用户名: 密码: 验证码:
场地非线性地震反应分析方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是全人类共同面临的一个灾害问题。中国和意大利都是地震多发国家,同时也是受地震灾害影响较为严重的国家。场地地震反应分析是震害估计和抗震工程领域中的重要内容,在工程场地地震安全性评价中有着举足轻重的地位。20世纪60年代后,在大量试验数据和强震观测资料的基础上,研究学者发现了强震作用下土体会产生大应变从而导致非线性。于是,强震作用下土体的非线性特征开始逐渐引起国际岩土地震工程领域的关注。如何描述土体在地震荷载作用下的应力-应变关系一直是学术界关注的研究课题,土体动力本构模型的建立也成为土动力学中的前沿课题之一。然而,大多数非线性本构模型中的参数较多,参数的确定也较为繁琐,需要占用大量的计算机内存,不利于计算机实现。而在现有地震反应分析程序的实际应用中,相关参数的正确选取却缺乏依据,特别是对于程序的初学者以及缺乏经验的工程人员更是缺乏相对比较完善的参考资料和正确的指导,通过不同地震分析程序得到的地震反应的正确性和精确度值得商榷。此外,在工程实践中,剪切波速度呈逆向分布的特殊场地的研究没有得到较好的发展,这种独特的地层特征能够确定土层随着深度影响的复杂动力反应,会显著地影响土的表面运动和内部运动。在土壤的液化,桩基础设计和埋入式结构等许多岩土地震工程问题中有着实际意义。
     针对以上问题,通过重庆大学与罗马大学的国际合作项目,作者在罗马大学联合培养学习期间,基于Giuseppe Lanzo教授等的研究基础,围绕场地非线性地震反应,主要做了以下几个方面的研究工作:
     ①场地地震反应分析的理论研究。论述了场地非线性研究方法、分析模型和非线性特性方面的研究现状,总结了场地地震反应分析中土体动力本构模型,反应分析方法和数值程序实际应用中存在的主要问题和不足。总结国内外学者在场地非线性特性方面的研究,场地非线性反应分析的模型和分析方法,针对土层对地震波的放大作用,重新推导了地震作用下的土层放大函数。介绍了场地地震反应的现行分析方法,即频域分析和时域分析中的等效线性化方法和非线性方法,阐述了各自的原理,并对实际应用中的优缺点进行评述和对比。
     ②提出了基于双曲正切函数的土动力非线性本构模型。主要针对已有本构模型参数较多,各参数确定比较繁琐,不利于实际应用,且有时模型出现的不合理情况,从土体本构模型的一般构造原则出发,基于简单的双曲正切函数,根据其函数图像性质和具有双渐近线特征,通过函数的平移和缩放原则推导了土体非线性本构模型的骨架曲线和滞回曲线的双曲正切表达式,构造出基于双曲正切函数的土体动力本构模型,并把通过该模型得出的结果与现场实测数据进行拟合。同时,基于该非线性本构模型,采用直接积分的数值算法,编制了场地非线性地震反应分析程序,并将该程序应用于场地地震反应分析中,进行可行性论证。
     ③应用频域和时域分析方法对场地地震反应进行计算分析。采用粘滞阻尼假定,详细探讨了时域分析中的几种Rayleigh阻尼矩阵形式。并通过国际岩土工程界广泛使用的五种数值分析程序,研究了怎样由Rayleigh阻尼表达式中由粘滞阻尼系数,即控制频率形成阻尼矩阵的问题,并以频域分析的结果作为精确解,对各程序的分析结果进行对比,对实际应用中不同程序相关参数的合理选取进行了归纳总结,提出相关建议。
     ④实际中的土层都是置于弹性基岩之上,但是在数值计算中又常常假定基岩为刚性的。为了检验地震波的两种输入方式在不同计算软件中的精度和准确性,对半空间不同基底类型上的均质粘土层进行地震反应分析,讨论了不同数值计算程序中采用不同基岩假定的合理性,及所求出地震反应的准确性。
     ⑤针对意大利中南部地区许多历史古迹中心具有剪切波速度逆向分布土层的特殊古迹场地,建立理想分析模型,并从意大利强震数据记录库SISMA中精选6组实测地震加速度记录作为输入地震动,结合不同土层剖面组合,通过改变不同土层的几何及力学参数,分析了该类型场地的地震反应。分析结果表明,土层的剪切波速度是确定土层地震反应的首要影响因素,两种不同性质土层的其接触面是薄弱面,在地震动作用下会产生很大的剪切应变。
     通过本文的研究,形成了新的场地地震非线性反应分析方法,同时对已有数值程序的特征及相应参数选取进行了深入探讨,提出了相关的建议,这对于促进抗震工程的发展具有重要的学术指导意义。
Ground response analysis are used to predict ground surface motions for development of design response spectra and determine the earthquake-induced forces that can lead to instability of earth and earth-retaining structures. Evaluation of ground response is typically important and also one of the most commonly encountered problems in geotechnical earthquake engineering. The nonlinear soil characteristics have received much attention since the soil nonlinearity under strong motions was found. Construction of soil constitutive models uses basic principles of mechanics to reproduce the soil behavior under general initial stress conditions. The penalty for this increased versatility comes in the form of increased complexity, and increased computational efforts and computational instability, even increased number of model parameters, some of which are difficult to determine when incorporated into seismic ground response analyses and the computation is expensive. As a result, attempts have been made to derive a simple, straightforward and feasible new model to describe the nonlinear stress strain relationship. In addition, with dramatic development of computer technology, numerical studies with computer codes is playing increasingly significant roles in various fields of geotechnical earthquake engineering to understand the basic concepts and to model the real situations under earthquake loadings. But nonlinear seismic ground response analysis is seldom used in practice by non-expert users because parameter selection and code usage protocols are often unclear and poorly documented, the effects of parametric variability on the analysis results are unknown, and the benefits of nonlinear analyses relative to equivalent-linear analyses are often un-quantified. Thus, the development of reliable and dependable documented parameter selection for the numerical simulation is needed in practice. Moreover, it should be considered that in the Italian territory, especially in central and southern Italy, many historical centres are founded on site characterised by shear wave velocity inversion. This shear wave velocity inversion can determine a complex dynamic response of the soil column significantly affecting the in-depth and at surface ground motion. This response may be of practical interest in many geotechnical earthquake engineering problems such as the design of pile foundations and of critical buried structures.
