用户名: 密码: 验证码:
致密砂岩气藏叠前地震预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国探明原油及天然气地质储量中,致密砂岩气藏储量所占的比例逐年明显增大,占新增探明储量60%以上,各大油气区块均有低孔低渗透的致密砂岩气藏储层分布。因此,致密砂岩储层是21世纪最有希望的重要天然气勘探领域之一。
     致密砂岩储层因低孔隙性和含油气饱和度变化所产生的地球物理特征相对变化微弱,有利储层和气层预测一直是地震预测中的难点。本文以川中须家河组致密砂岩为代表,在归纳和总结前人工作的基础上,根据实际工区内储层特点,首先开展了针对目的层地震资料保幅处理,为叠前地震预测奠定基础;然后开展须家河组致密砂岩地震岩石物理基础分析,针对储气层地球物理响应特点,优选了有效的识别储层和气层敏感弹性参数;最后通过现有的和自主改进反演方法进行了叠前地震反演。通过钻井证实,本次研究在致密砂岩储层预测和油气检测中取得了良好效果,取得的主要研究成果如下:
     1、川中须家河组储层物性差、有效储层单层比较薄、储集空间以次生溶孔为主。提出了技术上追求须家河组整体描述,不再拘泥于单层薄层识别精度观点。
     2、结合实际地震资料,详细分析了影响保幅处理的主要因素,提出了基于AVO属性保护的去噪方法,针对保幅处理过程中的难点提出了关键和主要技术,并形成了一套有效的地震资料保幅处理流程。
     3、在深入分析致密砂岩储气层的地球物理响应特征的基础上,利用研究区实际测井数据开展了致密砂岩地震正演模拟研究,揭示了地层厚度、孔隙度、流体饱和度变化引起地震响应变化的一般规律。从理论上探索了利用地震资料预测有利储层和气层的可行性。
     4、针对川中须家河组地区,建立了一套系统的致密砂岩储层和气层地震岩石物理敏感参数分析技术,为海量的叠前地震数据反演快速地提供了技术依据。
     5、通过本次研究,筛选出川中须家河组地区致密砂岩有效储层预测技术:岩性阻抗-横波阻抗预测技术、弹性阻抗预测技术。筛选出致密砂岩气层检测技术:弹性阻抗系数技术、λρ弹性参数反演技术。
     6、首次建立弹性阻抗系数、孔隙度和含气饱和度岩石物理图板,开展了预测含气饱和度研究,预测果与实际研究工区整体构造—岩性气藏特点较吻合。
Tight hydrocarbon-bearing sandstone reservoir accounts of more and more proportion in China's proved reserves of crude oil and natural gas year by year. Tight sandstone reservoir with low porosity and low permeability also distributes in the major oil and gas blocks in China. Therefore, it is one of the most promising and important fields for exploration in the 21st century.
     For the weak relative changes in geophysical characteristics to different porosity and hydrocarbon saturation, effective prediction and hydrocarbon detection are very difficult for tight sandstone reservoirs. This paper bases on predecessors' work and the objective reservoir characteristics of Xujiahe group formation, carries out the processing system to maintain seismic data amplitude and seismic rock physics analysis, analyses hydrocarbon-bearing reservoir 's geophysical response characteristics, optimizes the effective elastic sensitive parameters, and then researches pre-stack inversion method by improved inversion algorithm and their application on tight sandstone reservoir prediction and hydrocarbon detection. Thesis main includes the following contents:
     1) The formation of Xujiahe group has the characteristics of thin layer and poor reservoir properties with secondary dissolution porosity. Effective prediction and hydrocarbon detection are very difficult for tight sandstone reservoirs. So, the paper pursuits the overall description and no longer rigidly adheres to the views of single thin layer identification accuracy.
     2) Based on the actual seismic data processing, this thesis detailed analyses the main factors which impact the seismic data fidelity, and put the new de-noising method according to the AVO attribution. The paper also forms a set of seismic data fidelity treatment system and key technology for maintaining amplitude accuracy.
