用户名: 密码: 验证码:
新型光催化材料的制备及其可见光催化制氢或制氧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探索高效、稳定和经济的可见光催化材料是光催化制氢技术实用化的关键之一。WO3和BiVO4是为数不多的可见光催化产氧材料,而可控合成具有独特微观形貌、晶相和光吸收性能的WO3和BiVO4及其对产氧效率的影响的研究并不多见。窄带隙(2.4 eV)的CdS具有优异的可见光催化产氢活性,但易发生光腐蚀限制了其应用。将CdS与异质基体复合能抑制光催化过程中的CdS的团聚和光腐蚀。纤维素和多壁碳纳米管均为CdS潜在的支撑体,但是迄今为止尚未见有相关的文献报道。为此,本论文开展了具有特殊微观形貌的BiVO4和WO3,CdS/纤维素复合膜和CdS/MWCNT复合材料的合成研究,深入探讨了反应条件、复合比例等对产物的微观形貌、晶相组成、光吸收和光催化性能的影响,初步揭示了光催化材料具有较高的催化活性和光稳定性的内在原因。采用电化学手段对BiVO4膜电极的光电化学行为、膜内电子输运与复合的影响进行了较为系统的研究。主要研究内容和结论归纳如下:
     (1)均相沉淀法制备了具有优异的可见光吸收能力的准球状单斜晶系纳米BiVO4,粒径分布范围19.4-38.9 nm。对比研究了BiVO4/AgNO3和BiVO4/Fe(NO3)3悬浮体系的光催化产氧性能及其长效稳定性。发现,BiVO4/AgNO3体系中光还原所形成的单质Ag负载在BiVO4表面,利于光生载流子的有效分离,可提高体系的产氧效率,但长时间光照后,过量的Ag负载导致体系的稳定性欠佳和再生困难;虽然BiVO4/Fe(NO3)3体系的产氧效率略低,但具有优异的长效稳定性和简便再生性,因而具有更为广阔的实际应用前景。
     (2)调节水热反应条件选择性地合成了微球和微片状BiVO4。水热温度较低时(≤160℃)获得产物为由纳米颗粒和纳米片组成的微球状团聚体,团聚体大小在7.12μm之间,为大量BiVO4(z-t)和少量BiVO4(s-m)的混合晶相。当水热温度较高时(200℃)产物是纯相BiVO4(s-m)微米片,厚度在80-120nm之间。较低水热温度下产物倾向形成高对称性BiVO4(z-t)微球,而高温下则易形成不对称结构BiVO4(s-m)微片。光催化实验结果表明,纯相BiVO4(s-m)的产氧效率明显高于混合晶相的产氧效率
     (3)以Na2SO4为导向剂水热法合成了六方相WO3纳米棒,并提出了棒状结构的形成机理。0.25M的Na2SO4存在时产物为分散性良好,大长径比的WO3纳米棒,直径在30.150nm之间,长度为0.5-5μm。Na2SO4浓度较小(≤0.25M),水热环境下形成WO3晶种的(200)晶面能大量吸附Na+,致使(001)界面生长形成纳米棒。Na2SO4浓度较大时(≥0.50M),前躯体吸附的Na+浓度过大,不利于立方相H2W2O7脱水晶化为WO3,致使产物为含有立方相H2W2O7和六方相WO3的团聚体。光催化结果显示,分散性良好,大长径比的WO3纳米棒具有最佳的光催化产氧活性。
     (4)采用原位沉淀制备了CdS/纤维素(RC)复合膜,通过调节纤维素浓度可调节CdS的固载量。当纤维素浓度从4%增加到5%时,立方相CdS固载量由1.96wt%增加到3.27 wt%,粒径约为8 nm。虽然复合膜中CdS含量小,但由于CdS与纤维素膜有较强相互作用,CdS/RC复合膜显示出优异的可见光催化产氢活性(1.323 mmol g-1h-1)。这主要是因为复合膜中CdS载流子有较快迁移速度,以及CdS粒子与溶液能够有效接触所致。经历10h光照的复合膜的产氢效率仍为5h光照膜效率的93%,说明复合膜具有优良的长效稳定性。此外,复合膜再生极为简便,因而具有极大的应用前景。
     (5)将原位吸附与水热法结合制备了CdS/多壁碳纳米管(MWCNT)纳米复合材料。研究了复合比例对复合材料的晶相组成、微观结构和光吸收性能的影响。CNT表面羧基化处理利于复合组分间实现化学键合,发挥协同效应。MWCNT的复合能有效提高材料在可见光吸收范围。与单纯CdS相比,大部分MWCNT/CdS复合材料都表现出更优良的可见光催化产氢活性。长效光照试验中,复合材料光催化产氢量高达2.019 mmol,是单纯CdS产氢量的2.45倍。籍此,认为MWCNT复合提高体系光催化产氢的机理为:CdS吸收可见光后,MWCNT作为电子定向转移通道,降低载流子的复合所致。
     (6)采用电化学手段对BiVO4膜电极的光电化学行为、膜内电子输运与复合的影响进行了较为系统的研究。研究了退火温度、膜厚等对电极的瞬态光电流、IPCE及平带电位等的影响。发现:退火温度能显著影响薄膜电极的光电特性。温度低于500℃时,光电活性随着温度的升高而增强,500℃煅烧时达到最大值。此后膜电极内的体相缺陷明显增加,电极的光电活性逐渐降低。IPCE测试结果表明,BiVO4电极有良好的可见光电转换效率,并利用IPCE和hv计算得到BiVO4的带隙为2.36 eV,莫特-肖特基电化学法测得其平带电位为-0.46 V(vs Ag/AgCl)。上述结果为今后BiVO4光催化体系的优化提供了参考依据
Since the photoelelctrochemical splitting of water into H2 and O2 on titaniatitanium oxide (TiO2) electrode was reported in 1972, a great number of attempts on water photosplitting over visible-light responsive semiconductors have been made, with a view to constructing solar energy conversion system to H2 fuel from water in the opinion of the practical application. It is well known that WO3 and BiVO4 is stable and can photo-oxidize water into O2 under visible-light irradiation. Few studies focus on selected-controlled synthesis of WO3 and BiVO4 which are unique morphology, specific crystalline phase, strong light absorption and high activity of photocatalytic O2 evolution. CdS has been extensively studied because of its excellent water photosplitting, property in that its bandgap (ca.2.3 eV). Nevertheless, CdS is prone to photocorrosion during the photochemical reaction because CdS itself is oxidized by the photogenerated holes, which obstructs the large-scale application of the photocatalytic H2 production. Syntheses of CdS nanoparticles in some hetero-matrices have also attracted more research interests as the relative matrix can effectively suppress the photocorrosion of CdS during the photochemical reaction. Cellulose films and multi-walled carbon nanotubes (MWCNT) are quite suitable as host matrixes for the embedment of CdS nano-particles. Though, as far, CdS/MWCNT and CdS/cellulose had not been reported in literature.
     Hence, in the present paper, microspheric and lamellar BiV04, nanorods WO3, CdS/MWCNT and CdS/cellulose were prepared. Moreover, the effects of reaction conditions and compound proportion on morphology, crystalline phase, light absorption and photacatalytic activity of the obtained samples were also primarily discussed, which is preliminarily reveals internal cause of high catalytic activity and stability of photocatalyst. The mechanism of photoelectrochemical behavior, electron transfer and recombination of BiVO4 electrodes was systematically studied by electrochemical methods. The detail researches and the conclusions are as follows:
     1. Monoclinic BiVO4 nanoparticles were prepared through a homogeneous precipitation process. Photocatalytic O2 evolution efficiencies over the obtained BiVO4 nanoparticles under visible-light (λ> 420nm) irradiation were investigated comparatively by using AgNO3 and Fe(NO3)3 as sacrificial reagent, respectively. It was found that BiVO4/Fe(NO3)3 system is more promising in the opinion of practical application because of long-period photocatalytic activity and conveniently reactivate. However, AgNO3 was a more effective sacrificial reagent for the photocatalytic O2 evolution over the BiVO4 in short-period irradiation in comparison with Fe(NO3)3 attributed to loaded Ag clusters on the surface of BiVO4.
     2. Microspheric and lamellar BiVO4 powders were selectively prepared through a hydrothermal process. Microspheric BiV04 of high symmetry with particle sizes in the range of 7-12μm can be derived from a relative low hydrothermal temperature (≤160℃), and possess a mixed crystal consisting of tetragonal and monoclinic phases; whereas dissymmetry lamellar BiVO4 with pure monoclinic phase can be obtained at a higher hydrothermal temperature (200℃). Their photocatalytic activities for O2 evolution were investigated by using Fe(NO3)3 as a sacrificial reagent under visible-light irradiation, and the lamellar BiVO4 shows a better photoactivity than the microspheric product due to its pure monoclinic crystal phase.
     3. Nanorods hexagonal WO3 powders were prepared through a simple hydrothermal process by using Na2SO4 as a direction reagent of crystal plane. Nanorods hexagonal WO3 with a diameter of 30-150nm and a length of 0.5μm-5μm can be obtained with 0.25M Na2SO4 at 160℃for 24h. When Na+cation concentration is low (≤0.5M), the coverage of Na+cation at (200) crystal plane of h-WO3 would restrict the further growth of (200) crystal plane, and induce WO3 growth along (001) crystal plane. But once Na+cation concentration is too high (≥1M), Na2SO4 might obstruct the crystal phase transformation from a mixed crystal to pure h-WO3. Their photocatalytic activities for O2 evolution were investigated by using Fe(NO3)3 as a sacrificial reagent under visible-light irradiation, and nanorods hexagonal WO3 shows a high photoactivity due to it's good dispersibility and high length-diameter Ratio.