     Based on the research carried out by Prof. Giuseppe Lanzo and Dr. Alessandro Pagliaroli, some further work has been accomplished with respect to nonlinear seismic ground response analysis and implications for seismic codes implementation. The main work involved in this thesis is:
     Firstly, Literature review, previous research on nonlinear seismic ground response analysis and the main methods to estimating ground response are summarized. Theory of wave propagation is also presented again, then the equation of motion of three dimensional wave propagation is re-derived.
     Secondly, the thesis focuses on the seismic ground response analysis. Relative contents are including: specification of input motion which describe how the control motion is applied as the outcrop motion or within motion correspond to the rigid base and elastic base; soil amplification, which represents the characteristics of the soil itself, and it is independent of any earthquake; time domain and frequency domain analysis in company with the nonlinear and equivalent linear method; viscous Rayleigh damping ratio which consisting of three type of formulations.
     Thirdly, stable numerical integration techniques and realistic constitutive models of soil are the two important and necessary components of nonlinear seismic ground response analyses. Study in this thesis is only involved in nonlinear constitutive models of soil. NHT model is new and first attempt to model nonlinear stress-strain behavior of soil based on the hyperbolic tangent function. The backbone (stress-strain) curve and unloading, reloading curves are all conducted according to the basic standard hyperbolic tangent function. It is indicated that the NHT model can exhibit the soil dynamics. Moreover, NHT model is expressed in the simple form, in which the physical meaning is clear and straightforward. The unloading and reloading can start at the point even without standing in the backbone curve, and the only thing need to do for obtaining hysteresis loop is determination of shear strain and shear stress values at the beginning of unloading and reloading.
     In addition, the implications for seismic codes implementation are presented. Application of five leading common used computer codes in ground seismic response is handled by creating simple homogeneous soil model. Exact solutions for body wave propagation through soil medium are carried out. The major emphasis of the research is to reduce confusions in the usage of procedures in practice and create relative clear guidelines so that the numerical analysis problem can be handled for those even non-expert users at currently available common used computer facilities. Furthermore,shear wave velocity inversion can determine a complex dynamic response of the soil column significantly affecting the in-depth and at surface ground motion. This response may be of practical interest in many geotechnical earthquake engineering problems such as the design of pile foundations and of critical buried structures. Considering the fact that in the Italian territory, especially in central and southern Italy, many historical centres are founded on large soft rock slabs overlying more deformable clay deposits, a two-layer system was established for seismic response of soil columns characterised by shear wave velocity inversion.