     3) Thesis first time analyses hydrocarbon-bearing reservoir's geophysical response characteristics of tight sandstone reservoir, and launches forward modeling studies of tight sandstone reservoir based on logging data in site to explore the general laws of seismic response in different frequency bands. These laws are affected by different layer thickness, porosity and fluid saturation. That is to say, the paper researches the feasibility to predict effective reservoir and detect hydrocarbon in theoretical by using seismic data.
     4) Thesis first time establishes a set of seismic rock physics sensitivity parameters analysis system for tight hydrocarbon-bearing sandstone reservoir of the formation of Xujiahe group. It provides a technical basis for the rapid inversion of massive pre-stack seismic data.
     5) Thesis picks out the effective reservoir prediction technology of tight sandstone, such as lithology impedance-Vs impedance prediction technique, elastic impedance prediction technique. Thesis also picks out the effective hydrocarbon detection technology, such as elastic impedance prediction technique,λρinversion technique.
     6) Thesis first time creates a seismic rock physics board using the in suit logging data, and carries out the hydrocarbon saturation prediction. It should to be noted that the forecast result matches the characteristics of structure-lithology gas reservoir in whole.
引文
[1]董晓霞,梅廉夫,金永旺.致密砂岩气藏的类型和勘探前景.天然气地球科学, 2007, 18(3): 351-354.
    [2]康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望.石油勘探与开发, Vol.34. No.2, 2007, 239-245.
    [3] Marpuardt D.W.. An algorithm for least-squares estimation of noliner inequalities. SLAM J Appl. Math., 11, 1963, 431-441.
    [4] Cooke D.A, Schneider W. A.. Generalized liner inversion of reflection seismic data. Geophysics, Vol.48.No.6, 1983, 665-676.
    [5] Klaus Mosgaard, Vestergaard. A simulated annealing approach to seismic model optimization with sparse prior information.Geophysical Prospecting, Vol.39, 1991, 599-612.
    [6] Debeye H.W.J., Sabbah E., Van dermade P. M.. Stochastic inversion. SEG Expanded Abstracts, Vol.15, 1996, 1212-1215.
    [7] Cambois G.. AVO attributes and noise: pitfalls of crossplotting. SEG Expanded Abstracts, Vol.17. No.1, 1998, 244-247.
    [8] Ratcliffe A., Adler F.. Combined velocity and AVO analysis. EAGE-62nd Conf., Exp. Abstracts, 2000.
    [9] Keho T., Lemanski S., Raja. The AVO hodogram: Using polarization to identify anomalies. The Leading Edge, Vol.20. No.11, 2001, 1214-1224.
    [10]顾汉明,江涛,王家映.改进快速模拟退火方法进行AVO岩性参数反演.地球科学-中国地质大学学报, Vol.24. No.4, 1999, 418-422.
    [11]陈湛文,刘勇.基于波形的高分辨率AVO反演.大庆石油地质与开发, Vol.20. No.6, 2001, 56-57.
    [12]唐建明. AVO纵横波反演.物探化探计算技术, Vol.24. No.1, 2002, 27-30.
    [13]李正文,许多.油气储集层AVO非线性反演方法及应用研究.石油物探, Vol.41. No.1, 2002, 23-25.
    [14]朱兆林,王永刚,曹丹平.裂缝性储层AVO检测方法综述.勘探地球物理进展, Vol.27. No.2, 2004, 87-92.
    [15]孙鹏远,孙建国. P-SV波AVO分析.石油地球物理勘探, Vol.38. No.2, 2004, 417-422.
    [16]王述亭,朱培民.三维AVO反演预处理技术试验研究.中国海上油气, Vol.17. No.2, 2005, 94-99.
    [17]李景叶,陈小宏,金龙.时移地震AVO反演在油藏定量解释中的应用.石油学报. Vol.26. No.3, 2005, 68-73.
