究述评.建筑结构, 1997, 24(4): 54-58.
    [70]黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼问题评述.地震工程与工程振动, 1996, 16(2): 95-105.
    [71]欧进萍,吴斌,龙旭.耗能减振结构的抗震设计方法.地震工程与工程振动, 1998, 18(2): 98-107.
    [72]周云,徐彤,周福霖.抗震与减震结构的能量分析方法研究与应用.地震工程与工程振动, 1999, 19(4): 133-139.
    [73]魏新磊,周云,于敬海,等.基于结构能量分析的抗震设计新方法的研究.世界地震工程, 2003, 19(3): 62-67.
    [74]周云,周福霖.耗能减震体系的能量设计法.世界地震工程, 1997, 14(4): 7-13.
    [75] Ye L P, Otani S. Maximum seismic displacement of inelastic systems based on energy concept. Earthquake Engineering & Structural Dynamics, 1999, 28(12): 1483-1499.
    [76]胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究.建筑结构学报, 2000, 21(1): 71-76.
    [77]胡冗冗,王亚勇.基于瞬时输入能量的SDOF弹塑性结构最大位移反应分析.世界地震工程, 2002, 18(4): 155-158.
    [78]胡冗冗,王亚勇.地震动瞬时输入能量谱探讨.工程抗震, 2004, 25(1): 9-13.
    [79]胡冗冗,王亚勇.剪切型多自由度体系瞬时输入能量的分布.世界地震工程, 2006, 22(4): 140-144.
    [80]王亚勇.关于设计反应谱、时程法和能量方法的探讨.建筑结构学报, 2000, 21(1): 21-28.
    [81]公茂盛,谢礼立,章文波.地震动输入能量衰减规律的研究.地震工程与工程振动, 2003, 23(3): 15-24.
    [82]公茂盛,翟长海,谢礼立,等.地震动滞回能量谱衰减规律研究.地震工程与工程振动, 2004, 24(2): 8-14.
    [83]公茂盛,谢礼立.绝对和相对输入能量谱对比及延性系数的影响研究.地震学报, 2005, 27(6): 666-676.
    [84]刘哲锋,沈蒲生.地震动输入能量谱的研究.工程抗震与加固改造, 2006, 28(4): 1-5.
    [85]刘哲锋,沈蒲生.地震总输入能量与瞬时输入能量谱的研究.地震工程与工程振动, 2006, 28(6): 31-36.
    [86]刘哲锋,沈蒲生.地震总输入能量谱的拟速度谱估计.工程抗震与加固改造, 2008, 30(2): 20-24.
    [87]朱建华,沈蒲生.基于能量原理的钢筋混凝土框架结构层间弹塑性位移求解.工程抗震与加固改造, 2005, 27(5): 1-4.
    [88]朱建华,沈蒲生.基于能量原理的钢筋混凝土筒体结构抗震性能研究.地震工程与工程振动, 2006, 26(5): 109-113.
    [89]朱建华,刘哲锋,沈蒲生.高层筒体结构地震动输入能的计算.湖南大学学报(自然科学版), 2007, 34(6): 6-9.
    [90]史庆轩,熊仲明,李菊芳.框架结构滞回耗能在结构层间分配的计算分析.西安建筑科技大学学报(自然科学版), 2005, 37(2): 174-188.
    [91]史庆轩,杨文星,门进杰.单自由度体系非线性地震能量反应的计算.建筑科学与工程学报, 2005, 22(2): 25-29.
    [92]肖明葵,白绍良,赖明,等.基于滞回耗能的抗震结构最大位移反应.重庆大学学报(自然科学版), 2003, 26(3): 133-137.
    [93]肖明葵,刘纲,白绍良.基于能量反应的地震动输入选择方法讨论.世界地震工程, 2006, 22(3): 89-94.
    [94]肖明葵,刘纲,白绍良,等.抗震结构的滞回耗能谱.世界地震工程, 2002, 18(3): 110-115.
    [95]肖明葵,严涛,王耀伟,等.弹塑性反应谱研究综述.重庆建筑大学学报, 1999,
    [96]熊仲明,史庆轩,李菊芳.框架结构基于能量地震反应分析及设计方法的理论研究.世界地震工程, 2005, 21(2): 141-146.
    [97]熊仲明,史庆轩,王社良.结构能量分析非线性地震反应的理论研究.西安建筑科技大学学报(自然科学版), 2005, 37(2): 204-209.