     Last but not least, the recommendations and some further efforts which can be considered in the future research are summarized.
引文
陈国兴. 2007.岩土地震工程学[M].北京:科学出版社.
    陈国兴,陈忠汉,马克俭. 2002.工程结构抗震设计原理[M].北京:中国水利水电出版社
    陈国兴,刘雪珠.2006.南京新近沉积土的动剪切模量和阻尼比试验研究[J].岩土工程学报, (8):1023-1027
    陈国兴,庄海洋. 2005.基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩土工程学报, 27(8): 860-864
    陈生水,沈珠江. 1990.钢筋混凝土面板堆石坝的地震永久变形分析[J].岩土工程学报,1990, 12(3): 66-72
    丁玉琴,张永兴. 2010.欧洲抗震设计规范Eurocode8简介及其与我国岩土抗震设计比较[J].地震工程与工程振动, 30(05):134-141
    黄义,王春玲等. 2004.成层地基一维土层对地震的随机反应分析[J].世界地震工程, 20(1):126-132
    胡聿贤. 1988.地震工程学[M].北京:地震出版社.
    胡聿贤. 2006.地震工程学[M].第二版.北京:地震出版社
    霍俊荣,胡聿贤. 1987.结构双参数破坏准则及其动力可靠性分析,第二届全国地震工程学术会议论文集, 585-590
    李小军. 1992a.非线性土层地震反应分析的一种方法[J].华南地震, 12(4): 1-8.
    李小军. 1992b.土的动力本构关系的一种简单函数表达式[J].岩土工程学报, 14(5): 90-94.
    李小军. 1993.非线性场地地震反应分析方法研究[D] [博士学位论文].哈尔滨:国家地震局工程力学研究所
    李小军,廖振鹏. 1989.土应力应变关系的粘-弹-塑模型[J].地震工程与工程振动, 9(3): 65-72
    李杰,李国强.1992.地震工程学导论[M].北京:地震出版社.
    廖振鹏. 1989.地震小区划——理论与实践[M].地震出版社.
    林皋,关飞. 1990.用边界元法研究地震波在不规则地形处的散射问题[J].大连理工大学学报. 30(2):145-152.
    刘汉龙,余湘娟. 1999.土动力学与岩土地震工程研究进展[J].河海大学学报, 27(1):6-15
    栾茂田. 1992.土动力非线性分析中的变参数Ramberg-Osgood本构模型[J].地震工程与工程振动, 12(2):69-78
    栾茂田,林皋. 1992.土料非线性滞回本构模型的半解析半离散构造方法[J].大连理工大学学报, 32(6):694-701
    栾茂田,林皋. 1992.场地地震反应非线性计算模型[J],工程力学, 9(1): 94-103.
    栾茂田,林皋. 1994.场地地震反应非线性分析的有效时域算法[J],大连理工大学学报, 34(2): 228-234
    门玉明,黄义等. 2001.场地土的随机地震反应分析[J].工程地质学报, 9(1): 68-73
    沈珠江. 1986.一个计算砂土液化变形的等价粘弹性模型.第四届全国土力学及基础工程学术会议论文集.北京:建筑工业出版社, 199-207
    沈珠江,1993.结构性粘土的弹塑性损伤模型[J].岩土工程学报,3: 21-28
    沈珠江,1996.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1: 95-97
    王志良,韩清宇. 1981.粘弹塑性土层地震反应的波动分析方法[J].地震工程与工程振动, 1(1): 117-137
    王靖涛. 2002.建立岩土本构模型的数值方法[J].华中科技大学学报(城市科学版),19(1): 44-47
    吴再光,林皋,韩国成. 1992.水平成层地基非平稳随机地震反应分析[J],土木工程学报, 25(3):60-67
    袁晓铭,孙锐,孙静,等. 2000.常规土类动剪切模量和阻尼比的试验研究[J].地震工程与工程振动,(4):133-139
    曾心传,秦小军. 1998.土层对地震的随机反应分析[J].地震工程与工程振动,18(2):27-38
    张克绪,李明宰,王治琨. 1997.基于非Masing准则的土动弹塑性模型[J].地震工程与工程振动, 17(2): 74-81
    张克绪,王治琨,韩炜. 1994.基于非曼辛准则的土双曲线动弹塑性模型.第四届全国地震工程会议论文集[C].哈尔滨:中国地震学会地震工程专业委员会,中国建筑学会抗震防灾研究会
    郑大同,王惠昌. 1983.循环荷载作用下土的非线性应力应变关系模型[J].岩土工程学报, 5(1):65-76
    周健,白冰,徐建平. 2001.土动力学理论与计算[M].北京:建筑工业出版社.