     4. CdS nanoparticles were immobilized in porous regenerated cellulose (RC) films with different pore sizes via in situ a precipitation method. The mean pore sizes of the porous RC films can be modulated from about 20nm to 57 nm by adjusting the concentration of cellulose solution, and the porous structures within RC film act as reacting sites to lead to the embedment of CdS nanoparticles with mean particle diameter of about 8 nm. High photocatalytic H2 production efficiency of about 1.323 mmol g-1 h-1 under visible-light irradiation (λ≥420nm) has been attained over the Pt-loaded CdS/RC nanocomposite film synthesized by 4.5% cellulose solution due to the efficient light absorption, fast carriers transfer and photochemical reaction between the loaded CdS nanoparticles and electrolyte interfaces. In a long-period visible-light irradiation, the present CdS/RC nanocomposite film shows excellent fixity and photostability in comparison with a nanoparticle suspension system, indicating its promising in the practical application, and the present synthesis strategy could be a general method for other semiconductor photocatalyst/porous cellulose films.
     5. CdS/MWCNT composites were prepared through in situ adsorption and hydrothermal process. Moreover, the effects of compound proportion on morphology, crystalline phase and light absorption were also discussed. The carboxyls on the surface of CNT would help the achievement of direct chemical bonding between CNT and CdS, which result in synergistic effect of CNT and CdS. MWCNT would contribute to red-shifts in the absorption band for the CdS/MWCNT composites. Compared with CdS, most of CdS/MWCNT composites show higher photocatalytic activity. In a long-period visible-light irradiation, high photocatalytic H2 production efficiency of about 2.019 mmol has been attained over 10% CdS/MWCNT composite, which is 2.4 times higher than that of CdS. A high-energy photon excites an electron from the valence band to the conduction band of CdS photogenerated electrons formed in the space-charge regions are transferred into theMWCNTs, and holes remain on the CdS to take part in redox reactions. This results in the reduced recombination of photogenerated carriers and increase photocatalytic activity of CdS/MWCNT composites.
     6. The mechanism of photoelectrochemical behaviors, electron transfer and recombination of BiV04 electrodes was systematically studied by electrochemical methods. The effect of calcination temperature and film thickness of BiVO4 electrodes on the transient photocurrent, monochromatic incident photon-to-electron conversion efficiency and flat-band is also discussed. Calcination temperature can significantly influence the photoelectrochemical characteristics of electrodes. When temperature is low (≤500℃), the photoelectrochemical activity is enhanced with temperature. But once is temperature too high (>500℃), the photoelectrochemical activity is decreased due to the remarked increase of bulk defeats of electrodes. The transient photocurrent spectra show high visible-light photon-to-electron conversion efficiency of BiVO4 electrodes. The band gap of BiVO4 electrodes is 2.36 eV calculated with IPCE and hv. And the flat-band potential (Efb) of semiconductor electrodes measured by Mott-Schottky analysis is-0.46 V (vs Ag/AgCl). The above conclusion is reference of optimization of the BiVO4 photocatalytic system.
引文
1. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238 (5358),37-38.
    2. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H., Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414 (6864),625-627.
    3. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002,297 (5590),2243-2245.
    4. Kudo, A., Photocatalyst materials for water splitting. Catalysis Surveys from Asia 2003,7(1),31-38.
    5. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009,38 (1),253-278.
    6. Kudo, A., Development of photocatalyst materials for water splitting with the aim at photon energy conversion. Journal of the Ceramic Society of Japan 2001, 109(6),81-88.
    7. Lo, C. C.; Hung, C. H.; Yuan, C. S.; Wu, J. F., Photoreduction of carbon dioxide
    with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells 2007,91 (19),1765-1774.
    8. Ishihara, T.; Nishiguchi, H.; Fukamachi, K.; Takita, Y., Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O. Journal of Physical Chemistry B 1999,103 (1),1-3.
    9. Yi, H. B.; Peng, T. Y; Ke, D. N.; Ke, D.; Zan, L.; Yan, C. H., Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. International Journal of Hydrogen Energy 2008,33 (2), 672-678.
    10. Hirai, T.; Suzuki, K.; Komasawa, I., Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles. Journal of Colloid and Interface Science 2001,244 (2),262-265.
    11. Lunawat, P. S.; Senapati, S.; Kumar, R.; Gupta, N. M., Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface. International Journal of Hydrogen Energy 2007,32 (14), 2784-2790.
    12. Yang, Y.; Kim, D. S.; Qin, Y.; Berger, A.; Scholz, R.; Kim, H.; Knez, M.; Gosele, U., Unexpected Long-Term Instability of ZnO Nanowires "Protected" by a TiO2 Shell. Journal of the American Chemical Society 2009,131 (39).
    13. Zhang, H.; Zong, R. L.; Zhu, Y.F., Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline. Journal of Physical Chemistry C 2009,113 (11),4605-4611.
    14. Gao, Y L.; Chen, Q. Y.; Yin, Z. L.; Hu, H. P.; Li, J., Influence of oxygen vacancies of WO3 on photocatalytic activity for O2 evolution. Chinese Journal of Inorganic Chemistry 2005,21 (10),1510-1514.
    15. Xin, G.; Guo, W.; Ma, T. L., Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution. Applied Surface Science 2009, 256(1),165-169.
    16. Fan, X. X.; Gao, J.; Wang, Y.; Li, Z. S.; Zou, Z. G., Effect of crystal growth on mesoporous Pb3Nb4O13 formation, and their photocatalytic activity under visible-light irradiation. Journal of Materials Chemistry 2010,20 (14), 2865-2869.
    17. Wang, D.; Tang, K. B.; Liang, Z. H.; Zheng, H. G., Synthesis, crystal structure, and photocatalytic activity of the new three-layer aurivillius phases, Bi2ASrTi2TaO12 (A= Bi, La). Journal of Solid State Chemistry 2010,183 (2), 361-366.
    18. Tian, G. H.; Chen, Y. J.; Pan, K.; Wang, D. J.; Zhou, W.; Ren, Z. Y.; Fu, H. G., Efficient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity. Applied Surface Science 2010,256 (12),3740-3745.
    19. Zhu, X. Q.; Zhang, J. L.; Chen, F., Hydrothermal synthesis of nanostructures Bi12TiO20and their photocatalytic activity on acid orange 7 under visible light. Chemosphere 2010,78(11),1350-1355.
    20. Ashkarran, A. A.; Afshar, S. A. A.; Aghigh, S. M.; Kavianipour, M., Photocatalytic activity of ZrO2 nanoparticles prepared by electrical arc discharge method in water. Polyhedron 2010,29 (4),1370-1374.
    21. Zhang, Y. J.; Wu, Y. P.; Wang, Z. H.; Hu, Y. R., Preparation of CdS/TiO2NTs Nanocomposite and Its Activity of Photocatalytic Hydrogen Production. Rare Metal Materials and Engineering 2009,38 (9),1514-1517.
    22. Lee, S.; Teshima, K.; Niina, Y.; Suzuki, S.; Yubuta, K.; Shishido, T.; Endo, M.; Oishi, S., Highly crystalline niobium oxide converted from flux-grown K4Nb6O17 crystals. Crys tEng Comm 2009,11 (11),2326-2331.
    23. Li, Y X.; Du, J.; Peng, S. Q.; Xi, D.; Lu, G. X.; Li, S. B., Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching. International Journal of Hydrogen Energy 2008,33 (8), 2007-2013.
    24. Maeda, K.; Teramura, K.; Domen, K., Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light. Journal of Catalysis 2008,254 (2),198-204.
    25. Hu, S. Z.; Wang, A. J.; Li, X.; Lowe, H., Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light. Journal of Physics and Chemistry of Solids 2010,71(3),156-162.
    26. Maeda, K.; Lu, D. L.; Teramura, K.; Domen, K., Simultaneous photodeposition of rhodium-chromium nanoparticles on a semiconductor powder:structural characterization and application to photocatalytic overall water splitting. Energy & Environmental Science 2010,3 (4),471-478.
    27. Wu, Y Q.; Lu, G. X.; Li, S. B., Fabrication of NiO Photocatalytic Active Center
    over TiO2 and Photocatalytic Properties for H2 Production. Chinese Journal of Inorganic Chemistry 2010,26 (3),476-482.
    28. Ke, D. N.; Peng, T. Y.; Ma, L.; Cai, P.; Dai, K., Effects of Hydrothermal Temperature on the Microstructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light. Inorganic Chemistry 2009,48 (11), 4685-4691.
    29. Akiyama, Y.; Shitanaka, K.; Murakami, H., Modeling Titanium Oxide Growth by Chemical Vapor Deposition Using Titanium Tetra Isopropoxide. Journal of Chemical Engineering of Japan 2008,41 (8),779-784.
    30. Santos, J. G.; Ogasawara, T.; Correa, R. A., Synthesis of nanocrystalline rutile-phase titania at low temperatures. Mater. Sci.2009,27 (4),1067-1076.
    31. Morgan, B. J.; Watson, G W., Intrinsic n-type Defect Formation in TiO2:A Comparison of Rutile and Anatase from GGA plus U Calculations. Journal of Physical Chemistry C 2010,114 (5),2321-2328.
    32. Li, G.; Kako, T.; Wang, D.; Zou, Z.; Ye, J., Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1-x(NaNbO3)x solid solutions. Journal of Solid State Chemistry 2007,180 (10),2845-2850.
    33. Dolata, M.; Kedzierzawski, P.; Augustynski, J., Comparative impedance spectroscopy study of rutile and anatase TiO2 film electrodes. Electrochimica Acta 1996,41 (7-8),1287-1293.
    34. Carneiro, J. T.; Almeida, A. R.; Moulijn, J. A.; Mul, G, Cyclohexane selective photocatalytic oxidation by anatase TiO2:influence of particle size and crystallinity. Physical Chemistry Chemical Physics 2010,12 (11),2744-2750.
    35. Ismail, A. A.; Bahnemann, D. W.; Robben, L.; Yarovyi, V.; Wark, M., Palladium Doped Porous Titania Photocatalysts:Impact of Mesoporous Order and Crystallinity. Chemistry of Materials 2010,22 (1),108-116.
    36. Kim, D. S.; Kwak, S. Y., The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Applied Catalysis a-General 2007,323,110-118.
    37. Li, X. Y.; Chen, G H.; POLock, Y.; Kutal, C., Photocatalytic oxidation of cyclohexane over TiO2 nanoparticles by molecular oxygen under mild conditions. Journal of Chemical Technology and Biotechnology 2003,78 (12),1246-1251.
    38. Khaselev, O.; Turner, J., A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting. Science 1998,80 (5362),425-427.
