用户名: 密码: 验证码:
灌水器抗堵塞及滴灌系统灌水均匀度的影响灌水器抗堵塞及对滴灌系统灌水均匀度的影响灌水均匀度的
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌水器抗堵塞性能是影响系统成本与灌水均匀度的重要因素之一。它是目前滴灌系统较难克服的技术难题,也是评价灌水器质量的一个重要指标。本文以齿形迷宫流道结构灌水器为研究对象,应用计算流体力学(CFD)数值模拟分析软件软件Fluent6.3,对不同结构参数的齿形迷宫结构灌水器进行了模拟计算,在不同压力下,对不同颗粒浓度、粒径的浑水抗堵塞情况进行了周期抗堵塞试验分析,并开展了堵塞对田间滴灌灌水均匀度影响的试验,取得了以下主要结论:
     (1)固体颗粒在齿尖迎水区随主航道运动,背水区发生旋转;过渡区是颗粒脱离主航道进入齿尖漩涡区的关键部位,因此,通过调整灌水器结构参数大小,改善过渡区颗粒的运动可以有效提高灌水器的抗堵性能。
     (2)明确了影响灌水器抗堵塞性能的结构参数,齿高是影响灌水器抗堵塞性能主要的结构参数,其次是齿宽;齿高越大,灌水器的抗堵塞性能越差。采用单相流与离散相计算相结合的方法分析灌水器的抗堵塞性能,可避免采用欧拉-欧拉两相流占用计算机内存大,计算不易收敛的缺陷。
     (3)浑水中泥沙最大粒径小于0.15mm时,泥沙含量是影响灌水器抗堵塞性能的主要因素。当泥沙粒径在一定范围内时,影响灌水器抗堵塞性能的因素依次为:泥沙含量﹥泥沙粒径级配﹥压力。当压力一定时,影响灌水器抗堵塞性能的因素依次为:泥沙含量﹥泥沙粒径级配﹥额定流量。
     (4)以不同长度段的几个灌水器平均流量代替单个灌水器流量,计算滴灌均匀度Cu和均匀度系数Us。综合应用均匀度Cu和均匀度系数Us评价灌水质量能有效避免制造偏差对灌水均匀度的影响。田间灌水均匀度Eu能更好地反映滴灌系统中灌水器的堵塞状况;滴灌系统中,应选择流量适当的灌水器,减小滴灌带的铺设长度;根据平均流量沿滴灌带的变化,当滴头流量为1.38L/h时,滴灌带长度为80m以前的平均流量降低幅度较小,滴头流量为2.0L/h时,滴灌带70m以前的平均流量降低幅度较小。
The anti-clogging performance of the emitter is one of the important factor that impact system cost and irrigation uniformity, and an important index to evaluate emitter quality. However, it is also a technical problem in the drip irrigation system which cannot be completely resolved at present. This paper studies dental shape labyrinth path emitter through computational fluid dynamics (CFD) numerical simulation software Fluent6.3, and analyzes the effect of different structural parameters on anti-clogging performance. Besides, the influence of the sediment concentration and size in water on the anti-clogging of emitter and drip irrigation uniformity is studied through periodic anti-clogging and field irrigation experiment. By the above mentioned analysis and studies, this paper gets the main results as follows:
     (1)Solid particles move along with the main channel in front area of dental tip, but circumvolve in the passed area of dental tip; The transitive area is the key position which the solid particles break away from the main channel to whirl area. So it can advance the anti-clogging performance by improving the solid particles movement state in the transitive area.
     (2)The height of dental is the prominent factor that affects the anti-clogging performance of emitter, and the following factor is the width of dental; The anti-clogging performance of emitter descend with the height of dental increasing. It can be realized to analyze the anti-clogging performance of emitter through the method combining single-phase flow with discrete- phase, which can avoid the occupying more computer memory and the difficulty of convergence caused by the use of Euler - Euler two-phase flow model.