    庄海洋,陈国兴,刘雪珠. 2005.含有互层土场地土体的动参数试验研究及其地震反应分析[J]. 岩土力学, (9): 1495-1499
    Aki, K. Local site effects on strong ground motion. Proc. Earthq. Eng. Soil Dyn. II, 1988, 103-155 Amini, F. 1995. Time effect on dynamic soil properties under random excitation conditions. Soil Dynamics and Engineering, 14(6):439-443.
    Atkinson G M, Silva W. 2000. Stochastic modeling of California ground motion. Bull Seism Soc AM, 90: 255-274
    Bazant Z P and Krizek R J. 1976. Endochronic constitutive law for liquefaction of sand. JEMD, ASCE, 102(EM2)
    Bolt B A. 1993. Earthquakes. W.H. Freeman, New York.
    CEN. 2004. European Standard EN 1998-5:2004. Eurocode 8: Design of structures for earthquakeresistance. Part 5: Foundations, retaining structures and geotechnical aspects. Comite Europeen de Normalisation. Brusells.
    Chang S W Y. 1996. Seismic response of Deep Stiff Soil Deposits. PHD Dissertation, University of California at Berkeley.
    Chin B H and Aki K. 1991. Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake: A preliminary result on pervasive nonlinear site effects.BSSA, 81:1859-1884.
    Chopra A K. 2000. Dynamics of structures, 2nd Ed., Prentice-Hall, Englewood Cliffs, N.J.
    Clough G W and Penzien J. 1993. Dynamics of structures, 2nd Ed., McGraw-Hill, New York.
    Costanzo A., Silvestri F and Lampitiello S. et al. 2004. Vulnerabilitàsismica di centri storici su rilievi: i casi di Bisaccia, Orvieto e Gerace. Genova: XI Congresso Nazionale“L’Ingegneria Sismica in Italia”, January:25-29. (in italian)
    Cultrera G, Boore D M., Joyner W B and Dietel C M. 1999. Nonlinear soil response in thevicinity of the Van Norman complex following the 1994 Northridge, California, Earthquake. BSSA,89(5):1214-1231
    Dafalias Y F, Herrmann L R. 1980. A bounding surface soil plasticity model. Proc Int. Symposium. Soil under Cyeli and Transient loading[C].
    Dafalias Y F, Herrmann L R. 1986. Bounding surface plasiticity. II Application to isotropic cohesive soils.J. Engrg. Mech. 112(12): 1263-1291
    Dario R, Kavvas M L and Shen C K. 1993. Random responses of soil deposits subjected to earthquake loading [J].Soil Dynamics and Engineering, 12(4):227-237.
    Darragh R B and Shakal A F. 1991. The site response of two rock and soil station pairs to strong and weak ground motion. Bull. Seism. Soc. Am., 81:1885-1899.
    Ding Y Q, Pagliaroli A and Lanzo G. 2008. One dimensional seismic response of two-layer soil deposits with shear wave velocity inversion. 2008 SEISMIC ENGINEERING CONFERENCE: Commemorating the 1908 Messina and Reggio Calabria Earthquake. AIP Conference Proceedings, Vol.1020:252-258
    Desai C S, Gallagher R H. 1984. Mechanics of Engineering Materials. London: John Wiley and Sons, 96~103
    Duncan J M, Chang C Y. 1970. Nonlinear analysis of stress-strain in soils. Proc.ACSE, 96(SM5): 1629-1653
    EduPro Civil System, Inc. 1998. PROSHAKE—Ground Response Analysis Program. EduPro Civil System, Inc., Redmond Washington
    Edward L W. 2004. Static and dynamic analysis of structures: A physical approach with emphasis onearthquake. 4th
    Hilber H M, Hughes T J R, Taylor R L. 1978. Collocation, dissipation and“overshoot”for time integration schemes in structural dynamics. Earthquake Engineering and Structural Dynamics, 6: Edition. USA: Computer and Structures Inc..
