用户名: 密码: 验证码:
低相干雷达干涉信息相位解缠技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间信息技术特别是雷达遥感技术的发展,合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)技术得到了迅速发展。近年来在InSAR基础上发展起来的差分雷达干涉测量(Differential Interferometic SAR,D-InSAR)技术对于地表形变的变化非常敏感,且监测精度较高(毫米级),加上它具有全天候、范围广、成本低等独特优势,已经越来越广泛地应用于地表形变监测中。然而在实际应用中,由于受到雷达系统自身成像几何限制、系统热噪声去相干、时间去相干以及空间基线去相干等诸多因素的影响,SAR影像常常发生几何畸变,生成的干涉条纹图相干性较低,常常出现不连续或跳跃现象,这些都使得最终获得的地表形变量精度与理论值相差甚远。因此,本文对InSAR/D-InSAR数据处理过程的最关键步骤之一----相位解缠技术进一步研究,使得这项技术更好地应用到地面沉降监测应用中,这是值得深入研究的热点和前沿技术问题,具有较强的现实意义和科学价值。
     本文对干涉雷达技术相关的文献进行了全面检索与分析,较为全面详尽地介绍了相位解缠技术的国内外研究现状和InSAR技术基本原理;详细介绍了现有的各种InSAR相位解缠算法,比较各种算法的优缺点并分析其适用性,对其中适合在实际InSAR相位解缠中应用的算法进行了仿真实验;在总结分析相位解缠阻扰因素的基础上,提出了一种针对不连续干涉条纹图的相位解缠方法,并成功应用于汶川震区的地表形变监测中。
     取得的主要成果如下:
     ⑴提出了一套针对低相干性不连续干涉条纹图的相位解缠阻扰因素分析方法。这种分析方法全面考虑了雷达侧视成像模式影响下的SAR图像几何畸变以及各种去相干源等因素对相位解缠的精度及效率的影响;
     ⑵提出了一种在控制点等先验知识指导下对不连续干涉条纹图进行相位解缠的方法。这种方法的提出是以全面分析相位解缠阻扰因素为基础的,它的提出实现了面向应用可靠性需求的相位解缠。采用这种方法对汶川震区的低相干性不连续干涉条纹图进行相位解缠实验,并将其解缠结果与采用其他三大类解缠算法的结果进行对比,通过分析各种算法的解缠精度,结果表明,对低相干性不连续干涉条纹图,采用文中所提出的这种解缠方法得到的结果相对比较理想。
With the development of spatial information technology, especially the development of radar remote sensing technology, the Interferometic Synthetic Aperture Rader (InSAR) technique has flourished. In recent years, Differential Interferometic SAR (D-InSAR), developed on the basis of InSAR, which is sensitive to the change of topography has been more and more popular in monitoring topography-displacement for its high precision measurement in displacement-field, plus it is all-weather, fargoing and low-cost, etc. However, SAR images always have geometric distortion and the lower coherence, and the resulting interference fringes aren't continuous or occur jumps in practical application because of the geometric constraints of imaging radar, thermal noise decoherence, time decoherence, spatial baseline decoherence etc., which lead to the ultimately accuracy of surface deformation far with the theoretical value. Therefore, this paper further study the phase unwrapping thchnology that is one of the most critical steps of InSAR/D-InSAR data processing, making better use of this technology to the land subsidence monitoring applications. It is a further study hot spots and leading-edge technology and has obvious practical significance and scientific value.
     This paper proceeds search and analysis to literature of Rader Interferometry; descriptions the phase unwrapping technology comprehensivly and the basic principles of InSAR technology; explains the various existing InSAR phase unwrapping algorithm; compares the advantages and disadvantages and the applicability of various algorithm; conducts simulation experiment to InSAR algorithm which is suitable for actual application. The author proposes a phase unwrapping method targeted to interference fringe pattern of discontinuous images, and apply to the earthquake ground deformation monitoring of WenChuan earthquake. Main achievements are obtained as follows:
     (1) Put forward a set of phase unwrapping obstruction of factor analysis to low-coherence interferogram discontinuous images. The method analyses geometric distortion of SAR images under the influence of radar side-looking imaging mode and the accuracy、efficiency of the phase unwrapping under the influence of various decoherence.