    [98]杨晓明,史庆轩,丰定国.抗震结构能量设计方法中阻尼耗能的研究.西安建筑科技大学学报(自然科学版), 2006, 38(2): 189-193.
    [99] Chapman M C. On the use of elastic input energy for seismic hazard analysis. Earthquake Spectra, 1999, 15(4): 607-635.
    [100] Benavent-Climent A, Pujades L G, Lopez-Almansa F. Design energy input spectra for moderate-seismicity regions. Earthquake Engineering & Structural Dynamics, 2002, 31(5): 1151-1172.
    [101] Kuwamura H, Kirino Y, Akiyama H. Prediction of earthquake energy input from smoothed Fourier amplitude spectrum. Earthquake Engineering & Structural Dynamics, 1994, 23(10): 1125-1137.
    [102] Leger P, Dussault S. Seismic-energy dissipation in MDOF structures. Journal of Structural Engineering, ASCE, 1992, 118(5): 1251-1269.
    [103]刘哲锋,沈蒲生,陈逵.阻尼模型对混合结构地震耗能分析的影响.工程抗震与加固改造, 2006, 28(3): 9-12.
    [104] Nakashima M, Saburi K, Tsuji B. Energy input and dissipation behaviour of structures with hysteretic dampers. Earthquake Engineering & Structural Dynamics, 1996, 25(5): 483-496.
    [105] Sucuoglu H, Erberik A. Energy-based hysteresis and damage models for deteriorating systems. Earthquake Engineering & Structural Dynamics, 2004, 33(1): 69-88.
    [106] Sucuoglu H, Nurtug A. Earthquake ground motion characteristics and seismic energy dissipation - Reply. Earthquake Engineering & Structural Dynamics, 1995, 24(9): 1195-1213.
    [107] Decanini L D, Mollaioli F. Formulation of elastic earthquake input energy spectra. Earthquake Engineering & Structural Dynamics, 1998, 27(12): 1503-1522.
    [108] Decanini L D, Mollaioli F. An energy-based methodology for the assessment of seismic demand. Soil Dynamics and Earthquake Engineering, 2001, 21(2): 113-137.
    [109] Lyon R H. Statistical energy analysis of dynamical systems. Cambridge: MIT Press, 1975.
    [110] Takewaki I. Bound of earthquake input energy. Journal of Structural Engineering, 2004, 130(9): 1289-1297.
    [111] Takewaki I. Frequency domain modal analysis of earthquake input energy to highly damped passive control structures. Earthquake Engineering & Structural Dynamics, 2004, 33(5): 575-590.
    [112] Chai Y H, Fajfar P. A procedure for estimating input energy spectra for seismic design. Journal of Earthquake Engineering, 2000, 4(4): 539-561.
    [113]周云,乐登,邓雪松.设计用地震动总输入能量谱研究.工程抗震与加固改造, 2008, 30(5): 1-7.
    [114] Cruz M F, Lopez O A. Plastic energy dissipated during an earthquake as a function of structural properties and ground motion characteristics. Engineering Structures, 2000, 22(7): 784-792.
    [115] Kuwamura H, Galambos T V. Earthquake load for structural reliability. Journal of Structural Engineering, ASCE, 1989, 115(6): 1446-1463.
    [116] Fajfar P, Gaspersic P. The N2 method for the seismic damage analysis of RC buildings. Earthquake Engineering & Structural Dynamics, 1996, 25(1): 31-46.
    [117] Kato B, Akiyama H. Seismic design of steel buildings. Journal of Structural Division, ASCE, 1982, 108(8): 1709-1721.
    [118] Tso W K, Zhu T J, Heidebrecht A C. Seismic energy demands on reinforced concrete moment-resisting frames. Earthquake Engineering & Structural Dynamics, 1993, 22(6): 533-546.
    [119] Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 561-582.
    [120] Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Engineering & Structural Dynamics, 2004, 33(15): 1429-1429.
    [121] Chopra A. K., Goel R. K., Chintanapakdee C. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands. Earthquake Spectra, 2004, 20(3): 757-778.
    [122] Goel R K, Chopra A K. Extension of modal pushover analysis to compute member forces. Earthquake Spectra, 2005, 21(1): 125-139.
    [123]刘哲锋,沈蒲生,龚胡广.钢框架-钢筋混凝土剪力墙结构的地震能量反应分析.地震工程与工程振动, 2007, 27(2): 69-73.