    Feng Su, Anderson J G and Zeng Y H. 1998. Study of weak and strong ground motion including nonlinearity from the Northridge, California, earthquake sequence. Bull. Seism. Soc. Am., 88: 1411-1425.
    Field E H, Johnson P A, Beresnev I A and Zeng Y. 1997. Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake. Nature, 390: 599-602.
    Field E H, Zeng Y, Johnson P A, and Beresnev I A. 1998. Nonlinear sediment response during the 1994 Northridge earthquake: observations and finite-source simulations. J. Geophys.Res., 103: 869-883.
    Finn W D L., Lee K W and Martin G R. 1977. An Effective Stress Model for Liquefaction, Journal Geotech. Engrg. Div., ASCE, 103(GT6): 517-533
    Ghaboussi J and Dikmen S U. 1978. Liquefaction Analysis of Horizontally Layered Sands. Journal Geotech. Engrg. Div., ASCE, 104(GT3): 341-356
    Hall W H. 1977. Structural and geotechnical mechanics. New Jersey: Prentice-Hall Inc., Englewood Cliffs
    Hanks T C. 1979. b value andω-γseismic source models: implications for tectonic stress variation along active crustal fault zones and the estimation of high-frequency strong ground motion[J]. Journal of Geophysical Research, 84(B5): 2235-242
    Hanks T C and McGuire R K. 1981. The character of high-frequency strong ground motion, Bulletin of the Seismological Society of America, 71: 2071-2095
    Hashash Y M A and Park D. 2001. Nonlinear one-dimensional seismic ground motion propagation in the Mississippi embayment. Engineering Geology, 62: 185-206
    Hashash Y M A and Park D. 2002. Viscous damping formulation and high frequency motion propagation in nonlinear site response analysis. Soil Dynamics and Earthquake Engineering, 22(7): 611-624
    Hardin B O and DrnevichV P. 1972a. Shear modulus and damping in soil measurement and parameter effects. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 98(6): 603-624.
    Hardin B O, Drnevich V P. 1972b. Shear modulus and damping in soil design equations and curves. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 98(7): 667-692
    Hartzell S. 1998.Variability in nonlinear sediment response during the 1994 Northridge, California earthquake. Bull. Seism. Soc. Am., 88:1426-1437.99-117
    Housner G W. 1947. Characteristics of StrongMo tion of Earthquakes. BSSA , 37(1):19-31
    Hudson Martin B. 1994. Behavior of Slopes and Earth Dams during Earthquakes. Doctoral Thesis, University of California, Davis, California
    Hudson Martin., Idriss I. M., and Beikae Mohsen. 1994 QUAD4M: A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base. University of California, Davis, California Husid R L. 1969. Analisis de Terremotos: Analysis General, Revista del IDIEM, Santiago Chile. 8(1): 21-42
    Idriss I M, Dobry R, Doyle E H. and Singh R D. 1976. Behavior of Soft Clays Under Earthquake Loading Conditions”, Proc. Offshore Technology Conference, No. OTC 2671, Dallas
    Idriss I M., Lysmer J, Hwang R and Seed H B. 1973. QUAD4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping Finite Element Procedures. EERC Report 73-16. Berkeley: University of California, Berkeley.
    Idriss I M and Seed H B. 1968. Seismic response of horizontal soil layers. Journal of the Soil Mechanics and Foundations Division, ASCE, 94(4): 1003-1031
    Idriss I M and Sun J I. 1992. SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits. User’s Guide, Univ. of California, Davis, California.
    Ishibashi I and Zhang X. 1993. Unified dynamic shear moduli and damping ratios of sand and clay, Soils and Foundations, 33(1):182-191
    Iwan W D. 1967. On a class of models for the yielding behavior of continuous and composite system, Transactions of the ASME, Journal of Applied Mechanics, 34(3):612-617
    Jennings P C. 1964. Periodic response of a general yielding structure. J. Engrg. Mech. Div., ASCE, 90(EM2): 131-166
    Jennings P C. 1985. Ground motion parameters that influence structural damage, in R. E. Scholl and J. L. King, eds. Strong Ground Motion Simulation and Engineering Applications, EERI Publication 85-02, Earthquake Engineering Research Institute, Berkeley, California.