    39. Licht, S.; Wang, B.; Mukerji, S.; Soga, T.; Umeno, M.; Tributsch, H., Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. Journal of Physical Chemistry B 2000,104 (38),8920-8924.
    40. Licht, S.; Wang, B.; Mukerji, S.; Soga, T.; Umeno, M.; Tributsch, H., Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. International Journal of Hydrogen Energy 2001,26 (7),653-659.
    41. Licht, S., Solar water splitting to generate hydrogen fuel:Photothermal electrochemical analysis. Journal of Physical Chemistry B 2003,107 (18), 4253-4260.
    42. Gratzel, M., Photoelectrochemical cells. Nature 2001,414 (6861),338-344.
    43. Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K., GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting. Journal of the American Chemical Society 2005,127 (23), 8286-8287.
    44. Maeda, K.; Teramura, K.; Takata, T.; Hara, M.; Saito, N.; Toda, K.; Inoue, Y.; Kobayashi, H.; Domen, K., Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:Relationship between Physical Properties and Photocatalytic Activity. Journal of Physical Chemistry B 2005,109 (43), 20504-20510.
    45. Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K., Photocatalyst releasing hydrogen from water. Nature 2006,440 (7082),295-295.
    46. Sayama, K.; Mukasab, K.; Abe, R.; Abeb, Y.; Arakawa, H., A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Journal of Photochemistry and Photobiology A: Chemistry 2002,148 (1-3),71-77.
    47. Sayama, K.; Yoshida, R.; Kusama, H.; Okabe, K.; Abe, Y.; Arakawa, H., Photocatalytic decomposition of water into H2 and O2 by atwOstep photoexcitation reaction using a WO3 suspensioncatalyst and an Fe3+/Fe2+redox system. Chemical Physics Letters 1997,277 (4),387-391.
    48. Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A., Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters 2004,33 (10), 1348-1349.
    49. Higashi, M.; Abe, R.; Teramura, K.; Takata, T.; Ohtani, B.; Domen, K., Two step water splitting into H2 and O2 under visible light by ATaO2N (Ca, Sr, Ba) and WO3 with shuttle redox mediator. Chemical Physics Letters 2008,452 (1-3), 120-123.
    50. Higashi, M.; Abe, R.; Ishikawa, A.; Takata, T.; Ohtani, B.; Domen, K., Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (lambda< 500nm). Chemistry Letters 2008,37 (2),138-139.
    51. Abe, R.; Sayama, K.; Sugihara, H., Development of New Photocatalytic Water Splitting into H2 and O2 using Two Different Semiconductor Photocatalysts and a Shuttle Redox Mediator IO3-/I-. The Journal of Physical Chemistry B 2005,109 (33),16052-16061.
    52. Kudo, A., Development of photocatalyst materials for water splitting. International Journal of Hydrogen Energy 2006,31 (2),197-202.
    53. Dutta, P. K.; Vaidyalingam, A. S., Zeolite-supported ruthenium oxide catalysts for photochemical reduction of water to hydrogen. Microporous and Mesoporous Materials 2003,62 (1-2),107-120.
    54. Liu, H.; Yuan, J.; Shangguan, W. F., Photochemical reduction and oxidation of water including sacrificial reagents and Pt/TiO2 catalyst. Energy & Fuels 2006, 20 (6),2289-2292.
    55. Li, Y. X.; Chen, G.; Zhang, H. J.; Lv, Z. S., Band structure and photocatalytic activities for H2 production of ABi2Nb2O9 (A= Ca, Sr, Ba). International Journal of Hydrogen Energy 2010,35 (7),2652-2656.
    56. Kitano, M.; Takeuchi, M.; Matsuoka, M.; Thomas, J. A.; Anpo, M., Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catalysis Today 2007,120 (2),133-138.
    57. Uchida, S.; Inoue, Y.; Fujishiro, Y.; Sato, T., Hydrothermal synthesis of K4Nb6O17. Journal of Materials Science 1998,33 (21),5125-5129.
    58. Zhang, X. J.; Jin, Z. L.; Li, Y X.; Li, S. B.; Lu, G. X., Efficient Photocatalytic Hydrogen Evolution from Water without an Electron Mediator over Pt-Rose Bengal Catalysts. Journal of Physical Chemistry C 2009,113 (6),2630-2635.
    59. Zhang, P.; Wang, M.; Na, Y; Li, X. Q.; Jiang, Y.; Sun, L. C., Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Transactions 2010,39 (5), 1204-1206.
    60. Wang, X. W.; Liu, G.; Chen, Z. G.; Li, F.; Lu, G. Q.; Cheng, H. M., Highly efficient H2 evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing SO32- and S2- ions. Journal of Materials Research 2010,25 (1),39-44.
    61. Zhang, W.; Xu, R., Surface engineered active photocatalysts without noble metals:CuS-ZnxCd1-xS nanospheres by one-step synthesis. International Journal of Hydrogen Energy 2009,34 (20),8495-8503.
    62. Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A., Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium(Ⅵ). Bulletin of the Chemical Society of Japan 2007,80 (5),885-893.
    63. Ke, D. N.; Peng, T. Y.; Ma, L.; Cai, P.; Jiang, P., Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions. Applied Catalysis a-General 2008,350 (1),111-117.
    64. Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A., Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation. Chemistry Letters 2004,33 (10), 1348-1349.
    65. Zhu, H.; Tao, J.; Dong, X., Preparation and Photoelectrochemical Activity of Cr-Doped TiO2 Nanorods with Nanocavities. Journal of Physical Chemistry C 2010,114 (7),2873-2879.
    66. He, J.F.; Liu, Q. H.; Sun, Z. H.; Yan, W. S.; Zhang, G B.; Qi, Z. M.; Xu, P. S.; Wu, Z. Y.; Wei, S. Q., High Photocatalytic Activity of Rutile TiO2 Induced by Iodine Doping. Journal of Physical Chemistry C 2010,114 (13),6035-6038.
    67. Ghasemi, S.; Rahimnejad, S.; Setayesh, S. R.; Rohani, S.; Gholami, M. R., Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO_2 prepared in an ionic liquid. Journal of Hazardous Materials 2009,172(2-3),1573-1578.
    68. Devi, L. G.; Kottam, N.; Kumar, S. G., Preparation and Characterization of Mn-Doped Titanates with a Bicrystalline Framework:Correlation of the Crystallite Size with the Synergistic Effect on the Photocatalytic Activity. Journal of Physical Chemistry C 2009,113 (35),15593-15601.
    69. Peng, T. Y.; Zhao, D.; Song, H. B.; Yan, C. H., Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. Journal of Molecular Catalysis a-Chemical 2005,238 (1-2),119-126.
    70. Xiao, J. R.; Peng, T. Y.; Li, R.; Peng, Z. H.; Yan, C. H., Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles. Journal of Solid State Chemistry 2006,179 (4),1161-1170.
    71. Liu, H. J.; Peng, T. Y; Ke, D. N.; Peng, Z. H.; Yan, C. H., Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles. Materials Chemistry and Physics 2007,104 (2-3),377-383.
    72. Zhao, D.; Peng, T. Y.; Xiao, J. R.; Yan, C. H.; Ke, X. Z., Preparation, characterization and photocatalytic performance of Nd3+-doped titania nanoparticles with mesostructure. Materials Letters 2007,61 (1),105-110.
    73. Zhao, D.; Peng, T. Y.; Liu, M.; Lu, L. L.; Cai, P., Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure. Microporous and Mesoporous Materials 2008,114 (1-3), 166-174.
    74. Dai, K.; Peng, T. Y.; Chen, H.; Liu, J.; Zan, L., Photocatalytic Degradation of Commercial Phoxim over La-Doped TiO2 Nanoparticles in Aqueous Suspension. Environmental Science & Technology 2009,43 (5),1540-1545.
    75. Kudo, A.; Niishiro, R.; Iwase, A.; Kato, H., Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chemical Physics 2007,339 (1-3),104-110.
    76. Li, Y X.; Peng, S. Q.; Jiang, F. Y.; Lu, G. X.; Li, S. B., Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity. Journal of the Serbian Chemical Society 2007,72 (4),393-402.
    77. Venkatachalam, N.; Palanichamy, M.; Arabindoo, B.; Murugesan, V., Alkaline earth metal doped nanoporous TiO2 for enhanced photocatalytic mineralisation of bisphenol-A. Catalysis Communications 2007,8 (7),1088-1093.
    78. Venkatachalam, N.; Palanichamy, M.; Murugesan, V., Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. Journal of Molecular Catalysis a-Chemical 2007, 273(1-2),177-185.
    79. Zielinska, B.; Borowiak-Palen, E.; Kalenczuk, R. J., Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. International Journal of Hydrogen Energy 2008,33 (7),1797-1802.
    80. Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M., Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2. Catalysis Today 2003,84 (3-4),191-196.
    81. Peng, S. Q.; Li, Y. X.; Jiang, F. Y.; Lu, G X.; Li, S. B., Effect of Be2+doping TiO2 on its photocatalytic activity. Chemical Physics Letters 2004,398 (1-3), 235-239.
    82. Wu, G S.; Chen, A., Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. Journal of Photochemistry and Photobiology a-Chemistry 2008,195 (1),47-53.
    83. Ohno, T.; Mitsui, T.; Matsumura, M., Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters 2003,32 (4),364-365.
    84. Luo, H. M.; Takata, T.; Lee, Y. G.; Zhao, J. F.; Domen, K.; Yan, Y. S., Photocatalytic activity enhancing for titanium dioxide by Co doping with bromine and chlorine. Chemistry of Materials 2004,16 (5),846-849.
    85. Kasahara, A.; Nukumizu, K.; Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., Photoreactions on LaTiO_2N under Visible Light Irradiation. The Journal of Physical Chemistry A 2002,106 (29),6750-6753.
    86. Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K., TaON and Ta3N5 as new visible light driven photocatalysts. Catalysis Today 2003,78 (1-4),555-560.
    87. Lee, Y.; Nukumizu, K.; Watanabe, T.; Takata, T.; Hara, M.; Yoshimura, M.; Domen, K., Effect of 10 MPa ammonia treatment on the activity of visible light responsive Ta3N5 photocatalyst. Chemistry Letters 2006,35 (4),352-353.