    [124] Lawson R S. Site-dependent inelastic seismic demands [PHD Dissertation]. Stanford, California: Civil Engineering Department, Stanford University, 1996.
    [125]刘哲锋,沈蒲生.高层混合结构滞回耗能分布规律的研究.工程抗震与加固改造, 2007, 29(5): 7-11.
    [126]杜修力,刘勇生.强震持时对钢筋混凝土结构地震累积破坏的影响.地震工程与工程振动, 1992, 12(3): 65-70.
    [127] Williams M S, Sexsmith R G. Seismic damage indices for concrete structures: state-of-art review. Earthquake Spectra, 1995, 28(1): 319-349.
    [128] Chung Y S, Meyer C, Shinozuka M. Modeling of concrete damage. ACI Structural Journal, 1989, 86(3): 259-271.
    [129] Kunnath S K, Chai Y H. Cumulative damage-based inelastic cyclic demand spectrum. Earthquake Engineering & Structural Dynamics, 2004, 33(4): 499-520.
    [130]李翌新,赵世春.钢筋混凝土及劲性钢筋混凝土构件的累积损伤模型.西南交通大学学报, 1994, 29(4): 412-417.
    [131]李军旗,赵世春.钢筋混凝土构件损伤模型.兰州铁道学院学报(自然科学版), 2000 ,19(3): 25-27.
    [132]李军旗,赵世春.钢筋混凝土构件损伤模型参数确定.兰州铁道学院学报(自然科学版), 2000, 19(4): 68-70.
    [133]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型.土木工程学报, 2004, 37(11): 41-49.
    [134]王东升,司炳君,艾庆华,等.改进的Park-Ang地震损伤模型及其比较.工程抗震与加固改造, 2007, 27(supI): 138-144.
    [135] McCabe S L, Hall W J. Assessment of seismic structural damage. Journal of Structural Engineering, ASCE, 1989, 115(9): 2166-2183.
    [136]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标.土木工程学报, 2000, 33(6): 33-37.
    [137]刘恢先.论地震力.土木工程学报,1958年,5(2): 86-106.
    [138] Housner G W, Jennings P C. The capacity of extreme earthquake motions to damage structures. Structural and Geotechnical Mechanics, 1977, A volume honoring N M Newmark, Prentice Hall: 102-116.
    [139] Nau J M, Hall W J. Scaling methods for earthquake response spectra. Structure Enginering. 1984, 110(7): 1533-1548.
    [140]郝敏,谢礼立,徐龙军.关于地震烈度物理标准研究的若干思考.地震学报, 2005, 27(2): 230-234.
    [141] Riddell R, Garcia E J. Hysteretic energy spectrum and damage control. Earthquake Engineering and Structure Dynamics. 2001, 30(12): 1791-1816.
    [142]叶献国.地震强度指标定义的客观评价,合肥工业大学学报(自然科学版), 1998, 21(6): 7-11.
    [143]李英民,丁文龙,黄宗明.地震动幅值特性参数的工程适用性研究.重庆建筑大学学报. 2001, 23(6): 16-21.
    [144] Sucuoglu H, Nurtug A. Earthquake ground motion characteristics and seismic energy dissipation. Earthquake Engineering & Structural Dynamics , 1995, 24(9): 1195-1213
    [145] Housner G W. Spectrum intensities of strong motion earthquakes// Proceedings of the Symposium on Earthquake and Blast Effects on Structures, California, 1952.
    [146] Arias A. A measure of earthquake intensity, in Seismic Design for Nuclear Power Plants. MIT Press: Cambridge, Massachusetts, 1970.
    [147] Trifunac M D, Brady A.G. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 1975, 65(3): 581-626.
    [148] Housner G W. Measures of severity of earthquake ground shaking// Proceedings of the U.S. National Conference on Earthquake Engineering, EERI, Ann Arbor, 1975.
    [149] Housner G W, Jennings P. C. Generation of artificial earthquakes. Journal of the Engineering Mechanics Division, 1964, 90(EM1): 113-150.
    [150] Nau J M, Hall W J. An evaluation of scaling methods for earthquake response spectra. Structural Research Series No. 499, Department of Civil Engineering, University of Illinois, Urbana, 1982.
    [151] Park Y J, Ang A H S, Wen Y K. Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, 1985, 111(4): 740-757.