    Joyner W J and Boore D M. 1988. Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics II-Recent Advances in Ground Motion Evaluation, Geotechnical Special Publication 20, ASCE, New York: 43-102
    Joyner W B. 1977. A FORTRAN Program for Calculating Nonlinear Seismic Ground Response, Open File Report No.l77-671, U.S. Geological Survey, Menlo Park, Califoria
    Joyer W B. 1975. A Method for calculating Nonlinear Seismic Response in Two Dimensions. Bull.Seis. Soc. Am., 65(5):1337-1357
    Joyner W B and Chen A T F. 1975. Calculation of nonlinear ground response in earthquakes. Bull. Seismol. Soc. Am., 65(5):1315-1336
    Kagawa T. 1978.Shaking table tests and analysis of soil-structure systems. PhD. Dissertation, University of California,Berkeley
    Kamiyama M, Matsukawa T and Yoshida M. 2000. Dynamic variation of soil rigidity based on down-hole array observation.12WCEE.
    Kanai K. 1957. Semi-empirical formula for the seismic characteristic of ground. Bulletin of Earthquake Research Institute, Tokyo, 35:309-325
    Kim J K, Koh H M, Kwon K J, et al. 2000. A three-dimensional transmitting boundary formulated in Cartesian co-ordinate system for the dynamic of non-axisymmetric foundations. EESD, 29: 1527-1546.
    Kokusho T. 1980. Cyclic triaxial test of dynamic soil properties for wide strain range. Soil and Foudations, 2: 45-60
    Kondner R L. 1963. Hyperbolic stress-strain response: cohesive soils. Journal of the SoilMechanics and Foundations Division, ASCE, 89(SM1): 115-143
    Kondner R L and Zelasko J S. 1963. A Hyperbolic Stress-strain Formulation of Sands, Proc. of 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, San Paulo, Brasil, 289-324
    Kramer S L.1996. Geotechnical earthquake engineering. Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, Upper Saddle River, New Jersey
    Kramer S L and Paulsen S B. 2004. Practical use of geotechnical site response models, Proc. Int.
    Workshop on Uncertainties in Nonlinear Soil Properties and Their Impact on Modeling Dynamic Soil Response, PEER Center Headquarters, Richmond, CA
    Kwok O L. 2007. Application of One-Dimensional Geotechnical Modeling for Site Response Predictions. PHD thesis, University of California, Los Angeles
    Kwok A O L, Stewart J P and Hashash Y M A et al. 2007. Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 133(11): 1385-1398
    Lade P, Duncan J M. 1975. Elastoplastic stress-strain response: cohesive soils. Proc.ASCE, 101(10): 1037-1053
    Lakin T J. 1998. DENSOR98——A computer program for seismic analysis of nonlinear horizontal soil layers, New Zealand
    Lanzo G and Silvestri F. 1999. Risposta sismica locale-Teoria ed esperienze. Argomenti di ingegneria geotecnica. Hevelius Edizioni. (in Italian)
    Lanzo G, Olivares L, Silvestri F and Tommasi P. 2004. Seismic response analysis of historical towns rising on rock slabs overlying a clayey substratum, 5th International Conference on Case Histories in Geotechnical Engineering, New York, April 13-17
    Lanzo G, Olivares L. and Silvestri F. et al. 2004a. Seismic response analysis of historical towns rising on rock slabs overlying a clayey substratum. New York : 5th International Conference on Case Histories in Geotechnical Engineering
    Lanzo G, Pagliaroli A and D’Elia B. 2004b. Influenza della modellazione di Rayleigh dello smorzamento viscoso nelle analisi di risposta sismica locale. XI Congresso Nazionale “L’ingegneria Sismica in Italia”, Genova, (in Italian)
    Liou C P., Streeter V L and Richart F E. 1977. Numerical Model for Liquefaction. Journal Geotech. Engrg. Div., ASCE, 103: 589-606
    Loh C H and Yeh C S. 1992. Identification of site response using 3-D array records[C]. 10thMroz Z, Norris V A, Zienkiewicz O C. 1981. An anisotropic critical state model for soils subjected WCEE, Balkema, Rotterdam.
    Lysme J, Seed H B, and Schnabel P B. 1971. Influence of baserock characteristics on ground response. Bull. Seismol. Soc. Am., 61(5): 1213-1232.