    [18] Connolly P.. Elastic impedance. The Leading Eage, Vol.18. No.4, 1999, 438-452.
    [19]邬长武,龚福华,魏建新等.地震物理正演模拟在古岩溶储层研究中的引用.江汉石油学院学报, Vol.26. No.3, 2004, 143-147.
    [20]姜岩,李文艳,叶萍.基于正演模拟的地震反射特征主要影响因素分析.大庆石油地质与开发, Vol.25. No.5, 2006, 100-103.
    [21]王贤,杨永生,陈家琪等.地震正演模拟在与其薄储层中的引用.新疆地质, Vol.25. No.4, 2007, 432-435.
    [22]杨新菊,马建德. AVO正演模型研究及引用.海洋石油, Vol.26. No.3, 2006, 14-19.
    [23]孔选林,仇燕.饱和流体多孔介质中AVA特征分析与正演.内蒙古石油化工, No.4, 2008, 74-76.
    [24]尚新民,李红梅,韩文功等.基于岩石物理与地震正演的AVO分析方法.天然气工业, Vol.28. No.2, 2008, 64-66.
    [25] Gassmann F..über die Elastizit?t por?ser medien Veirteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Vol.96, 1951, 1-23.
    [26] Kuster G.T., Toks?z M.N.. Velocity and attenuation of seismic waves in two-phase media: Part ?–Theoretical formulations. Geophysics, Vol.39.No.5, 1974, 587-606.
    [27] Toks?z M.N., Cheng C.H., Timur A.. Velocity of seismic waves in porous rocks. Geophysics, Vol.41. No.4, 1976, 621-645.
    [28] Shiyu Xu, Roy E.W.. A new velocity model for clay-sand mixtures. Geophysical Prospecting, Vol.43, 1995, 91-118.
    [29] Geertsma J.. Velocity-log interpretation: The effect of rock bulk compressibility. Soc. Pet. Eng. J., No.1, 1961, 235-248.
    [30] Krief M., Garat J., Stellingwerff J, et al.. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). The Log Analyst, Vol.31, 1990, 355-369.
    [31] William Murphy, Andrew Reischer, Kai Hsu. Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics, Vol.58. No.2, 1993, 227-239.
    [32] Dehua Han, Michael Batzle. Gassmann's equation and fluid-saturation effects on seismic velocities. Geophysics, Vol.69. No.2, 2004, 398-405.
    [33] Michael Batzle, Zhijing Wang. Seismic properties of pore fluids. Geophysics, Vol.57. No.11, 1992, 1396-1408.
    [34] Dehua Han, Batzle M.. Fizz water and low gas-saturated reservoirs. The Leading Edge, Vol.21. No.4, 2002, 395-398.
    [35] Dehua Han. Velocity in Carbonate Rocks. University of Houston-Colorado School of Mines: Fluids/DHI Project Annual Report, 2004.
    [36] Mritunjay Kumar, Dehua Han, Carlos Cobos. Fluid substitution in carbonate rocks-a rock physics model. University of Houston-Colorado School of Mines: Fluids/DHI Project Annual Report, 2004.
    [37] Mritunjay Kumar, Dehua Han. Pore shape effect on elastic properties of carbonate rocks. University of Houston-Colorado School of Mines: Fluids/DHI Project Annual Report, 2004.
    [38] Jiajin Liu, Dehua Han. Brine velocity and density data and model at HT and HP conditions. University of Houston-Colorado School of Mines: Fluids/DHI Project Annual Report, 2005.
    [39] Michael Batzle, Weiping Wang. FLAG Equation Comparison. University of Houston-Colorado School of Mines: Fluids/DHI Project Annual Report, 2005.
    [40] Bortfeld R.. Approximations to the reflection and transmission coefficients of plane longitudinal and transverse waves. Geophysical Prospecting, 1961, 9 (4): 485-502.