    [152] Bazzurro P, Cornell C A, Shome N, et al. Three proposals for characterizing MDOF non-linear seismic response. Journal of Structural Engineering, 1998, 124(11): 1281-1289.
    [153] Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering and Structure Dynamics, 2002, 31(3): 491-514.
    [154] Kramer S L. Geotechnical earthquake engineering. U.S.: Prentice-Hall, 1996.
    [155] Benjamin J R, Associates. A criterion for determining exceedance of the operating basis earthquake. EPRI Report NP-5930, Electric Power Research Institute, California, 1988.
    [156] Nuttli O W. The relation of sustained maximum ground acceleration and velocity to earthquake intensity and magnitude. Miscellaneous Paper S-71-1, Report16, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, 1979.
    [157] Sarma S K, Yang K S. An evaluation of strong motion records and a new parameter A95. Earthquake Engineering and Structural Dynamics, 1987, 15(1): 119-132.
    [158] Riddell R, Garcia J E, Garces E. Inelastic deformation response of SDOF systems subjected to earthquakes. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 515-538.
    [159] Pacific Earthquake Engineering Research Center. PEER strong motion database [DB/OL]. California: Berkley, 2005 [Sep, 2005]. http: //peer.berkeley.edu/smcat/index.html.
    [160]铁筋コンクリ-ト造建物の韧性保证型耐震设计指针.东京:日本建筑学会,同解说, 1997年.
    [161] Freeman S A, Nicoletti J P, Tyrell J V. Evaluation of existing buildings for seismic risk- A case study of Puget Sound Naval Shipyard, Bremerton, Washington// Proceeding of 1st U.S. National Conference on Earthquake Engineering, Berkeley, 1975: 113-122.
    [162] Saiidi M, Sozen M A. Simple non-linear seismic analysis of RC structures. Journal of Structural Division, ASCE 1981, 107(ST5): 937-951.
    [163] Lawson R S, Vance V, Krawinkler H. Nonlinear static pushover analysis—why, when and how?// Proceedings of the 5th U.S. National Conference on Earthquake Engineering. Earthquake Engineering Research Institute. Chicago, USA, 1994, 1: 283-292.
    [164] Gupta A, Krawinkler H. Estimation of seismic drift demands for frame structures. Earthquake Engineering & Structural Dynamics, 2000, 29(9): 1287-1305.
    [165]钱镓茹,罗文斌.静力弹塑性分析——基于性能/位移抗震设计的分析工具.建筑结构, 2000, 30(6): 23-26.
    [166] Kilar V, Fajfar P. Simple push-over analysis of asymmetric buildings. Earthquake Engineering and Structural Dynamics, 1997, 26(2): 233-249.
    [167]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响.建筑科学, 2001, 17(5): 8-13.
    [168]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动, 2004, 24(3):89-97.
    [169] Gupta B, Kunnath S K. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra, 2000, 16(2): 367-391.
    [170] Kunnath S K. Identification of modal cominations for nonlinear static analysis of building structures. Computer-Aided Civil and Infrastructure Engineering, 2004, 19(4): 246-259.
    [171] Standards New Zealand. General structural design and design loadings for buildings. NZS4203: 1992, Standard New Zealand, Wellington, 1992.
    [172]叶燎原,潘文.结构静力弹塑性分析(Pushover)的原理和计算实例.建筑结构学报, 2000, 21 (1): 37-51.
    [173]杨溥,李英民,王亚勇,等.结构静力弹塑性分析(Pushover)方法的改进.建筑结构学报, 2000, 21 (1): 44-51.
    [174]欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用.建筑结构学报, 2001, 22(6): 81-86.
    [175]魏巍,冯启民.几种Pushover分析方法对比研究.地震工程与工程振动, 2002, 22(4): 66-73.
    [176]朱杰江,吕西林,容柏生.复杂体系高层结构的推覆分析方法和应用.地震工程与工程振动, 2003, 23(2): 26-36.
    [177]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进.工程力学, 2003, 20(4): 45-49.
    [178]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究.土木工程学报, 2003, 36(11): 44-49.
    [179]杨溥,李英民,熊振勇,等.能力曲线折线简化方法对比研究.重庆建筑大学学报, 2005, 27(4): 59-63.
    [180] Newmark N M, Hall W J. Seismic design criteria for nuclear reactor facilities. National Bureau of Standards, 1973.