     (3)When the sediment diameter in the muddy water is less than 0.15mm, sediment concentration is the main factor affecting the anti-clogging performance. When the sediment diameter within a certain range, the order of the factors which affect the anti-clogging performance is: the concentration of sediment﹥the diameter of sediment﹥work press; When the work press is decided, the order of the factors which affect the anti-clogging performance is: the concentration of sediment﹥the diameter of sediment﹥the rating flow rate of emitter.
     (4) Cu and Us were calculated through the average flow rate of several emitters in different segments of drip tape instead of single emitter flow rate. It can avoid the influence of manufacture deviation on irrigation quality by comprehensively using Cu and Us computed from the average flow rate. The field irrigation uniformity Eu can reflect the clogging complexion in drip irrigation system better than Cu and Us; In drip irrigation system, choosing suitable flow rate emitter and reducing the length of drip tape are advisable. According to the change of the average flow rate along with drip tape, when the rating flow rate is 1.38L/h, the decreased extension of average flow rate before 80m of the drip tape is less than other parts,and it is before 70m of the drip tape when the rating flow rate is 2.0L/h.
引文
[1]山仑,康绍忠,吴普特.中国节水农业[M].北京:中国农业出版社,2003.
    [2]钱蕴壁,李英能,杨刚,等.节水农业新技术研究[M].郑州:黄河水利出版社,2002.
    [3]傅琳,董文楚,郑耀全.微灌工程技术指南[M].北京:水利水电出版社,1987,7-11.
    [4]王福军,王文娥.滴头流道CFD分析的研究进展与问题[J].农业工程学报,2006,22(7):188~192.
    [5] Celho F E,Or D.A parametric model for two dimensional water uptake intensity by corn roots under drip irriga-tion soil[J].Sci Soc AM J,1996,(4):1039~1049.
    [6]范永申,仵峰,李金山,等.微压滴灌灌水器的研制[J].节水灌溉,2005,(4):34-35.
    [7]刘世宽.滴灌滴头的设计要求[J].甘肃科技.2000,16(2):11~12.
    [8]李光永,曾德超,段中锁,等.地埋点源滴灌土壤水分运动规律的研究[J].农业工程学报,1996,(3):66~71.
    [9] Nakayama F S, Bucks D A. Emitter clogging effects on trickle irrigation uniformity[J]. Trans ASAE, 1981,24(1):77~80
    [10] Chieng S, Ghaemi A. Uniformity in a micro-irrigation with partially clogged emitters[C] 2003 ASAE Annual International Meeting. Michigan:ASAE,2003:1~11.
    [11] Nakayama F S,Bucks D A.Water quality in drip/trickle irrigation:a review[J].Irrigation Science,1991,12: 187-192.
    [12]王文娥,王福军.片状迷宫滴头悬浮颗粒分布规律数值分析[J],农业工程学报,2007,23(3):1~6.
    [13]颜廷熠.基于CFD模拟的迷宫滴头性能研究[D].北京:中国农业科学院,2008.
    [14]闫大壮,杨培岭,任树梅.滴头流道中颗粒物质运移动态分析与CFD模拟[J].农业工程学报.2007,38(6):71~74.
    [15]喻黎明,吴普特,牛文全.迷宫流道内固体颗粒运动的CFD模拟及PIV验证[J].农业机械学报,2009,40(5):45~51.
    [16]李久生.地下滴灌灌水器堵塞特性田间评估[J],水利学报,2008,39(10):1272-1278
    [17]仵峰,范永申,李辉,等.地下滴灌灌水器堵塞研究[J].农业工程学报,2004,20(1):80-83.
    [18]石秀兰,张明炷.滴头堵塞的水质化学处理[J].喷灌技术,1995,(2):39-41.
    [19]王瑞环,魏正英.滴灌系统中有关堵塞问题的探讨[J].灌溉排水,2002,21(6):77-78.