    Martin P P. 1975. Nonlinear Methods for Dynamic Analysis of Ground Response, PHD thesis, University of California, Berkeley
    Martin P P and Seed H B. 1979. Simplified Procedure for Effective Stress Analysis of Ground Response, Journal Geotech. Engrg. Div., ASCE, 105: 739-758
    Martin P P, SEED H B. 1982. One dimensional dynamic ground response analysis. Journal of geotechnical engineering. ASCE, 108(7):935-954
    Masing G. 1926. Eigenspannungen and verfestigung beim messing. Proceedings of the 2nd International Congress on Applied Mechanics. Zurich, 332-33
    Matasovic N and Ordonez G A. 2007. D-MOD2000: A Computer Program Package for Seismic Response Analysis of Horizontally Layered Soil Deposits, Earthfill Dams, and Solid Waste Landfills. User’s Manual. GeoMotions, LLC
    Matasovic N. 1995. DMOD2: A Computer Program for Seismic Response Analysis of Horizontally Layered Soil Deposits, Earthfill Dams, and Solid Waste Landfills. GeoSyntec Consultants. Hunlington Beach, California
    Matasovic N and Vucetic M. 1993. Cyclic Characterization of Liquefiable Sands. Journal of Geotechnical Engineering, ASCE, 119(11): 1805-1822to cyclic loading. Geotechnique, 31(4): 451-470
    Newmark N M. 1959. A method of computation for structural dynamics. Journal of Engineering Mechanics Division 85: 67-94.
    Newmark N M, Rosenbluth E A. 1971. Fundamentals of earthquake engineering. Prentice Hall Inc.,Englewood Cliffs,N. J., 163-19
    Park D and Hashash Y M A. 2004. Soil damping formulation in nonlinear time domain site response analysis Journal of Earthquake Engineering, 8(2): 249-274
    Provest J H. 1978. Plasticity theory for soil stress-strain behavior. JEMD, 104(5): 1177-1194
    Provest J H. 1985. A simple plastic theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering, 4(1):9-17
    Pyke R. 1979. Nonlinear soil models for irregular cyclic loadings. Journal of Geotechnical Engineering Division, American Society of Civil Engineers, 105(GJ6): 715-726.
    Rajman M S and Yeh C H. 1999. Variability of seismic response of soil using stochastic finite element method, Soil Dynamics and Engineering, 18(3):229-245
    Rathje E M, Abrahamson N A, and Bray J D. 1998. Simplified Frequency Content Estimates of Earthquake Ground Motions. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 124(2): 150-159
    Ramberg W, Osgood W R. 1943. Description of stress-strain curves by three parameters. Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC.
    Rathje E M., Fadi Faraj F., Russell S and Bray J D. 2004. Empirical Relationships for Frequency Content Parameters of Earthquake Ground Motions. Earthquake Spectra, 20(1): 119-144
    Rayleigh J W S and Lindsay R B. 1945. The Theory of Sound, Vol. 1. Dover Publications, New York Richter C F. 1950. Elementary Seismology.San Francisco.
    RMS. 2008. The 1908 Messina earthquake: 100–year retrospective. RMS special report, Risk Management Solutions, Inc., 1-16
    Roesset J M and Whitman, R. V. 1969. Theoretical background for amplification studies. Research Rep. No. R69-15, Soils Publications No. 231, Massachusetts Institute of Technology, Cambridge, Mass.
    Rollins K, Evans M D, Diehl N B, et al. 1998. Shear modulus and damping relationships for gravels. Journal of Geotechnical and Geoenviromental Engineering, ASCE, (5):396-405
    Roscoe K H, Schofield A N, 1958. Worth C. P. on the yielding of soils.Geotechnique, 8(1): 22-53.
    Roscoe K H, Schofield A N, Thurairajah A. 1963. Yielding of clays in stateswetter than critical. Geolechnique, 13 (1): 211-240.
    Rosenblueth E, Herrear I. 1964. On a kind of hysteretic damping. Journal of the EngineeringMechanics Division, ASCE, 90(4):37-47
    Satoh T, Horike M, Takeuchi Y, Uetake T and Suzuki H. 1997. Non-linear behavior of scoria evaluated from borehole records in eastern Shizuoka prefecture, Japan. Earthq.Eng. Struc.Dyn., 26:781-795.