    88. Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K., Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics 2004,172 (1-4),591-595.
    89. Liu, M.; You, W.; Lei, Z.; Zhou, G.; Jianjun Yang; GuopengWu; Ma, G.; Luan, G.; Takata, T.; Hara, M.; Domen, K.; Li, C., Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chemical Communications 2004, (18),2192-2193.
    90. Maeda, K.; Shimodaira, Y.; Lee, B.; Teramura, K.; Lu, D.; Kobayashi, H.; Domen, K., Studies on TiNxOyFz as a Visible-Light-Responsive Photocatalyst. The Journal of Physical Chemistry C 2007,111 (49),18264-18270.
    91. Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (lambda<=500nm). Chemical Communications 2002, (16), 1698-1699.
    92. Ishikawa, A.; Yamada, Y.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm2Ti2S2O5. Chemistry of Materials 2003,15 (23),4442-4446.
    93. Ishikawa, A.; Takata, T.; Matsumura, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., Oxysulfides Ln2Ti2S2O5 as Stable Photocatalysts for Water Oxidation and Reduction under Visible-Light Irradiation. The Journal of Physical Chemistry B 2004,108 (8),2637-2642.
    94. Matsumura, M.; Saho, Y.; Tsubomura, H., Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. The Journal of Physical Chemistry 1983,87 (20),3807-3808.
    95. Reber, J. F.; Rusek, M., Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. The Journal of Physical Chemistry 1986,90 (5),824-834.
    96. Kakuta, N.; Park, K. H.; Finlayson, M. F.; Ueno, A.; Bard, A. J.; Campion, A. Fox, M. A.; Webber, S. E.; White, J. M., Photoassisted hydrogen production using visible light and coprecipitated zinc sulfide.cntdot.cadmium sulfide without a noble metal. The Journal of Physical Chemistry 1985,89 (5),732-734.
    97. Xing, C.; Zhang, Y.; Yan, W.; Guo, L., Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy 2006,31 (14),2018-2024.
    98. Lei, Z. B.; You, W. S.; Liu, M. Y.; Zhou, G. H.; Takata, T.; Hara, M.; Domen, K.; Li, C., Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chemical Communications 2003, (17),2142-2143.
    99. Kudo, A.; Sekizawa, M., Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution. Catalysis Letters 1999,55 (4),241-243.
    100. Tsuji, I.; Kudo, A., H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. Journal of Photochemistry and Photobiology A:Chemistry 2003,156 (1-3), 249-252.
    101. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A., Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. Journal of the American Chemical Society 2004,126(41),13406-13413.
    102. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A., Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn)xZn2(1-x)S2 Solid Solutions. The Journal of Physical Chemistry B 2005,109 (15), 7323-7329.
    103. Tsuji, I.; Kato, H.; Kudo, A., Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS-CuInS-AgInS Solid-Solution Photocatalyst. Angewandte Chemie International Edition 2005, 44 (23),3565-3568.
    104. Zheng, N.; Bu, X.; Feng, P., Na5(In4S)(InS4)3·6H2O, a Zeolite-like Structure with Unusual SIn4 Tetrahedra. Journal of the American Chemical Society 2005,127 (15),5286-5287.
    105. Ye, F.; Wang, Z. C.; Weng, W. J.; Cheng, K.; Song, C. L.; Du, P. Y.; Shen, G.; Han, G. R., Spin-coating derived LS M-SDC films with uniform pore structure. Thin Solid Films 2006,516,5206-5209.
    106. Meissner, D.; Memming, R.; Kastening, B., Photoelectrochemistry of cadmium sulfide.1. Reanalysis of photocorrosion and flat-band potential. J. Phys. Chem. 1988,92(12),3476-3483.
    107. Jang, J. S.; Joshi, U. A.; Lee, J. S., Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007,111 (35),13280-13287.
    108. Xu, C. X.; Wei, X.; Ren, Z. H.; Wang, Y.; Xu, G.; Shen, G.; Han, G R., Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity. Materials Letters 2009,63 (26),2194-2197.
    109. Nishino, T.; Takano, K.; Nakamae, K., Elastic modulus of the crystalline regions of cellulose polymorphs. Journal of polymer science. Part B. Polymer physics 1995,33(11),1647-1651.
    110. Lozada-Morales, R.; Zelaya-Angel, O.; Torres-Delgado, G., Photoluminescence in cubic and hexagonal CdS films. Applied Surface Science 2001,175-176, 562-566.
    111. Peng, T.; Ke, D.; Cai, P.; Dai, K.; Ma, L.; Zan, L., Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H2 evolution over TiO2 nanoparticles with mesostructures. Journal of Power Sources 2008,180 (1), 498-505.
    112. Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E., Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. The Journal of Physical Chemistry 1993,97 (45), 11802-11810.
    113. Malinka, E. A.; Kamalov, G L.; Vodzinskii, S. V.; Melnik, V. I.; Zhilina, Z. I., Hydrogen production from water by visible light using zinc porphyrin-sensitized platinized titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry 1995,90 (2-3),153-158.
    114. Shimidzu, T.; Iyoda, T.; Koide, Y., An advanced visible-light-induced water reduction with dye-sensitized semiconductor powder catalyst. Journal of the American Chemical Society 1985,107(1),35-41.
    115. Abe, R.; Sayama, K.; Arakawa, H., Significant influence of solvent on hydrogen production from aqueous I3-/I- redox solution using dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation. Chemical Physics Letters 2003,379 (3-4),230-235.
    116. Kajiwara, T.; Hashimoto, K.; Kawai, T.; Sakata, T., Dynamics of luminescence from Ru(bpy)3Cl2 adsorbed on semiconductor surfaces. The Journal of Physical Chemistry 1982,86 (23),4516-4522.
    117. Tawkaew, S.; Yin, S.; Sato, T., Photoreduction of nitrate ion and photoevolution of hydrogen on unsupported TiO2 and TiO2 pillared H4Nb6O17 nanocomposites. International Journal of Inorganic Materials 2001,3 (7),855-859.
    118. Bamwenda, G. R.; Uesigi, T.; Abe, Y.; Sayama, K.; Arakawa, H., The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+and Ce4+as electron acceptors. Applied Catalysis a-General 2001,205 (1-2), 117-128.
    119. Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H., A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Journal of Photochemistry and Photobiology a-Chemistry 2002,148 (1-3),71-77.
    120. Tseung, A. C. C.; Chen, K. Y., Hydrogen spill-over effect on Pt/WO3 anode catalysts. Catalysis Today 1997,38 (4),439-443.
    121. Kudo, A.; Hijii, S., H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+with 6s2 Configuration and d0Transition Metal Ions. Chemistry Letters 1999,28 (10),1103-1104.
    122. Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A., Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation. The Journal of Physical Chemistry B 2006,110 (36),17790-17797.
    123. Erbs, W.; Desilvestro, J.; Borgarello, E.; Graetzel, M., Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. The Journal of Physical Chemistry 1984,88 (18),4001-4006.
    124. Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H., A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Journal of Photochemistry and Photobiology A: Chemistry 2002,148 (1-3),71-77.
    125. Kudo, A.; Omori, K.; Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc.1999,121 (49),11459-11467.
    126. Tokunaga, S.; Kato, H.; Kudo, A., Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chemistry of Materials 2001,13 (12),4624-4628.
    127. Yu, J.; Kudo, A., Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4. Advanced Functional Materials 2006,16 (16),2163-2169.
    128. Liu, H.; Nakamura, R.; Nakato, Y., Bismut HCopper Vanadate BiCu2VO6 as a Novel Photocatalyst for Efficient Visible-Light-Driven Oxygen Evolution. Chem Phys Chem 2005, 6(12),2499-2502.
    129. Konta, R.; Kato, H.; Kobayashi, H.; Kudo, A., Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Physical Chemistry Chemical Physics 2003,5(14),3061-3065.
    130. Hosogi, Y.; Kato, H.; Kudo, A., Visible light response of AgLi1/3 M2/3O2 (M=Ti and Sn) synthesized from layered Li2 MO3 using molten AgNO3. Journal of Materials Chemistry 2008,18 (6),647-653.
    131. Wang, D.; Tang, J.; Zou, Z.; Ye, J., Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M= Mg, Ni,
    Zn). Chemistry of Materials 2005,17(20),5177-5182.
    132. Niishiro, R.; Kato, H.; Kudo, A., Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Physical Chemistry Chemical Physics 2005,7 (10), 2241-2245.
    133. Yao, W.; Ye, J., A new efficient visible-light-driven photocatalyst Na0.5Bi1.5VMoO8 for oxygen evolution. Chemical Physics Letters 2008,450 (4-6),370-374.
    134. Parant, J. P.; Villela, G.; Gourier, D.; Le Sergent, C.; Dumas, J. P., Influence of chromium content on the coloration of PbMoO4 crystals. Journal of Crystal Growth 1981,52 (2),576-579.
    135. Sayama, K.; Nomura, A.; Zou, Z. G.; Abe, R.; Abe, Y.; Arakawa, H., Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chemical Communications 2003, (23),2908-2909.
    136. Zhang, L.; Chen, D. R.; Jiao, X. L., Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 2006,110 (6),2668-2673.
    137. Guoqiang, L.; et al., Surface photoelectric properties of AgNbO3 photocatalyst. Journal of Physics D:Applied Physics 2009,42 (23),235503.
    138. Xu, C.; Lin, D.; Kwok, K., Electrical properties of (K0.5Na0.5)1-xAgx NbO3 lead-free piezoelectric ceramics. Journal of Materials Science:Materials in Electronics 2008,19 (11),1054-1057.
    1. Kohtani, S.; Koshiko, M.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Toriba, A.; Hayakawa, K.; Nakagaki, R., Photodegradation of 4-alkylphenols using BiV04 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B-Environ.2003,46 (3), 573-586.
    2. Zhou, L.; Wang, W. Z.; Zhang, L.; Xu, H. L.; Zhu, W., Single-crystalline BiVO4 microtubes with square cross-sections:Microstructure, growth mechanism, and photocatalytic property. Journal of Physical Chemistry C 2007,111 (37),13659-13664.