    [20]刘洪先.滴灌系统的堵塞及解决方法[J],北京水利,2003,(1):35-36.
    [21] Nakayama F S and Bucks D A.Water quality in drip/trickle irrigation:a review[J].Irrigation Science,1991(12):187~192.
    [22]许翠平,刘洪禄等.微灌系统堵塞的原因与防治措施探讨[J].中国农村水利水电,2002,(1 ):40~42.
    [23]王建东,李光永.齿形迷宫流道结构参数对滴头水力性能影响的试验研究[J].第六次全国微灌大会论文汇编[C]. 2004,5:246-252.
    [24]魏正英,赵万华,唐一平等.滴灌灌水器迷宫流道主航道抗堵塞设计方法研究[J].农业工程学报,2005,21(6):1-7.
    [25] Adin A,Sacks M.Drip-clogging factors in wastewater irrigation[J].Journal of irrigation and Drainage Division,ASCE Annual International Meeting. 1991,117(6):813-826.
    [26]陈雪.灌水器迷宫流道结构参数数值模拟与抗堵塞分析[J].灌溉排水学报,2008,27(2):35-38.
    [27]翟国亮,吕谋超,王晖,等.微灌系统的堵塞及防治措施[J].农业工程学报,1999,15(1):144-147.
    [28]丁国强.滴灌堵塞问题及其解决办法[J].节水灌溉,2000,(7):14~15.
    [29]徐文礼,李治勤.迷宫灌水器堵塞与输沙能力实验研究[J].山西水利科技,2008,2:10-12.
    [30] Solomon K H,Jorgensen G. Subsurface dripirrigation[J]. Grounds Maintenance,1992, 27(10):24-26.
    [31]王荣莲,龚时宏,王建东,等.地下滴灌抗负压堵塞的试验研究[J].灌溉排水学报,2005,24(5):18~21.
    [32] Suarez-Rey EM,Choi C Y,McCloskey W B,et al.Effects of chemicals on root intrusion into subsurface drip emitters[J]. Irrigation and Drainage,2006,55:501-509.
    [33]程先军,许迪.地下滴灌技术发展及应用现状综述[J].节水灌溉,1999,(4):P13-15
    [34]冉春旺.地下滴灌技术发展及应用现状[J].现代农业科学,2008,15(7):51~52.
    [35]许迪,李益农.田间节水灌溉新技术研究与应用[M].北京:中国农业出版社,2002.
    [36]王伟,李光永,段中琐,等.利用工程措施改变地下滴灌土壤湿润模式的试验[J].节水灌溉,2000,(3):22~24.
    [37]汤全秀.滴灌系统的防堵塞技术[J].甘肃水利水电技术,2004,40(3):25~26.
    [38]朱连勇,崔春亮.谈地下滴灌的堵塞问题及处理方法[J].水土保持研究,2005,(1):62-64.
    [39] Anti Capra.Baldassare scicoione.water quality and distribution uniformity in drip irrigation system.J.Agric.Engng.Res.1998,70:355-365.
    [40] Warrick A.W..interrelationship of irrigation uniformity term[J].irrigation and drainage engeneering,1981,109(3):289~294.
    [41]牛文全,吴普特,范兴科.微灌系统综合流量偏差率与灌溉均匀度模拟计算[J].灌溉排水,2005,24(1):69-71.
    [42]马孝义,康绍忠,王凤翔,等.果树地下滴灌技术田间试验研究[J].西北农业大学学报,2002,28(1):57~61.
    [43]张志澎,郑耀泉,田春元,等.灌水器的工作水头时徽灌系统灌水均匀度影响的研究[J].内蒙古水利,1996,(1):28-31
    [44]岳兵.渗灌技术存在问题与建议[J].灌溉排水,1997,16(2):40-44.
    [45]王瑛,范宗良,冯辉霞,等.滴灌带灌水均匀度的田间测试与分析[J].甘肃农业大学学报,2000,35(1):66-69.
