用户名: 密码: 验证码:
紊流迷宫内镶式滴头制造偏差对田间管网技术指标的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴头制造偏差影响到田间管网灌水均匀性,但目前在滴灌田间管网水力设计计算中较少考虑这一问题,导致田间管网设计和实际运行存在偏差。本文采用室内试验、数值模拟和理论分析相结合的方法,系统的分析了紊流迷宫内镶式滴头制造偏差对田间管网技术指标的影响,为滴灌系统的设计及运行管理提供理论依据,主要研究成果如下:
     (1)在滴头水力特性室内试验的基础上,分析实验数据,针对流量偏差率作为滴头制造偏差的不足之处,对滴头制造偏差重新定义。分析得出滴头流量、滴头制造偏差、流态指数、流量系数均服从正态分布的。以流态指数、流量系数为随机变量对滴头流量进行计算机二维随机模拟,并对模拟结果进行验证,模拟结果与实验结果吻合良好。
     (2)考虑滴头制造偏差影响,建立滴灌毛管水力计算模拟模型,运用MATLAB进行编程。应用这一模型,分析不同要素组合条件下的毛管水力要素变化规律,结果表明,考虑滴头制造偏差与未考虑滴头制造偏差相比,毛管压力和滴头流量会有一定的波动,其中滴头流量波动比较明显。
     (3)考虑滴头制造偏差影响,建立田间管网的数值模拟模型,运用MATLAB进行编程。应用此模型,分析了不同要素组合条件下的灌水过程中田间管网系统压力水头偏差率、流量偏差率和管网系统灌水均匀系数的变化情况。结果表明,压力水头偏差率、流量偏差率、灌水均匀度变化趋势与未考虑滴头制造偏差影响时总体变化趋势相接近,但滴头制造偏差对田间管网技术指标的影响很大,灌水质量明显下降,其中压力水头偏差率、流量偏差率随着滴头制造偏差系数的增大而增大,灌水均匀度随着滴头制造偏差系数的增大而减小。在考虑滴头制造偏差影响的基础上,对滴灌压力水头偏差率和流量偏差率之间关系的经验公式进行了修正,显著性检验表明公式是可行的。
Emitter manufacture deviation affect the irrigation uniformity of field pipe network, but the present of hydraulic design calculation less consider this question in the field pipe network, so it lead to exist bias between design and practical operation. Based on laboratory test and theoretical analysis, numerical simulation method, the combination of the system are analyzed non-compensated of emitter manufacturing deviations, and the influence of technical indexes for drip irrigation system design and operation management theory are offered, the main research results are as follows:
     (1) In the hydraulic characteristics of emitter laboratory test, analysis of experimental data, based on the inadequate of flow deviation rates as the emitter manufacture deviation, the emitter manufacture deviation are redefined. Analysis of emitter flow, emitter manufacture deviation, flow index, flow coefficients obey the normal distribution. Base on the random variable of flow index and flow coefficient to computer simulation about the emitter flow, through the two random simulation results verified the results accord with the requirement, the simulation results are in good agreement with the experimental results.
     (2)As consideration of emitter manufacture deviation, the numerical simulation model of drip irrigation lateral hydraulic calculation which use MATLAB programming are established. Through using the model, the variation of lateral hydraulic factors under different conditions could be analysed, the results showed that the change rule which consider emitter manufacture deviation and does not consider emitter manufacture deviation, the lateral pressure and discharge rate will have certain fluctuation, and emitter flow volatility is obvious.
     (3) As consideration of emitter manufacture deviation, the model of field pipe network numerical simulation which use MATLAB programming are established. The model was applied to the analysis of different factors, the process of water under the condition of the pipeline system pressure, flow rate deviation head deviation and pipeline irrigation uniformity coefficient of variation. Results show that the pressure head, flow rate deviation error rate, irrigation evenness change trend and does not consider emitter manufacture deviation affect overall trend when is close, but the deviation emitter manufacturing network technology index, the influence of water quality decreased obviously, pressure, flow rate deviation head emitter along with deviation ratio of manufacture deviation coefficient increases, irrigation uniformity coefficient of emitter along with the manufacturing error decreases. In consideration of emitter manufacture deviation, on the basis of the influence of pressure head deviation ratio and drip irrigation flow rate deviation between the empirical formula was revised, significant test shows that formula is feasible.
引文
[1]中华人民共和国水利部.2008年水资源公报[J].中华人民共和国水利部,2008.
    [2]吴文荣.国内节水灌溉技术的应用现状及发展策略[J].河北北方学院学报,2007,23(4):38-41.
    [3]马晓河,方松海.中国的水资源状况与农业生产[J].中国农村经济,2006,(10):3-11.
    [4]周大地,戴彦德,郁葱等.2020中国可持续能源情景[M].北京:中国环境科学出版社,2003.
    [5]翟浩辉.当前发展节水灌溉应该注意的几个问题[J].节水灌溉,2002,(6):1-4.
    [6]刘昌明等,我国21世纪上半叶水资源供给分析[J].中国水利,2000,(2):33-35.