    3. Xie, B. P.; Zhang, H. X.; Cai, P. X.; Qiu, R. L.; Xiong, Y., Simultaneous photocatalytic reduction of Cr(Ⅵ) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 2006,63 (6),956-963.
    4. Zhang, L.; Chen, D. R.; Jiao, X. L., Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 2006,110 (6),2668-2673.
    5. Yin, W. Z.; Wang, W. Z.; Zhou, L.; Sun, S. M.; Zhang, L., CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater.2010,173 (1-3),194-199.
    6. Castillo, N. C.; Heel, A.; Graule, T.; Pulgarin, C., Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity. Appl. Catal. B-Environ.2010,95 (3-4),335-347.
    7. Ge, L., Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation. Mater. Chem. Phys.2008,107 (2-3),465-470.
    8. Kohtani, S.; Makino, S.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Matsunaga, T.; Nikaido, O.; Hayakawa, K.; Nakagaki, R., Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator:Comparison between BiVO4 and TiO2 photocatalysts. Chem. Lett.2002, (7),660-661.
    9. Yin, W. Z.; Wang, W. Z.; Shang, M.; Zhou, L.; Sun, S. M.; Wang, L., BiVO4 Hollow Nanospheres:Anchoring Synthesis, Growth Mechanism, and Their Application in Photocatalysis. Eur. J. Inorg. Chem.2009, (29-30),4379-4384.
    10. Zhang, X. F.; Zhang, Y. B.; Quan, X.; Chen, S., Preparation of Ag doped BiVO4 film and its enhanced photoelectrocatalytic (PEC) ability of phenol degradation under visible light. J. Hazard. Mater.2009,167(1-3),911-914.
    11. Suo, J.; Liu, L. F.; Yang, F. L., Preparation of Supported Cu-BiVO4 Photocatalyst and Its Application in Oxidative Removal of Toluene in Air. Chin. J. Catal.2009,30 (4), 323-327.
    12. Yu, J. Q.; Zhang, Y.; Kudo, A., Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process. J. Solid State Chem.2009,182 (2),223-228.
    13. Kudo, A.; Omori, K.; Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc.1999, 121(49),11459-11467.
    14. Bhattacharya, A. K.; Mallick, K. K.; Hartridge, A., Phase transition in BiVO4. Materials Letters 1997,30(1),7-13.
    15. Liu, J.; Wang, H.; Wang, S.; Yan, H., Hydrothermal preparation of BiVO4 powders. Materials Science and Engineering B 2003,104 (1-2),36-39.
    16. Neves, M. C.; Trindade, T., Chemical bath deposition of BiVO4. Thin Solid Films 2002, 406(1-2),93-97.
    17. Wood, P.; Glasser, F. P., Preparation and properties of pigmentary grade BiVO4 precipitated from aqueous solution. Ceram. Int.2004,30 (6),875-882.
    18. Galembeck, A.; Alves, O. L., Bismuth vanadate synthesis by metallo-organic decomposition:thermal decomposition study and particle size control. J. Mater. Sci.2002, 37(10),1923-1927.
    19. Shantha, K.; Varma, K. B. R., Preparation and characterization of nanocrystalline powders of bismuth vanadate. Materials Science and Engineering B 1999, 60(1),66-75.
    20. Shantha, K.; Subbanna, G. N.; Varma, K. B. R., Mechanically Activated Synthesis of Nanocrystalline Powders of Ferroelectric Bismuth Vanadate. J. Solid State Chem.1999, 142(1),41-47.
    21. Thurston, J. H.; Ely, T. O.; Trahan, D.; Whitmire, K. H., Nanostructured Bimetallic Oxide Ion-Conducting Ceramics from Single-Source Molecular Precursors. Chem. Mat.2003, 15 (23),4407-4416.
    22. Yu, J. Q.; Kudo, A., Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater.2006,16 (16),2163-2169.
    23. Zhang, L. Z.; Djerdj, I.; Cao, M. H.; Antonietti, M.; Niederberger, M., Nonaqueous sol-gel synthesis of a nanocrystalline InNbO4 visible-light photocatalyst. Adv. Mater. 2007,19(16),2083-2086.
    24. Gotic, M.; Music, S.; Ivanda, M.; Soufek, M.; Popovic, S., Synthesis and characterisation of bismuth(Ⅲ) vanadate. J. Mol. Struct.2005,744 (3),535-540.
    25. Tokunaga, S.; Kato, H.; Kudo, A., Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mat.2001,13 (12),4624-4628.
    26. Kim, T. W.; Choo, D. C., Strain effects and atomic structures in highly lattice-mismatched InAs0.6P0.4/InP modulation-doped single quantum wells. Mater. Res. Bull.2001,36 (7-8), 1237-1243.
    27. Isley, S. L.; Penn, R. L., Titanium dioxide nanoparticles:Effect of sol-gel pH on phase composition, particle size, and particle growth mechanism. Journal of Physical Chemistry C 2008,112 (12),4469-4474.
    28. Uvarov, V.; Popov, I., Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact.2007,58 (10), 883-891.
    29. Shi, B.; Liu, Y.; Song, C.; Han, G, First-principles investigation of the band structure of S-doped TiO2. Rare Metal Materials and Engineering 2008,37 (22),638-640.
    30. Abe, R.; Sayama, K.; Arakawa, H., Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst:suppression of backward reaction. Chem. Phys. Lett.2003,371 (3-4),360-364.
    31. Abe, R.; Sayama, K.; Domen, K.; Arakawa, H., A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator. Chem. Phys. Lett.2001,344 (3-4),339-344.
    32. Xie, M. Z.; Jing, L. Q.; Zhou, J.; Lin, J. S.; Fu, H. G, Synthesis of nanocrystalline anatase TiO2 by one-pot two-phase separated hydrolysis-solvothermal processes and its high activity for photocatalytic degradation of rhodamine B. J. Hazard. Mater.176 (1-3), 139-145.
    33. Xin, G.; Guo, W.; Ma, T. L., Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution. Appl. Surf. Sci.2009,256 (1),165-169.
    34. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009,38(1),253-278.
    35. Fox, M. A.; Dulay, M. T., Heterogeneous Photocatalysis. Chemical Communications 1993,93(1),14.
    36. Zhang, A. P.; Zhang, J. Z., Characterization and photocatalytic properties of Au/BiVO4 composites. J. Alloy. Compd.2010,491 (1-2),631-635.
    37. Kida, T.; minami, Y.; Guan, G.; Nagano, M.; Akiyama, M.; Yoshida, A., Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation. J. Mater. Sci.2006,41(11),3527-3534.
    38. Lei, J. F.; Li, W. S., Photoelectrocatalytic Performance of Arrayed Porous TiO2/Ti. Acta Physico-Chimica Sinica 2009,25 (6),1173-1178.
    39. Giordano, L.; Baistrocchi, M.; Pacchioni, G., Bonding of Pd, Ag, and Au atoms on MgO(100) surfaces and MgO/Mo(100) ultra-thin films:A comparative DFT study. Phys. Rev.B 2005,72(11),115403-115414.
    40. M Sadeghi; Liu, W.; Zhang, T.; Stavropoulos, P.; Levy, B., Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis:Oxidative degradation of CH3OH vapor in contact with Pt/TiO2 and cofumed TiO2-Fe2O3. Journal of Physical Chemistry 1996,100(50),19466-19474.
    41. Sayama, K.; Nomura, A.; Arai, T.; Sugita, T.; Abe, R.; Yanagida, M.; Oi, T.; Iwasaki, Y.; Abe, Y.; Sugihara, H., Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 2006,110 (23),11352-11360.
    42. Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K., Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chem. Mat.2008,20 (1),110-117.
    43.白先群;黄耀峰;朱开梅;顾生玖,磁性微球负载光催化剂失活特性及再生方法研究.环境科学与技术2009,9(32),36-38.
    44. Forzatti, P.; Lietti, L., Catalyst deactivation. Catal. Today 1999,52 (2-3),165-181.
    45. Prasad, S.; Goncalves, S. B.; Brito, J. B., Electrometric studies on the system acid-vanadate and the formation of heavy metal vanadates. Catal. Today 2000,57 (3-4), 339-348.
    1. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238 (5358),37-38.
    2. Galinska, A.; Walendziewski, J., Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy & Fuels 2005,19 (3),1143-1147.
    3. Patsoura, A.; Kondarides, D. I.; Verykios, X. E., Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Applied Catalysis B-Environmental 2006,64 (3-4),171-179.
    4. Kitano, M.; Takeuchi, M.; Matsuoka, M.; Thomas, J. A.; Anpo, M., Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catalysis Today 2002,120(2),133-138.
    5. Sathish, A.; Viswanath, R. P., Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle:Effect of particle size, noble metal and support. Catalysis Today 2002, 129 (3-4) 421-427.
    6. Jing, D. W.; Guo, L. J., A novel method for the preparation of a highly stable and active
    CdS photocatalyst with a special surface nanostructure. Journal of Physical Chemistry B 2006,110(23),11139-11145.
    7. Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H., Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. Chemical Communications 2001, (23), 2416-2417.
    8. Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H., A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Journay of Photochemistry and Photobiology A:Chemistry 2002,148 (1-3),71-77.
    9. Bamwenda, G. R.; Arakawa, H., The visible light induced photocatalytic activity of tungsten trioxide powders. Applied Catalysis A:General 2001,210 (1-2),181-191.
    10. Hameed, A.; Gondal, M. A.; Yamani, Z. H., Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination:role of 3d-orbitals. Catalysis Communications 2004,5 (11),715-719.
    11. Kohtani, S.; Koshiko, M.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Toriba, A.; Hayakawa, K.; Nakagaki, R., Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Applied Catalysis B-Environmental 2003,46 (3),573-586.
    12. Zhou, L.; Wang, W. Z.; Zhang, L.; Xu, H. L.; Zhu, W., Single-crystalline BiVO4 microtubes with square cross-sections:Microstructure, growth mechanism, and photocatalytic property. Journal of Physical Chemistry C 2007,111 (37),13659-13664.