    [46]王福军.计算流体力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [47]吴持恭.水力学[M].北京:高等教育出版社,1982.
    [48]王冬梅.滴头流道CFD模拟精度的影响因素的研究[J].灌溉排水学报,2007,26(3):35~37.
    [49]农业灌溉设备.滴头技术规范和试验方法[Z].北京:国家技术监督局,1997.
    [50] SL103-95,中华人民共和国行业标准-微灌工程技术规范[S].北京:中华人民共和国水利部,1995.
    [51]常莹华.齿形迷宫流道结构设计与性能实验研究[D].陕西杨凌:西北农林科技大学,2009.
    [52]王文娥,王福军,严海军.迷宫滴头CFD分析方法研究[J].农业机械学报,2006,37(10):70~73.
    [53] Asakura K, Asari T, Nakajima I.Simulation of solid-liquid flows in avertical pipe by a collision model[J].Powder Technology,1997,94:201~206.
    [54]王文娥,牛文全,胡笑涛.基于CFD技术的新型微压抗堵塞滴灌带设计[A].中国农业工程学会农业水土工程专业委员会第五次会议论文集[C];2008.
    [55]牛文全.低压滴灌技术理论与系统研究[D],陕西杨凌:西北农林科技大学, 2006.
    [56]张林.小流量微压滴灌技术可行性研究[A].第八届全国微灌大会论文汇编(下)[C], 2009.
    [57]王建东.滴头水力性能与抗堵塞性能试验研究[D].北京:中国农业大学,2004.
    [58]常莹华,牛文全,王维娟.滴灌灌水器迷宫流道的内部流体数值模拟与流动分析[J].西北农凌科技大学学报(自然科学版),2009,37(2):203~208.
    [59]王冬梅.迷宫型滴头流道流场的数值模拟及其结构的优化设计[D].西安:西安交通大学,2004.
    [60]穆乃君.迷宫滴头抗堵塞实验研究[D].北京:中国农业大学,2006.
    [61]李治勤,陈刚,杨晓池.浑水引起迷宫灌水器物理堵塞因素实验研究[J].西安理工大学学报,2006,22,(4):395~398.
    [62]喻黎明.滴灌灌水器水力特性及抗堵塞研究[D].陕西杨凌:西北农林科技大学,2009.
    [63]钱宁.泥沙运动力学[M].北京:科学出版社,1983.
    [64] Bralts V F,Ed wards D.Field Evaluation of Drip Irrigation Submain unita[R]. American Society of Agricultural Engineers.1986,26(6):1659~1664.
    [65]郑耀全,陈渠昌.灌水均匀系数之间的关系及其应用[J].灌溉排水学报,1994,13(2):7~10.
    [66]牛文全,吴普特.微灌系统综合流量偏差率的计算方法[J].农业工程学报,2004,20(6):85~88.
    [67]张国祥.考虑三偏差因素的滴灌系统流量总偏差率[J].农业工程学报,2006,22(11):27~29. [68 Antonina Capra,Baldassare Scicolone,Water quality and distribution uniformity in drip/Tricle Irrigation Systems[J].Agric.Engng Res,1998,70:355~365.
    [69]范兴科,吴普特.毛管对灌水均匀度及系统管网布局的影响[A].中国农业工程学会农业税土工程专业委员会学术年会论文集[C],2005.
    [70]朱德兰,吴普特,牛文全.微地形影响下滴灌均匀度设计指标研究[J].中国农学通报,2005,21(6):420~423.
    [71] Bralts V F.Field perfeomence and evaluation[M].In Trickle Irrigation for Crop Prodution.Design,Operation and Management (Nakayama F S;Bucks S A,Eds)Amsterdam:Elsevier,1986.
    [72] Capra A,Tamburino V.Evaluation and control distribution uniformity in farm irrigation systems[M].ICID,Special Technical Session,Roma,Italy,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700