    [181] Nassar A A, Krawinkler H. Seismic demands for SDOF and MDOF systems. Stanford, California: the John A. Blume Earthquake Engineering Center, 1991.
    [182] Miranda E, Bertero V V. Evaluation of strength reduction factors for earthquake-resistant. Earthquake Spectra, 1994, 10(2): 507-521.
    [183] Vidic T, Fajfar P, Fischinger M. Consistent inelastic design spectra-strength and displacement. Earthquake Engineering & Structural Dynamics, 1994, 23(5): 507-521.
    [184] Lee L H, Han S W, Oh Y H. Determination of ductility factor considering different hysteretic models. Earthquake Engineering & Structural Dynamics, 1999, 28(9): 957-977.
    [185]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动, 2004, 24(1): 39-48.
    [186]翟长海,公茂盛,张茂花,等.工程结构等延性地震抗力谱研究.地震工程与工程振动, 2004, 24(1): 22-29.
    [187]卓卫东,范立础.结构抗震设计中的强度折减系数研究.地震工程与工程振动, 2001, 21(1): 84-88.
    [188] Tong G S, Huang J Q. Seismic force modification factor for ductile structures. Journal of Zhejiang University Science (Science in Engineering), 2005, 6A (8): 813-825.
    [189] Miranda E. Strength reduction factors in performance-based design// EERC-CUREe Symposium in Honor of Viltelmo V. Bertero. Berkeley, California: 1997:
    [190] Moghaddam H, Mohammadi R K. Ductility reduction factor of MDOF shear-building structures. Journal of Earthquake Engineering, 2001, 5(3): 425-440.
    [191]翟长海,谢礼立.多自由度体系效应对强度折减系数的影响.工程力学, 2006, 23(11): 33-37.
    [192]叶列平,李琪.基于性能/位移的能力-需求曲线设计方法.现代地震工程进展.江苏:东南大学出版社, 2003.
    [193]李英民,杨成,赖明.性态设计方法及能力-需求曲线方法的几个问题.重庆建筑大学学报, 2003, 25(6): 26-32.
    [194]李英民,杨成,赖明.结构非线性地震反应分析的改进能力-需求曲线方法.世界地震工程, 2003, 19(4): 28-33.
    [195] Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514.
    [196]叶列平,陆新征,马千里等.混凝土结构抗震非线性分析模型、方法及算例.工程力学, 2006, 23(sup.II): 131-140.
    [197]叶列平,经杰.论结构抗震设计方法.第六届全国地震工程会议论文集,中国南京,东南大学出版社, 2002: 419-429.
    [198] Iemura H, Takahashi Y, Sogabe N. Two-level seismic design method using post-yield stiffness and its application to unbonded bar reinforced concrete piers. Structural Engineering / Earthquake Engineering, 2006, 23(1): 109-116.
    [199] Christopoulos C, Pampanin S. Towards performance-based seismic design of MDOF structures with explicit consideration of residual deformations. Journal of Earthquake Technology, 2004, 41(1): 53-73.
    [200]经杰,叶列平,钱稼茹.基于能量概念的剪切型多自由度结构弹塑性地震位移反应分析.工程力学, 2003, 20(3): 31-37.
    [201] Veletsos A S, Newmark N M. Effect of inelastic behavior on the response of simple system to earthquake motion// Proceedings of 2nd World Conference on Earthquake Engineering, Tokyo, 1960: 895-912.
    [202] Newmark N M, Hall W J. A rational approach of seismic design standards for structures// Proceedings of 5th World Conference on Earthquake Engineering, Roma, 1973: 2266-2277.
    [203] Newmark N M.地震工程学.北京:科学出版社, 1978.
    [204] Newmark N M. Earthquake resistant design and ATC provisions// Proceedings of 3rd World Conference on Earthquake Engineering, New Zealand: Auckland and Wellington 1979. 609-651.
    [205]王前信.弹塑性反应谱.地震工程研究报告集,第二集,北京:科学出版社, 1965.
    [206] Chen D. Ductility spectra and collapse spectra for earthquake resistant structures// Proceedings of 7th European Conference on Earthquake Engineering, Greece: Athens, 1982: 43-51.
    [207] Miranda E, Bertero V. Evaluation of strength reduction factors for earthquake-resistant design, Earthquake Spectra, 1994, 10(2): 357-379.