    [7]牛文全,吴普特,范兴科.低压滴灌系统研究[J].节水灌溉,2005,(2):29-32.
    [8]微灌工程技术规范编制组.微灌工程技术规范(SL103-95)[S].北京:水利出版社,1995.
    [9]白丹,魏小抗.节水灌溉工程技术[M].西安:陕西科学技术出版社,2001.
    [10]Karmeli D, Keller J. Trickle irrigation design. Rain Bird Sprinkler Manufacturing Corp[M]. Glendora, CA,1975.
    [11]Gilaad, Yigal, Krystal, et al.Hydraulic and mechanical properties of dripers[A].Proceeding Of The And International Drip Irrigation Congress[C].1974.
    [12]B.Zur.Wetted-soil volume as a design objective in trickle irrigation[J].Irrig Sei.1996, 16(2):101-105.
    [13]N.R.Austin, J.Bernard Prendergast.Use of kinematic wave theory to model irrigation on cracking soil[J].Irrigation Science,1997,18(1):1-10.
    [14]Schneider A.D., Howell T.A. LEPA and spray irrigation for grain crops[J].Journal of ASCE.1999, 125(4):167-172.
    [15]William M.L.James P.B. LEPA-Low Energy Precision Application[J].Irigation Journal.1991, (4):18-24.
    [16]Clark, Gary A.; Lamm, Freddie R.; Rogers, Danny H. Sensitivity of thin-walled drip tape emitter discharge to water temperature[J]. Source:Applied Engineering in Agriculture, ASAE,2005,21(5):855-863.
    [17]Demir V, Determination of the head losses in metal body disc filters used in drip irrigation systems[J].Turkish Journal Of Agriculture And Forestry,2009,33(3):219-229.
    [18]方部玲.一种新型微喷头的研制[J].中国农村水利水电,2004,(9):51-53.
    [19]雷显龙.滴头分形流道设计及其水力特性的试验研究[D].北京:北京农业大学博士学位论文,2001.
    [20]仵峰,范永申,李金山等.低压条件下滴头水力性能试验研究[J].节水灌溉,2003,(1):13-16.
    [21]张新燕,陈凤,李华莹.单翼迷宫贴壁式滴灌带水力性能初步试验研究[J].干旱地区农业研究,2004,22(4):225-228.
    [22]宰松梅,仵峰,范永申等.淹没出流条件下滴灌滴头水力性能试验研究[J].灌溉排水学报,2004,23(5):59-61.
    [23]王建东.滴头水力性能与抗堵塞性能试验研究[D].北京:中国农业大学硕士学位论文,2004.
    [24]何静,李光永,刘志烽.典型压力补偿滴头结构分析[J].节水灌溉,2006,(5):29-31,34.
    [25]Ken Solomon.Manufacturing variation of trickle emitters[J]. Irrigation Science ASAE,1979, 22(5):1033-1043.
    [26]Nakayama, F.S.et al.Assessing trickle emitter application uniformity[J]. Journal of ASAE,1979, 22(4):816-821.
    [27]Clemmens, A.J..A statislical analysis of trickle irrigation uniformity [J]. Journal of ASAE,1987, 30(1):169-175.
    [28]安养寺久男.关于滴灌管路系统的综合设计方法的研究[M].农业土木试验场报告,1988.
    [29]Kirnak, Dokan. Determination of hydraulic performance of trickle irrigation emitters used in irrigation systems in the Harran plain[J]. Turkish Journal of Agriculture and Forestry,2004, 28(4):222-230.
    [30]郑耀泉,宁堆虎.滴头制造偏差的模拟与滴灌系统随机设计方法的研究[J].水利学报,1991,7:1-7.
    [31]王留运.灌灌水器制造偏差系数的计算方法与研究[J].喷灌技术,1993,(2):6-11.
    [32]翟国亮,董文楚,瞿扬清.补偿式滴头制造偏差分析及补偿区间的确定[J].灌溉排水,1998,17(1):43-47.
    [33]水利部农村水利司.微灌工程技术[M].北京:中国水利水电出版社,1999.
    [34]郭清南,张鑫.滴头制造偏差系数测定试验研究[J].山东农机,2004,(6):8-10.
    [35]牛文全.微压滴灌技术理论与系统研究[D].杨林:西北农林科技大学博士学位论文,2006.
    [36]李永川,白丹,宋立勋等.微灌田间管网水力计算研究进展[C].农业工程学会,2005年学术学会论文集:302-306.
    [37]严以绥主编.膜下滴灌系统规划设计与应用[M].中国农业出版社,2003.
    [38]Tong, A.L.et al.Analysis of distribution networks by blancing equivalent pipe length[J]. Journal Of Irrigation And Drainage Engineering AWWA,1961, (2):1-4.
    [39]David Karimli et al.Design of optimal water distribution networks[J]. Journal of ASCE,1968, (10):5-8.
    [40]Kally, E.Pipeline planning by dynamic computer programming[J]. Journal Of Irrigation And Drainage Engineering A WWA,1969, (3):32-37.