     (2) Put forward a method to phase unwrapping of discontinuous interference frige images under the direction of priori konwledge of the control points, and achieve the reliability requirements for the application. This method based on analysising the obstruction of factors of phase unwrapping will be applied to the discontinuous interference frige images of the WenChuan area, and compare the results with those results of other phase unwrapping methods. It finds that the result which is by the unwrapping algorithm to the discontinuous low-coherence interference fringes images is ideal.
引文
[1]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社, 2002.
    [2]舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003.3-10.
    [3]廖明生,林珲.雷达干涉测量学--原理与信号处理基础[M].北京:测绘出版社, 2003.
    [4] [法]Henri Maitre编,孙洪等译.合成孔径雷达图像处理[M].北京:电子工业出版社.2005.
    [5]李平湘,杨杰.雷达干涉测量原理与应用[M].北京:测绘出版社, 2006
    [6] D. L. Fried. Least-Square Fitting a wave-front distortion estimation to an array of phase-difference measurements J.Opt. Soc.Am. [J].1977, 67(3):370-375.
    [7] R. H.Hudgin.1977.Wave-front reconstruction for compensated imaging. J.Opt. Soc.Am. [J].1977, 67(3):375-378.
    [8] Glodestin R M. Zebker H A, Werner C L. Satellite radar interferometry: Two-dismensional phase unwrapping [J]. Radio Sci., 1998, 23(4):713-720.
    [9] J. M. Huntley. Noise-immune phase unwrapping algorithm. Applied Optics, 1989, 28(15): 3268-3270.
    [10] C. Prati, F. Rocca, A. M.Guarnieri and E. Damonti. Seismic migration for SAR focusing interferometric applications. IEEE Trans. Geophys. Remote Sens..1990,28:627-640.
    [11] C. Prati, M. Giani, and N.Leuratti. SAR interferomtry: A 2-D phase unwrapping technique based on phase and absolute values information. Proceedings of th 1990 Internation Geoscience and Remote Sensing Symposium. IEEE.Piscataway, 1990,2043-2046.
    [12] D. Derauw, Phase unwrapping using coherence measurements. Synthetic Aperture Radar and Passive Microwave Sensing,Proceeding of the SPIE. Society of Photo-Optical Instrumention Engineers. Bellingham, WA,1995,2584:319-324.
    [13] Flynn T. J. Consistent 2-D phase unwrapping guided by a quality map[J]. Proceedings of the 1996 International Geoscience and Remote Sensing Symposium, 1996, 2057-2059.
    [14] Ghiglia D.C.,Pritt M. D..Two-dimensional phase unwrapping: theory, algorithms, and software[M].Join Wiley & Sons, Inc.1998.
    [15] Wei Xu, Lan Cumming. A regiorr growing algorithm for InSAR phase unwrapping [J]. IEEE Transaction on Geoscience and Remote Sensing, 1999, 37(1): 124-134.
    [16] G. F. Carballo, P.W..Probabilistic cost functions for network flow phase unwrapping .IEEE Trans.Geosci. Remote Sens., 2000, 38(5):2192-2201.
    [17] Q. Lin,J.F.Vesecky, and H.A.Zebker.1994.Phase unwrapping through fringe-line detection in the synthetic aperture radar interferometry. Applied Optics, 1994,33(2):201-208.
    [18] A. Collaro, G. Franceschetti, F.Palmieri, and M.S.Ferreiro.Phase unwrapping by means of genic algorithms. J. Opt. Soc.Am,1998, 15(2):407-418.
    [19] J. M. N. Leitao and M.A. T. Figueiredo. Absolute phase image reconstruction: A stochastic nonlinear filtering approach .IEEE Transaction on Image Processing,1998,7(6): 868-882.
    [20]向茂生,李树楷.一种基于梯度估值的LMS相位解缠方法[J].遥感学报,1998,2(2):94-97.
    [21]向茂生,李树楷.用狄氏边界的泊松方程进行InSAR相位解缠的研究[J].测绘学报.1998, 27(3):204-210.
    [22]詹总谦,钱俊,舒宁.基于区域分割和编码的相位解缠方法[J].武汉大学学报(信息科学版).2002, 27(3):315-320.
    [23]赵争,张继贤,张过.遗传算法在InSAR相位解缠中的应用[J].2002, 27(3):37-39.