    Satoh T, Fushimi M and Tatsumi Y. 2001. Inversion of strain-dependent nonlinear characteristics of soils using weak and strong motions observed by borehole sites in Japan. BSSA, 91(2):365-380.
    Scasserra G, Lanzo G, Stewart J P, D'Elia B. 2008. SISMA (Site of Italian Strong-Motion Accelerograms): a web-database of ground motion recordings for engineering applications.
    2008 Seismic Engineering International Conference: commemorating the 1908 Messina and Reggio Calabria Earthquake (MERCEA). AIP Conference Proceedings, Vol. 1020: 1649-1656
    Scasserra G, Stewart J P, Kayen R E and Lanzo G. 2009. Database for earthquake strong motion studies in Italy, Journal of Earthquake Engineering. 13(6): 852-881
    Schnabel P B, Lysmer J, and Seed H B. 1972. SHAKE: A computer program for earthquake response analysis of horizontally layered sites. Report No. UCB/EERC-72/12, Earthquake Engineering Research Center, Univ. of Calif., Berkeley, Calif.
    Schnabel P B and Seed H B. 1973. Acclerations in rock for earthquake in the western United States. Bulletin of the Seismological Society of America. 63(2): 501-516
    Seed H B and Idriss I M. 1969. The influence of soil conditions on ground motions during earthquake. Journal of the Soil mechanics and Foundation Engineering Division, ASCE, 94: 93-137
    Seed H B and Idriss I M. 1970. Soil moduli and damping factors for dynamic response analyses, Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley.
    Song Ch, Wolf J P. 1997. Scaled boundary finite-element method-alias consistent infinitesimal finite- element cell method-for elastodynamics. Computer Methods in Applied Mechanics and Engineering, 147: 329-355.
    Stewart J P, Chiou S J and Bray J D et al. 2001. Ground Motion Evaluation Procedures for Performance-Based Design. PEER Report 2001/09, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley
    Sun J I, Golesorkhi R and Seed H B. 1988. Dynamic moduli and damping ratios for cohesive soils, Report No. EERC-88/15, Earthquake Engineering Research Center, University of California, Berkeley
    Takizawa, H. and Jennings, P. C. 1980. Collapse of a model for ductile reinforced concrete framesunder extreme earthquake motions. Earthquake Engineering and Structural Dynamics. 8(2): 117-144
    Trifunac. M.D. 1973. Scattering of plane SH waves by a semicylindrical canyon, EESD, 1:267~281. Trifunac M D and Brady A G. 1975. A study of the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America. 6 (5):581-626
    Trifunac M D and Todorovska M I. 1996. Nonlinear soil response 1994 Northridge California, earthquake. Journal of Geotech.Engrg, ASCE, 122(9):725-735.
    Tsai N C. 1969. Influence of Local Geology on Earthquake Ground Motions. PHD thesis, California Institute of Technology, Pasadena
    Udaka T. 1975. Analysis of Response of Large Embankments to Traveling Base Motions, University of California, Berkeley
    Valanis K C. 1971. A theory of viscoplasticity without a yield surface. Archives of Mechanics, 04 Vanmarcke E H and Lai S P. 1980. Strong motion duration and RMS amplitude of earthquakes. Bulletin of the Seismological Society of America. 70(4):1293-1307
    Von Thun J L and Chang N Y. 1986. Response characteristics of soil deposits, 3th U.S.National Conference on Earthquake Engineering, Charleston, South California, vol. 1
    Vucetic M and Dobry R. 1991. Effect of soil plasticity on cyclic response, Journal of Geotechnical Engineering, ASCE, 117(1): 89-107
    Wolf J P. 1985. Dynamic soil structure interaction. Englewood Cliffs, Inc., Pretice-Hall, New Jersey, Wolf J P, Song Ch. 2000. The scaled boundary finite-element method-a primer: derivations. Computers and structures, 78: 191-210.
    Wong H L and Jennings P C. 1975. Effects of canyon topography on strong ground motion, Bull. Seism.Soc. Am., 65:1239-1259.
    Wong H L., Trifunac M D. 1974. Scattering of plane SH waves by a semielliptical canyon, EESD, 3:157-169
    Zienkiewicz O C, Chang C T, and Hinton E. 1978. Nonlinear seismic response and liquefaction. Int. Journal for Numerical and Analytical Methods in Geomechanics, 2(4): 381-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700