    13. Xie, B. P.; Zhang, H. X.; Cai, P. X.; Qiu, R. L.; Xiong, Y., Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 2006,63 (6),956-963.
    14. Zhang, L.; Chen, D. R.; Jiao, X. L., Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. Journal of Physical Chemistry B 2006,110 (6),2668-2673.
    15. Kudo, A.; Omori, K.; Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. Journal of the American Chemical Society 1999,121 (49),11459-11467.
    16. Kudo, A.; Ueda, K.; Kato, H.; Mikami, I., Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters 1998,53 (3), 229-230.
    17. Yu, J. Q.; Kudo, A., Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Advanced Functional Materials 2006,16 (16), 2163-2169.
    18. Castillo, NC,; Heel, A.; Graule, T.; Pulgarin, C., Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity. 2010,95 (3-4),335-347.
    19. Choh, S. H.; Lim, A. R.; Jeong, S. Y.; Jang, M. S., Prominent ferroelastic domain walls in BiVO4 crystal. Journal of Physics-Condensed Matter 1995,7 (37),7309-7323
    20. Tokunaga, S.; Kato, H.; Kudo, A., Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chemistry of Materials 2001,13 (12),4624-4628.
    21. Yu, J. Q.; Kudo, A., Hydrothermal synthesis of nanofibrous bismuth vanadate. Chemistry Letters 2005,34 (6),850-851.
    22. Bhattacharya, A. K.; Mallick, K. K.; Hartridge, A., Phase transition in BiVO4. Materials Letters 1997,30(1),7-13.
    23. Liu, J.; Wang, H.; Wang, S.; Yan, H., Hydrothermal preparation of BiVO4 powders. Materials Science and Engineering B 2003,104 (1-2),36-39.
    24. Neves, M. C.; Trindade, T., Chemical bath deposition of BiVO4. Thin Solid Films 2002, 406(1-2),93-97.
    25. Wood, P.; Glasser, F. P., Preparation and properties of pigmentary grade BiVO4 precipitated from aqueous solution. Ceramics International.2004,30 (6),875-882.
    26. Galembeck, A.; Alves, O. L., Bismuth vanadate synthesis by metallo-organic decomposition:thermal decomposition study and particle size control. J. Mater. Sci. 2002,37(10),1923-1927.
    27. Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z.; Fan, X. X.; Zou, Z. G., Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Materials Chemistry and Physics 2007,103 (1),162-167.
    28. Yoshimura, M.; Somiya, S., Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia. Materials Chemistry and Physics 1999,61 (1),1-8.
    29. Zheng, Y.; Wu, J.; Duan, F.; Xie, Y., Gemini surfactant directed preparation and photocatalysis of m-BiV04 hierarchical frameworks. Chemistry Letters 2007,36 (4), 520-521.
    30. Yang, T.; Xia, D. G, Self-assembly of highly crystalline spherical BiVO4 in aqueous solutions. J. Cryst. Growth 2009,311 (20),4505-4509.
    31. Li, G. S.; Zhang, D. Q.; Yu, J. C., Ordered mesoporous BiVO4 through nanocasting:A superior visible light-driven photocatalyst. Chemistry of Materials 2008,20 (12), 3983-3992.
    32. Gotic, M.; Music, S.; Ivanda, M.; Soufek, M.; Popovic, S., Synthesis and characterisation of bismuth(Ⅲ) vanadate, Journal of Molecular Structure 2004,744 (Sp.Iss.SI),535-540.
    33. Stoltzfus, M. W.; Woodward, P. M.; Seshadri, R.; Klepeis, J. H.; Bursten, B., Structure and bonding in SnWO4, PbWO4, and BiVO4:Lone pairs vs inert pairs. Inorganic Chemistry 2007,46 (10),3839-3850.
    34. Isley, S. L.; Penn, R. L., Titanium dioxide nanoparticles:Effect of sol-gel pH on phase composition, particle size, and particle growth mechanism. Journal of Physical Chemistry C 2008,112 (12),4469-4474.
    35. Uvarov, V.; Popov, I., Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Char act.2007,55 (10), 883-891.
    36. Sun, L.; Bolton, J. R., Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions. The Journal of Physical Chemistry 1996,100(10),4127-4134.
    37. Oshikiri, M.; Boero, M.; Ye, J. H.; Zou, Z. G.; Kido, G., Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. Journal of Chemical Physics 2002,117 (15),7313-7318.
    38. Garcia, J.; Lopez, T.; Alvarez, M.; Aguilar, D. H.; Quintana, P., Spectroscopic, structural and textural properties of CaO and CaO-SiO2 materials synthesized by sol-gel with different acid catalysts. Jounal of Non-Crystalline Solids 2008,354 (2-9):729-732.
    39. Kanagadurai, R.; Sankar, R.; Sivanesan, G.; Srinivasan, S.; Rajasekaran, R.; Jayavel, R., Growth and characterization studies of ferroelectric diglycine nitrate (DGN) single crystals. Materials Chemistry and Physics 2008,108 (2-3),170-175.
    40. Manjula, P.; Manonmani, S.; Jayaram, P.; Rajendran, S., Corrosion behaviour of carbon steel in the presence of N-cetyl-N,N,N-trimethylammonium bromide, Zn2+and calcium gluconate. Anti-Corrosion Methods and Materials 2001,48 (5),319-323.
    41. Yada, M.; Mihara, M.; Mouri, S.; Kuroki, M.; Kijima, T., Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Advanced Materials 2002,14 (4),309-312.
    42. Chen, L.; Liu, Y. N.; Lu, Z. G.; Zeng, D. M., Shape-controlled synthesis and characterization of InVO4 particles. Journal of Colloid and Interface Science 2006,295 (2),440-444.
    43. Li, G. H.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A., Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal.2008,253(1),105-110.
    44. Bao, N.; Shen, L.; Takata, T.; Domen, K., Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light. Chemistry of Materials 2008,20 (1),110-117.
    45. Sifaoui, H.; Lugowska, K.; Domanska, U.; Modaressi, A.; Rogalski, M., Ammonium ionic liquid as modulator of the critical micelle concentration of ammonium surfactant at aqueous solution:Conductimetric and dynamic light scattering (DLS) studies. Journal of Colloid and Interface Science 2007,314 (2),643-650.
    46. Ducker, W. A.; Wanless, E. J., Adsorption of Hexadecyltrimethylammonium Bromide to Mica:Nanometer-Scale Study of Binding-Site Competition Effects. Langmuir 1999,15 (1),160-168.
    47. Vakarelski, I. U.; Toritani, A.; Nakayama, M.; Higashitani, K., Effects of particle deformability on interaction between surfaces in solutions. Langmuir 2003,19 (1), 110-117.
    1. Karuppasamy, A.; Subrahmanyam, A., Studies on electrochromic smart windows based on titanium doped WO3 thin films. Thin Solid Films 2007,516 (83),175-178.
    2. Bange, K.; Gambke, T., Electrochromic Materials for optical switching devices. Advanced Materials 1990,2 (1),10-16.
    3. Geng, L. N.; Huang, X. L.; Zhao, Y. Q.; Li, P.; Wang, S. R.; Zhang, S. M.; Wu, S. H., H2S sensitivity study of polypyrrole/WO3 materials. Solid-State Electronics 2006,50(5), 723-726.
    4. Qamar, M.; Gondal, M. A.; Yamani, Z. H., Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water. Catalysis Communications 2009,70(15),1980-1984.
    5. Meng, Z. C.; Kitagawa, C.; Takahashi, A.; Okochi, Y.; Tamaki, J., WO3 Crystals and Their NO2-Sensing Properties. Sensors and Materials 2009,21 (5),259-264.
    6. Lazcano-Hernandez, H. E.; Sanchez-Perez, C.; Garcia-Valenzuela, A., An optically integrated NH3 sensor using WO3 thin films as sensitive material. Journal of Optics a-Pure and Applied Optics 2008,10(10) 104016-104022.
    7. Yaacob, M. H.; Breedon, M.; Kalantar-Zadeh, K.; Wlodarski, W., Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2. Sensors and Actuators B-Chemical 2009,137 (1),115-120.
    8. Cantalini, C.; Sun, H. T.; Faccio, M.; Pelino, M.; Santucci, S.; Lozzi, L.; Passacantando, M., NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation. Sensors and Actuators B:Chemical 1996,31 (1-2),81-87.
    9. Reis, K. P.; Ramanan, A.; Whittingham, M. S., Synthesis of novel compounds with the pyrochlore and hexagonal tungsten bronze structures. Journal of Solid State Chemistry 1992,95(1),31-47.
    10. Balaji, S.; Djaoued, Y.; Albert, A. S.; Ferguson, R. Z.; Bruning, R., Hexagonal Tungsten Oxide Based Electrochromic Devices:Spectroscopic Evidence for the Li Ion Occupancy of Four-Coordinated Square Windows. Chemistry of Materials 2009,21 (7),1381-1389.
    11. Gu, Z.; Li, H.; Zhai, T.; Yang, W.; Xia, Y.; Ma, Y.; Yao, J., Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. Journal of Solid State Chemistry 2007,180 (1), 98-105.
    12. Hamilton, J. W. J.; Byrne, J. A.; Dunlop, P. S. M.; Brown, N. M. D., Photo-oxidation of water using nanocrystalline tungsten oxide under visible light. International Journal of Photoenergy 2008,185479
    13. Iwasaki, M.; Park, W. K., Synthesis of nanometer-sized WO3 particles by facile wet process and their photocatalytic properties. Journal of Nanomaterials 2008,169536.
    14. Liu, C., Preparation, research and application of nano WO3 materials. Rare Metal Materials and Engineering 2005,34,14-18.
    15. Sadakane, M.; Sasaki, K.; Kunioku, H.; Ohtani, B.; Ueda, W.; Abe, R., Preparation of nano-structured crystalline tungsten(VI) oxide and enhanced photocatalytic activity for decomposition of organic compounds under visible light irradiation. Chemical Communications 2008, (48),6552-6554.
    16. Bamwenda, G. R.; Arakawa, H., The visible light induced photocatalytic activity of tungsten trioxide powders. Applied Catalysis a-General 2001,210(1-2),181-191.