    [41] Hilterman F.J.. Seismic amplitude interpretation: Distinguished Instructor Short Course. Soc. of Expl. Geophys, 2001.
    [42] Paul G. Richards, Clint W. Frasier. Scattering of elastic waves from depth-dependent in homogeneities. Geophysics, Vol.41. No.3, 1976, 441-458.
    [43] Aki K.I., Richards P.G.. Quantitative Seismology-theory and method. W.H. Freeman and Company.1980
    [44] Shuey R.T.. A simplification of the Zoeppritz equations.Geophysics, Vol.50. No.4, 1985, 609-614.
    [45] Smith G.C., Gidlow P.M.. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, Vol.35. No.9, 1987, 993-1014.
    [46]郑晓东. Zoeppritz方程的近似及其应用.石油地球物理勘探, Vol.26. No.2, l991, l29-144.
    [47] Jan L. Fatti, George C. Smith, Peter J. Vail, et al.. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique. Geophysics, , Vol.59 No.9, 1994, 1362-1376.
    [48] Bill Goodway, Taiwen Chen, Jon Downton. Improved AVO fluid detection and lithology discrimination using Lamépetrophysical parameters:“λρ”,“μρ”, &“λ/μfluid stack”, from P and S inversions. SEG Expanded Abstracts, Vol.16 No.1, 1997, 183-186.
    [49] David Gray, Bill Goodway, Taiwen Chen. Bridging the gap: Using AVO to detect changes in fundamental elastic constants. SEG Expanded Abstracts, Vol.18. No.1, 1999, 852-855.
    [50] VerWest Bruce., Masters A., Sena A.. Elastic impedance inversion. 70th Annual International Meeting, Society of Exploration Geophysicists, 2000, 1580-1582.
    [51] Savic M., VerWest B., Master R.. Elastic Impedance Inversion in Practice. 70th Annual International Meeting, Society of Exploration Geophysicists, 2000, 689-692.
    [52] VerWest B.. Elastic impedance revisited. EAGE 66th Conference & Exhibition, 2004: 99.
    [53] Whitcombe D.N.. Elastic impedance normalization. Geophysics, Vol.67. No.1, 2002, 60-62.
    [54] Whitcombe D.N., Connolly, P., Reagan R., et al.. Extended elastic impedance for fluid and lithology prediction.70th Annual International Meeting, Society of Exploration Geophysicists, 2000; 138-141.
    [55] Whitcombe D.N., Connolly P. and Reagan R. L.. Extended elastic impedance for fluid and lithology prediction. Geophysics, Vol.67. No.1, 2002, 63-67.
    [56] Duffautt K., Alsos T. and Martin Landr, et al.. Shear-wave elastic impedance. The Leading Edge, Vol.19. No.11, 2000, 1222-1229.
    [57]倪逸.弹性波阻抗计算的一种新方法.石油地球物理勘探, Vol.38. No.2, 2003, 147-150.
    [58] Ni Yi, Zhang Kui. The elastic impedance inversion method and its application in SLG gas field. 74th Annual International Meeting, Society of Exploration Geophysicists, 2004, 274-277.
    [59]马劲风.地震勘探中广义弹性阻抗的正反演.地球物理学报, Vol.46. No.1, 2003, 118-124.
    [60] Shaoming Lu, George A., Mechan. Elastic impedance inversion of multi-channel seismic data from unconsolidated sediments containing gas hydrate and free gas. Geophysics, Vol.69. No.1, 2004, 164-179.
    [61]张奎,倪逸.三种弹性波阻抗公式比较.石油地球物理勘探, Vol.41, 2006, 7-11.
    [62] Zhijing Wang, Nur A. M, Batzle M.. Effect of different pore fluids on seismic velocities in rocks. Canadian Journal of Exploration Geophysicists, Vol.26, 1990,104-112.
    [63]黄绪德.油气预测与油气藏描叙-地震勘探直接找油气.南京:江苏科学技术出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700