    [208] Macrae G A, Kawashima K. Post-earthquake residual displacements of bilinear oscillators. Earthquake Engineering and Structural Dynamics, 1997, 26(7): 701-716.
    [209] Borzi B, Calvi G M, Elnashai A S, et al. Inelastic spectra for displacement-based seismic design. Soil Dynamics and Earthquake Engineering, 2001, 21(1): 47-61.
    [210] Christopoulos C, Filiatrault A, Folz B. Seismic response of self-centering hysteretic SDOF systems. Earthquake Engineering and Structural Dynamics, 2002, 31(5): 1131-1150.
    [211] Pampanin S, Christopoulos C, Priestley M J N. Performance-based seismic response of frame structures including residual deformations: Part I: single-degree of freedom systems. Journal of Earthquake Engineering, 2003, 7(1): 97-118
    [212]赵永峰,童根树.修正Clough滞回模型下的地震力调整系数.土木工程学报, 2006, 39(10): 34-41.
    [213] Nielsen N N, Imbeault F A. Validity of various hysteretic systems// Proceedings of the 3rd Japan National Conference on Earthquake Engineering, Tokyo, 1971: 707-714.
    [214] Ye L P, Lu X Z, Ma Q L, et al. Study on the influence of post-yielding stiffness to the seismic response of building structures// Proceedings of the 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China, CD-ROM.
    [215] Pettinga D, Christopoulos C, Pampanin S, et al. Effectiveness of simple approaches in mitigating residual deformations in buildings. Earthquake Engineering and Structural Dynamics, 2007, 36(12): 1763-1783.
    [216] Nakashima M, Saburi K, Tsuji B. Energy input and dissipation behavior of structures with hysteretic dampers. Earthquake Engineering & Structural Dynamics, 1996, 25(5): 483-496.
    [217] Connor J J, Wada A, Iwata M, et al. Damage-controlled structures I: Preliminary design methodology for seismically active regions. Journal of Structural Engineering, 1997, 123(4): 423-431.
    [218] Pettinga D, Christopoulos C, Pampanin S, et al. Effectiveness of simple approaches in mitigating residual deformations in buildings. Earthquake Engineering and Structural Dynamics, 2007, 36(12): 1763-1783.
    [219] Harada Y, Akiyama H. Seismic design of flexible-stiff mixed frame with energy concentration. Engineering Structures, 1998, 20(12): 1039-1044.
    [220]叶列平.体系能力设计法与基于性态/位移抗震设计.建筑结构, 2004, 34(6): 10-14.
    [221]韦锋,李英民,傅剑平,白绍良.对我国钢筋混凝土框架抗震性态控制效果的识别.土木工程学报, 2008, 41(4): 8-16.
    [222] GB50011-2001,建筑结构抗震设计规范条文说明.中国建筑工业出版社,北京, 2002.
    [223] Asad U Q. Study on passive control of RC frames with high strength reinforcements in the columns [PHD Dissertation]. Beijing: Tsinghua University, 2007.
    [224]叶列平, Asad U Q,马千里,等.高强钢筋对框架结构抗震破坏机制和性能控制的研究.工程抗震与加固改造, 2006, 28(1): 8-24.
    [225] Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02). ACI Committee 318, 2002.
    [226] Dooley K L, Bracci J M. Seismic evaluation of column-to-beam strength ratios in reinforced concrete frames. ACI Structural Journal, 2001, 98(6): 843-851.
    [227] CSA Standard. Design of concrete structures. A23.3-04, Canadian Standards Association, Ontario, 2004.
    [228]叶列平,曲哲,马千里,林旭川,陆新征,潘鹏.从汶川地震框架结构震害谈“强柱弱梁”屈服机制的实现.建筑结构, 2008, 38(11): 52-59.
    [229]蒋永生,陈忠范,周绪平,鲁宗悫.整浇梁板的框架节点抗震研究.建筑结构学报, 1994, 12(3): 11-16.
    [230]唐九如.钢筋混凝土框架节点抗震.东南大学出版社,南京, 1989.
    [231] French C W, Moehle J P. Effect of Floor Slab on Behavior of Slab-Beam-Column Connections. Design of Beam-Column Joints for Seismic Resistance, SP-123, American Concrete Institute, Farmington Hills, Mich., 1991: 225-258.
    [232] Leon R T. The Effect of Floor Member Size on the Behavior of Reinforced Concrete Beam-Column Joints// Proceedings of 8th World Conference on Earthquake Engineering, San Francisco, Calif., July, 1984: 445-452.