    [41]Tung Liang.Design cenduit systems by dynamic programming[J]. Source:Applied Engineering in Agriculture ASCE,1971, (3):48-51.
    [42]Jacoby, S.L.S.Design of optimal hydraulic networks[J]. Source:Applied Engineering in Agriculture ASCE,1968, (5):2-7.
    [43]Anand, V.C.etal.Optimal design of branched water supply networks[J]. Source:Applied Engineering in Agriculture ASCE,1983, (6):13-18.
    [44]Ronald, E.F.et al.Optimal diameter selection for pipe network[J]. Source:Applied Engineering in Agriculture ASCE,1983, (2)29-33.
    [45]Buras, N. etal.Aque ductroute optimization by dynamic programming[J]. Source:Applied Engineering in Agriculture ASCE,1969, (9):3-9.
    [46]Labye, Y.et al.Design and optimization of irrigation distribution networks[J].FAO Irri.&Drai, 1988, (7):43-48.
    [47]郑耀泉,吴扬俊.滴灌系统田间管网设计优化模拟模型的研究[J].水利水电技术,1992,(10):49-53.
    [48]白丹.微灌田间管网的混合整数规划模型[J].农业机械学报,1995,(1):32-37.
    [49]白丹,王云涛,施丽贞,党志良,田希武.自压喷灌管网系统优化设计[J].农业机械学报,1996,(3):19-23.
    [50]陈渠昌,郑耀泉.微灌田间管网支毛管优化设计探讨[J].灌溉排水,1996,(1):2-7.
    [51]白丹.不规则微灌田间管网的优化[J].农业机械学报,1997,28(3):52-57.
    [52]赵竞成,王彦军.井灌区管网优化计算模型的改进[J].水利学报,1999,(3)27-31.
    [53]白丹,李占斌,宋立勋.模糊线形规划在微灌干管管网系统优化中的应用[J].水利学报,2003,18(1):63-66.
    [54]朱德兰,吴普特.喷微灌输水管网优化设计[J].排灌机械,2005,23(1):35-39.
    [55]郑纯辉,康跃虎.微灌管网智能化设计系统研制[J].干旱地区农业研究,2005,23(2):4247.
    [56]郑纯辉,赵杰.基于GIS的微灌管网智能化设计系统研究[J].农业工程学报,2004,20(5):101-104.
    [57]王昊利,王元.不同地形条件下微灌系统的计算机仿真研究[J].农业工程学报,2005,21(1):191-192.
    [58]王晓愚,白丹等.地下滴灌田间管网室内试验测试系统[J].农业工程学报,2008,24(4):88-90.
    [59]凯勒J,喀麦利D.滴灌设计[M]罗元培译.北京:水利出版社,1999.
    [60]Bralts V F, Gitlin H M, Wu I P.Manufacturing variation and drip irrigation uniformity[M].Transactions of the ASAE,1981,24(1):112-119.
    [61]杨培岭,雷显龙.滴灌用滴头的发展及研究[J].节水灌溉,2000,(3):17-18,40.
    [62]A.J.Clemmens, A Statistical analysis of Trickle Irrigation Uniformity [M]. Transactions of ASAE, 1987,30(1):169-175.
    [63]Rodriguez-Sinobas L. Water Distribution in Laterals and Units of Subsurface Drip Irrigation[J].Journal Of Irrigation And Drainage Engineering ASCE,2007,135(6):721-728.
    [64]苏德荣.微灌系统压力变化对出流均匀度影响的概率分析[J].水利学报,1991,28(12):46-50.
    [65]李光永.压力补偿滴头的研究新进展与使用中应注意的几个问题[J].节水灌溉,2000,(3):19-21.
    [66]郑耀泉,陈渠昌.微灌均匀度参数之间的关系及其应用[J].灌溉排水,1994,13(2):7-10.
    [67]张国祥.考虑三偏差因素的滴灌系统流量总体偏差率[J].农业工程学报,2006,22(11):26-29.
    [68]牛文全,吴普特,范兴科.微灌系统综合流量偏差率的计算方法[J].农业工程学报,2004, 20(6):85-88.
    [69]王建众,牛文全等.滴灌毛管灌水均匀度试验研究[J].人民黄河,2008,30(3):56-58.
    [70]张林,范兴科.均匀坡度下考虑三偏差的滴灌系统流量偏差率的计算[J].农业工程学报,2009,25(4):7-1 4.
    [71]魏正英,唐一平等.滴灌灌水器迷宫流道结构与水力性能试验研究[J].农业机械学报,2005,36(12):51-55.
    [72]牛长山,徐通模.试验设计与数据处理[M].西安:西安交通大学出版社,1987.
    [73]邵崇斌,概率论与数理统计[M].北京:中国林业出版社,2004.
    [74]詹道江,叶守泽.工程水文学[M].中国水利水电出版社,2007.
    [75]方再根,计算机模拟和蒙特卡洛方法[M].北京:北京工业出版社,1987.
    [76]郭琳,蔡固平等,二维随机水质模型在模拟污染带中的应用[J].中南大学学报,2004,35(4):573-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700