    [24]于勇,王超,张红等.基于不规则网络下网络费用流算法的相位解缠方法[J].2003, 7(6):472-477.
    [25] D. Massonnet, M. Rossi, C. Carmona, F. Adragna, G. Pelzer, K. Feigl, and T. Rabaute. The displacement field of the Landers earthquack mapped by radar interfereometry [J].Nature, 1993, 364:138-142.
    [26] H. A. Zebker, P.A. Rosen. R.M. Goldstein, A Gabriel, C. L. Werner. On the derivation of coseismic displacement fields using differential radar interferometry– the Landers earthquack. J. Geophys . Res, 1994,99: 19617-19634.
    [27] G. Fransceschetti, M. Migliaccio, D. Riccio, and G. Schirinzi. SARAS: A synthetic aperture radar (SAR) raw signal simulator. IEEE Trans. Geosci. Remote Sens. 1992, 30(1):110-122.
    [28] W.Xu, and I. Cumming. Simulator for repeat-pass InSAR studies. Proceeding of International Geoscience and Remote sensing Symposium(IGARSS’1997), 1704-1706.
    [29] Pritt M D J S. Least-squares two-dimensional phase unwrapping. Geoscience and Remote Sensing, 1994, 32(3):706-708.
    [30]宋建社,郑永安,袁礼海.合成孔径雷达图像理解及应用[M].北京:科学出版社,2008.
    [31]张红,王超,刘智.获取张北地震同震形变场的差分干涉测量技术[J].中国图形图像学报. 2000, 5(A6):497-500.
    [32]王超,刘智,张红等.张北-尚义地震同震形变场雷达差分干涉测量[J].科学通报.2000, 45(23):2550-2553.
    [33]楼良盛.基于卫星编队InSAR数据处理技术[D].整个人民解放军信息工程大学, 2007.
    [34]季灵运,王庆良,杨成生等.InSAR相位解缠算法的分析与评价[J].测绘工程, 2008, 17(5):12-15.
    [35]张克林.干涉合成孔径雷达成像算法研究[D].北京理工大学, 2003.
    [36]刘子龙.星载InSAR信号处理算法研究[D].国防科学技术大学, 2009.
    [37]岑小林.InSAR相位解缠算法研究[D].湖南大学, 2008.
    [38]孙龙.偏微分方程在合成孔径雷达干涉测量中的应用研究[D].安徽大学, 2005.
    [39]付进朋.InSAR相位解缠算法研究[D].西南交通大学, 2006.
    [40]刘志栋.InSAR相位解缠方法研究[D].国防科学技术大学, 2005.
    [41]彭曙蓉.高分辨率合成孔径雷达干涉测量技术及其应用研究[D].湖南大学,2009.
    [42]梁军.雷达干涉测量及其在青藏铁路沿线地面形变监测中的应用研究[D].成都理工大学. 2007.
    [43]何伟.D-InSAR技术在西安市地面沉降监测中的应用[D].长安大学, 2007.
    [44]张新征.基于多频段、多极化、多分辨率的多SAR图像融合[D].航天科工集团第二研究所, 2002.
    [45]周春霞.星载SAR干涉测量技术及其在南极冰貌地形研究中的应用[D].武汉大学.2004.
    [46]乔书波.InSAR技术及其在大地测量与空间地球动力学中的应用研究[D].中国人民解放军信息工程大学, 2003.
    [47]孟智强.二维相位解缠技术研究及其在自动光学检测中的应用探讨[D].上海交通大学, 2005.
    [48]孙建宝,梁芳,沈正康等.汶川Ms8.0地震InSAR形变观测及初步分析[J].地震地质, 2008, 30(3): 789-795.
    [49]屈春燕,宋小刚,张桂芳等.汶川Ms8.0地震InSAR同震形变场特征分析[J].地震地质,2008, 30(4):1076-1084.
    [50] Ken Xiansheng Hao, Si Hongjun, Huo yuki Fujiwara, et al. Coseismic surface ruptures and deformations of the 2008 Wenchuan earthquick. Geophysical anetary[J].Science Letters, 2005, 232:39-49.
    [51]蒋弥,丁晓利,李志伟等.用L波段和C波段SAR数据研究汶川地震的同震形变[J].大地测量与地球动力学, 2009, 29(1): 21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700