    17. Gondal, M. A.; Hameed, A.; Yamani, Z. H., Laser induced photocatalytic splitting of water over WO3 catalyst. Energy Sources 2005,27 (12),1151-1165.
    18. Deb, S.; Aditya, S., Preparation of photosensitive WO3 sol, its use in photocatalysis, photogalvanic cell and feasibility of fuel cell at room temperature. Journal of the Indian Chemical Society 2004,81 (12),1163-1166.
    19. Guo, Y. F.; Quan, X.; Lu, N.; Zhao, H. M.; Chen, S., High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes. Environmental Science & Technology 2007,41 (12),4422-4427.
    20. Cross, W. B.; Parkin, I. P., Aerosol assisted chemical vapour deposition of tungsten oxide films from polyoxotungstate precursors:active photocatalysts. Chemical Communications 2003, (14),1696-1697.
    21. Hong, S. J.; Jun, H.; Borse, P. H.; Lee, J. S., Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. International Journal of Hydrogen Energy 2009,34 (8),3234-3242.
    22. Iwasaki, M.; Park, W. K., Synthesis of nanometer-sized WO3 particles by facile wet process and their photocatalytic properties. Journal of Nanomaterials 2008. (48), 6552-6554.
    23. Song, X. C.; Zheng, Y. F.; Yang, E.; Wang, Y., Large-scale hydrothermal synthesis Of WO3 nanowires in the presence of K2SO4. Mater. Lett.2007,61 (18),3904-3908.
    24. Wang, J. M.; Khoo, E.; Lee, P. S.; Ma, J., Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 2008,112 (37), 14306-14312.
    25. Zhang, L.; Chen, D. R.; Jiao, X. L., Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. Journal of Physical Chemistry B 2006,110 (6),2668-2673.
    26. Ke, D.; Peng, T.; Ma, L.; Cai, P.; Dai, K., Effects of Hydrothermal Temperature on the Microstructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light. Inorganic Chemistry 2009,48 (11),4685-4691.
    27. Balazsi, C.; Wang, L. S.; Zayim, E. O.; Szilagyi, I. M.; Sedlackova, K.; Pfeifer, J.; Toth, A. L.; Gouma, P. I., Nanosize hexagonal tungsten oxide for gas sensing applications. Journal of the European Ceramic Society 2008,28 (5),913-917.
    28. Wang, B. S.; Dong, X. W.; Pan, Q. Y.; Cheng, Z. X.; Yang, Y. Z., Intercalation behavior of n-alkylamines into an A-site defective layered perovskite H2W2O7. Journal of Solid State Chemistry 2007,180 (3),1125-1129.
    29. Hameed, A.; Gondal, M. A.; Yamani, Z. H., Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination:role of 3d-orbitals. Catalysis Communications 2004,5 (11),715-719.
    30. Bamwenda, G. R.; Sayama, K.; Arakawa, H., The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3-Fe2+-Fe3+aqueous suspension. J. Photochem. Photobiol. A-Chem.1999,122 (3),175-183.
    31. Yu, J.; Qi, L.; Cheng, B.; Zhao, X., Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres. Journal of Hazardous Materials 2008,160 (2-3),621-628.
    32. Cao, H. L.; Qian, X. F.; Gong, Q.; Du, W. M.; Ma, X. D.; Zhu, Z. K., Shape-and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 2006,77(15),3632-3636.
    33. Xu, Y. M.; Cheng, X. L.; Gao, S.; Huo, L. H.; Zhao, L. G., Hydrothermal Synthesis and Characterizati On of Superfine Powder of Phrochlore-type Tungsten Trioxide. Journal of Harbin University Science & Technology 2002,7 (6),70-74.
    34. Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K., Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials 2008,20 (1),110-117.
    1. Jing, D. W.; Guo, L. J., A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. Journal of Physical Chemistry B 2006,110(23),11139-11145.
    2. Meissner, D.; Memming, R.; Kastening, B., Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential.1988,92 (12),3476-3483.
    3. So, W. W.; Kim, K. J.; Moon, S. J., Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4. International Journal of Hydrogen Energy 2004,29 (3),229-234.
    4. Kida, T.; Guan, G.; Yoshida, A., LaMnO3/CdS nanocomposite:a new photocatalyst for hydrogen production from water under visible light irradiation. Chemical Physics Letters 2003,371 (5-6),563-567.
    5. Serpone, N.; Borgarello, E.; Gratzel, M., Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer. J. Chem. Soc., Chem. Commun 1984,324-344.
    6. Fujii, H.; Ohtaki, M.; Eguchi, K.; Arai, H., Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix. Journal of Molecular Catalysis A:Chemical 1998,129 (1), 61-68.
    7. Arora, M. K.; Sahu, N.; Upadhyay, S. N.; Sinha, A. S. K., Alumina-Supported Cadmium Sulfide Photocatalysts for Hydrogen Production from Water:Role of Dissolved Ammonia in the Impregnating Solution. Industrial & Engineering Chemistry Research 1999,38 (12),4694-4699.
    8. Kanade, K. G.; Baeg, J. O.; Mulik, U. P.; Amalnerkar, D. P.; Kale, B. B., Nano-CdS by polymer-inorganic solid-state reaction:Visible light pristine photocatalyst for hydrogen generation. Materials Research Bulletin 2006,41 (12),2219-2225.
    9. Albert W.-H. Mau; Chorng-Bao Huang; Noriyoshi Kakuta; Bard/, A. J.; Alan Campion; Marye A. Fox; J. Michael White; Webber, S. E., H2 Photoproduction by Nafion/CdS/Pt Films in H2O/S2- Solutions. J. Am. Chem. Soc.1984,106 (22),6537-6542.
    10. Lunawat, P. S.; Senapati, S.; Kumar, R.; Gupta, N. M., Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface. International Journal of Hydrogen Energy 2007,32 (14),2784-2790.
    11. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002,295 (5564),2425-2427.
    12. Wang, S.; Liu, P.; Wang, X.; Fu, X., Homogeneously Distributed CdS Nanoparticles in Nafion Membranes:Preparation, Characterization, and Photocatalytic Properties. Langmuir 2005,21 (25),11969-11973.
    13. Kasem, K. K., Photo-electrochemistry at polymer/semiconductor interface Characterization of surface modified CdS based photovoltaic cells. Journal of Materials Science 1999,34 (21),5237-5242.
    14. Yang, G.; Zhang, L., Regenerated cellulose microporous membranes by mixing cellulose cuoxam with a water soluble polymer. Journal o Membrane Science 1996,114 (2), 149-155.
    15. Liu, S.; Zhang, L.; Zhou, J.; Wu, R., Structure and Properties of Cellulose/Fe2O3 Nanocomposite Fibers Spun via an Effective Pathway. The Journal of Physical Chemistry C 2008,112 (12),4538-4544.
    16. Ruan, D.; Huang, Q.; Zhang, L., Structure and Properties of CdS/Regenerated Cellulose Nanocomposites. Macromolecular Materials and Engineering 2005,290(10), 1017-1024.
    17. Mao, Y.; Zhou, J.; Cai, J.; Zhang, L., Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. Journal of Membrane Science 2006,279 (1-2),246-255.
    18. Ruan, D.; Zhang, L.; Zhang, Z.; Xia, X., Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. Journal of polymer science. Part B. Polymer physics 2003,42 (3),367-373
    19. Ye, F.; Wang, Z. C.; Weng, W. J.; Cheng, K.; Song, C. L.; Du, P. Y.; Shen, G.; Han, G. R., Spin-coating derived LSM-SDC films with uniform pore structure. Thin Solid Films 2006,516(16),5206-5209.
    20. Jang, J. S.; Joshi, U. A.; Lee, J. S., Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007,111 (35), 13280-13287.
    21. Xu, C. X.; Wei, X.; Ren, Z. H.; Wang, Y.; Xu, G.; Shen, G.; Han, G R., Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity. Materials Letters 2009,63 (26),2194-2197.
    22. Nishino, T.; Takano, K.; Nakamae, K., Elastic modulus of the crystalline regions of cellulose polymorphs. Journal of polymer science. Part B. Polymer physics 1995,33 (11),1647-1651.
    23. Lozada-Morales, R.; Zelaya-Angel, O.; Torres-Delgado, G., Photoluminescence in cubic and hexagonal CdS films. Applied Surface Science 2001,175-176 (15),562-566.
    24. Zhang, W.; Zhong, Z.; Wang, Y.; Xu, R., Doped Solid Solution:(Zn0.95Cu0.05)1-xCdxS Nanocrystals with High Activity for H2 Evolution from Aqueous Solutions under Visible Light.J. Phys. Chem. C2008,112 (45),17635-17642.
    25. Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H.; Inoue, Y., Photocatalysis for Water Decomposition by RuO2-Dispersed ZnGa2O4 with d10 Configuration. J. Phys. Chem. B 2002,106 (35),9048-9053.
    26. Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K., Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials 2008,20 (1),110-117.
    27. Caruso, R. A.; Antonietti, M., Silica Films with Bimodal Pore Structure Prepared by Using Membranes as Templates and Amphiphiles as Porogens. Advance Function Materials 2002,12 (4),307-312.
    1. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon nanotubes-the route toward applications. Science 2002,297 (5582),787-792.
    2. Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H., Super-tough carbon-nanotube fibres-These extraordinary composite fibres can be woven into electronic textiles. Nature 2003,423 (6941),703-703.
    3. Sandler, J. K. W.; Kirk, J. E.; Kinloch, I. A.; Shaffer, M. S. P.; Windle, A. H., Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003,44 (19),5893-5899.
    4. Hone, J.; Llaguno, M. C.; Biercuk, M. J.; Johnson, A. T.; Batlogg, B.; Benes, Z.; Fischer, J. E., Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A-Mater. Sci. Process.2002,74 (3),339-343.
    5. Wei, C. Y.; Srivastava, D.; Cho, K. J., Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett.2002,2 (6),647-650.
    6. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991354 (7),56-58.
    7. Varghese, O. K.; Kichambre, P. D.; Gong, D.; Ong, K. G.; Dickey, E. C.; Grimes, C. A., Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuator B-Chem. 2001,81 (1),32-41.