    [233] Leon R T, Jirsa J O. Bi-directional Loading of RC Beam-Column Joints. Earthquake Spectra, 1986, 2(3): 537-564.
    [234] Shahrooz B M, Moehle J P. Seismic Response and Design of Setback Buildings. Journal of Structural Engineering, 1990, 116(5): 1423-1439.
    [235] Paulay T. Developments in the Design of Ductile Reinforced Concrete Frames. Bulletin of the New Zealand National Society for Earthquake Engineering, 1979, 12(1): 35-43.
    [236] Ammerman O V, Wolfgram-French C. R/C Beam-Column-Slab Subassemblages Subjected to Lateral Loads. Journal of Structural Engineering, 1989, 115(6): 1298-1308.
    [237] Cheung P C, Paulay T, Park R. New Zealand Tests on Full-Scale Reinforced Concrete Beam-Column-Slab Subassemblages Designed for Earthquake Resistance. Design of Beam-Column Joints for Seismic Resistance, SP-123, American Concrete Institute, Farmington Hills, Mich., 1991: 1-38.
    [238]吴勇,雷汲川,杨红,白绍良.板筋参与梁端负弯矩承载力问题的探讨.重庆建筑大学学报, 2002, 24(3): 33-37.
    [239] Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02). ACI Committee 318, 2002.
    [240] Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures, Joint ACI-ASCE Committee 352, 2002.
    [241] Ono T, Zhao Y G, Ito T. Probabilistic evaluation of column overdesign factors for frames. Journal of Structural Engineering, 2000, 126(5): 605-611.
    [242]袁贤讯,易伟建.钢筋混凝土框架“强柱弱梁”及轴压比限值的概率分析.重庆建筑大学学报, 2000, 22(3): 64-68.
    [243]马宏旺,陈晓宝.钢筋混凝土框架结构强柱弱梁设计的概率分析.上海交通大学学报, 2005, 39(5): 723-726.
    [244]杨红,韦锋,白绍良等.柱增强系数取值对钢筋混凝土抗震框架塑性铰机构的控制效果.工程力学, 2005, 22(2): 155-161.
    [245]易伟建,张颖.混凝土框架结构抗震设计的弯矩增大系数.建筑科学与工程学报, 2006, 23(2): 46-51.
    [246]蔡健,周靖,方小丹.柱端弯矩增大系数取值对RC框架结构抗震性能影响的评估.土木工程学报, 2007, 40(1): 6-14.
    [247] Ye L P, Cheng G Y, Lu X Z, et al. Introduction of robustness for seismic structures. Building Structure, 2008, 38(6): 11-15.
    [248] Dinh T V, Ichinose T. Probabilistic Estimation of Seismic Story Drifts in Reinforced Concrete Buildings. Journal of Structural Engineering, 2005, 131(3): 416-427.
    [249] Ichinose T, Umeno T. Story shear safety factor to prevent story collapse in RC buildings// Proceedings of the 12th World Conference on Earthquake Engineering, Elsevier, 2000, CD-ROM.
    [250] Lu Y. Comparative study of seismic behavior of multistory reinforced concrete framed structures. Journal of Structural Engineering, 2002, 128(2): 169-178.
    [251] Lin Y K. Probabilistic theory of structural dynamics. McGraw-Hill, New York, 1967.
    [252] Krawinkler H. Shear Design of Steel Frame Joints. Engineering Journal AISC, 1978, 15(3): 82-91.
    [253] Krawinkler H, Bertero V V, Popov E P. Shear behavior of steel frame joints. Journal of the Structural Division, 1975, 101(11): 2317-2336.
    [254] Krawinkler H, Medina R, Alavi B. Seismic drift and ductility demands and their dependence on ground motions. Engineering Structures, 2003, 25(5): 637-653.
    [255] Medina R A, Krawinkler H. Evaluation of drift demands for the seismic performance assessment of frames. Journal of Structural Engineering, 2005, 131(7): 1003-1013.
    [256] Park Y J. Damage-limiting aseismic design of buildings. Earthquake Spectra. 1987, 3: 1-26.
    [257]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法.地震工程与工程振动. 2005, 25(6): 53-61.
    [258] Panagiotakos T B. Deformation of reinforced concrete members at yielding and ultimate. ACI Structural Journal. 2001, 98(2): 135-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700