    8. Wang, S. G.; Zhang, Q.; Yang, D. J.; Sellin, P. J.; Zhong, G. F., Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diam. Relat. Mat.2004,13 (4-8), 1327-1332.
    9. Jang, Y. T.; Moon, S. I.; Ahn, J. H.; Lee, Y. H.; Ju, B. K., A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sens. Actuator B-Chem.2004,99 (1),118-122.
    10. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L., Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A-Chem.2005,235 (1-2),194-199.
    11. Zhang, B.; Fu, R. W.; Zhang, M. Q.; Dong, X. M.; Lan, P. L.; Qiu, J. S., Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene. Sens. Actuator B-Chem.2005,109 (2),323-328.
    12. Robel, I.; Bunker, B. A.; Kamat, P. V., Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies:Photoinduced charge-transfer interactions. Advanced Materials 2005,17 (20),2458-2463.
    13. Woan, K.; Pyrgiotakis, G.; Sigmund, W., Photocatalytic Carbon-Nanotube-TiO2 Composites. Advanced Materials 2009,21 (21),2233-2239.
    14. Kongkanand, A.; Kamat, P. V., Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions. ACS Nano 2007,1 (1), 13-21.
    15. Byrappa, K.; Dayananda, A. S.; Sajan, C. P.; Basavalingu, B.; Shayan, M. B.; Soga, K.; Yoshimura, M., Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. Journal of Materials Science 2008,43 (7), 2348-2355.
    16. Oh, W. C.; Zhang, F. J.; Chen, M. L., Preparation of Carbon Nanotubes/TiO2 Composites with Multi-Walled Carbon Nanotubes and Titanium Alkoxides by Solvent Effect and Their Photocatalytic Activity. Asian Journal of Chemistry 22 (3),2231-2243.
    17. Wang, X. J.; Yao, S. W.; Li, X. B., Sol-gel Preparation of CNT/ZnO Nanocomposite and Its Photocatalytic Property. Chinese Journal of Chemistry 2009,27 (7),1317-1320.
    18. Meissner, D.; Memming, R.; Kastening, B., Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential.1988,92 (12),3476-3483.
    19. So, W. W.; Kim, K. J.; Moon, S. J., Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4. International Journal of Hydrogen Energy 2004,29 (3),229-234.
    20. Kida, T.; Guan, G.; Yoshida, A., La MnO3/CdS nanocomposite:a new photocatalyst for hydrogen production from water under visible light irradiation. Chemical Physics Letters 2003,371 (5-6),563-567.
    21. Serpone, N.; Borgarello, E.; Gratzel, M., Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer. J. Chem. Soc., Chem. Commun 1984,324-344.
    22. Fujii, H.; Ohtaki, M.; Eguchi, K.; Arai, H., Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix. Journal of Molecular Catalysis A:Chemical 1998,129 (1), 61-68.
    23. Li, C. S.; Tang, Y. P.; Yao, K. F.; Zhou, F.; Ma, Q.; Lin, H.; Tao, M. S.; Liang, J., Decoration of multiwall nanotubes with cadmium sulfide nanoparticles. Carbon 2006, 44 (10),2021-2026.
    24. Zhao, Y. B.; Liu, H. J.; Wang, F.; Liu, J. J.; Park, K. C.; Endo, M., A simple route to synthesize carbon-nanotube/cadmium-sulfide hybrid heterostructures and their optical properties. Journal of Solid State Chemistry 2009,182 (4),875-880.
    25. Cao, J.; Sun, J. Z.; Hong, J.; Li, H. Y.; Chen, H. Z.; Wang, M., Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method.
    Advanced Materials 2004,16 (1),84-86.
    26. Yu, J. Q.; Kudo, A., Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Advanced Functional Materials 2006,16 (16), 2163-2169.
    27. Yoshimura, M.; Somiya, S., Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia. Materials Chemistry and Physics 1999,61 (1),1-8.
    28. Wang, X. F.; Zhou, Y.; Xu, J. J.; Chen, H. Y, Signal-On Electrochemiluminescence Biosensors Based on CdS-Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine. Advanced Functional Materials 2009,19 (9),1444-1450.
    29. Wang, C.; Ao, Y H.; Wang, P. F.; Hou, J.; Qian, J.; Zhang, S. H., Controlled synthesis in large-scale of CdS mesospheres and photocatalytic activity. Materials Letters 2009,64 (3),439-441.
    30. Jang, J. S.; Joshi, U. A.; Lee, J. S., Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. Journal of Physical Chemistry C 2007,111(35),13280-13287.
    31. Xu, C. X.; Wei, X.; Ren, Z. H.; Wang, Y.; Xu, G.; Shen, G.; Han, G R., Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity. Materials Letters 2009,63 (26),2194-2197.
    32. Ji, K. H.; Jang, D. M.; Cho, Y. J.; Myung, Y; Kim, H. S.; Kim, Y.; Park, J., Comparative Photocatalytic Ability of Nanocrystal-Carbon Nanotube and-TiO2 Nanocrystal Hybrid Nanostructures. Journal of Physical Chemistry C 2009,113 (46),19966-19972.
    33. Wang, L.; Wang, W. Z.; Shang, M.; Yin, W. Z.; Sun, S. M.; Zhang, L., Enhanced photocatalytic hydrogen evolution under visible light over Cd1-xZnxS solid solution with cubic zinc blend phase. International Journal of Hydrogen Energy 2010,35 (1),19-25.
    34. Cai, Z. X.; Yan, X. P., In situ electrostatic assembly of CdS nanoparticles onto aligned multiwalled carbon nanotubes in aqueous solution. Nanotechnology 2006,17 (16), 4212-4216.
    35. Huang, Q.; Gao, L., Synthesis and characterization of CdS/multiwalled carbon nanotube heterojunctions. Nanotechnology 2004,15 (12),1855-1860.
    36. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995,95 (1),69-96.
    37. Jitianu, A.; Cacciaguerra, T.; Benoit, R.; Delpeux, S.; Beguin, F.; Bonnamy, S., Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon 2004,42(5-6),1147-1151.
    38. Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K., Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials 2008,20(1),110-117.
    39. Yao, Y.; Li, G.; Ciston, S.; Lueptow, R. M.; Gray, K. A., Photoreactive TiO2/carbon nanotube composites:Synthesis and reactivity. Environ. Sci. Technol.2008,42 (13), 4952-4957.
    40. Xu, Y. J.; Zhuang, Y. B.; Fu, X. Z., New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes:A Case Study on Degradation of Benzene and Methyl Orange. Journal of Physical Chemistry C 114 (6),2669-2676.
    1. Kudo, A., Development of photocatalyst materials for water splitting. Int. J. Hydrog. Energy 2006,31 (2),197-202.
    2. Kay, A.; Cesar, I.; Gratzel, M., New Benchmark for Water Photooxidation by Nanostructured alpha-Fe2O3 Films. J. Am. Chem. Soc.2006,128(49),15714-15721.
    3. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995,95 (1),69-96.
    4. Gratzel, M., Photoelectrochemical cells. Nature 2001,414 (6861),338-344.
    5. Furtado, L. F. O.; Alexiou, A. D. P.; Goncalves, L.; E, H.; Araki, K., TiO2-Based Light-Driven XOR/INH Logic Gates. Angewandte Chemie International Edition 2006, 45(19),3143-3146.
    6. Szacilowski, K.; Stochel, G, Light-Driven OR and XOR Programmable Chemical Logic Gates. J. Am. Chem. Soc.2006,128 (14),4550-4551.
    7. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238 (5358),37-38.
    8. Haque, S. A.; Palomares, E.; Cho, B. M.; Green, A. N. M.; Hirata, N.; Klug, D. R.; Durrant, J. R., Charge separation versus recombination in dye-sensitized nanocrystalline solar cells:the minimization of kinetic redundancy. J. Am. Chem. Soc.2005,127 (10), 3456-3462.
    9. Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K., All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater.2006,5(10),782-786.
    10. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009,38 (1),253-278.
    11. Beranek, R.; Kisch, H., Surface-modified anodic TiO2 films for visible light photocurrent response. Electrochem. Commun.2007,9 (4),761-766.
    12. Jiang, D. L.; Zhang, S. Q.; Zhao, H. J., Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases. Environmental Science & Technology 2007,41 (1),303-308.
    13. Jiang, D.; Zhang, S.; Zhao, H., Photocatalytic Degradation Characteristics of Different Organic Compounds at TiO2 Nanoporous Film Electrodes with Mixed Anatase/Rutile Phases. Environmental Science & Technology 2006,41 (1),303-308.
    14. Nakamura, R.; Tanaka, T.; Nakato, Y., Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes. The Journal of Physical Chemistry B 2004,108(30),10617-10620.
    15. Beranek, R.; Neumann, B.; Sakthivel, S.; Janczarek, M.; Dittrich, T.; Tributsch, H.; Kisch, H., Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies. Chemical Physics 2007,339 (1-3),11-19.
    16. Xie, B. P.; Zhang, H. X.; Cai, P. X.; Qiu, R. L.; Xiong, Y., Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 2006,63 (6),956-963.
    17. Kohtani, S.; Koshiko, M.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Toriba, A.; Hayakawa, K.; Nakagaki, R., Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B-Environ.2003,46 (3), 573-586.
    18. Luo, H. M.; Mueller, A. H.; McCleskey, T. M.; Burrell, A. K.; Bauer, E.; Jia, Q. X., Structural and photoelectrochemical properties of BiVO4 thin films. Journal of Physical Chemistry C 2008,112 (15),6099-6102.
    19. Long, M. C.; Beranek, R.; Cai, W. M.; Kisch, H., Hybrid semiconductor electrodes for light-driven photoelectrochemical switches. Electrochimica Acta 2008,53 (14), 4621-4626.
    20. Sayama, K.; Nomura, A.; Arai, T.; Sugita, T.; Abe, R.; Yanagida, M.; Oi, T.; Iwasaki, Y.; Abe, Y.; Sugihara, H., Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. Journal of Physical Chemistry B 2006,110 (23),11352-11360.
    21. Kudo, A., Development of photocatalyst materials for water splitting with the aim at photon energy conversion. Journal of the Ceramic Society of Japan 2001,109 (6), S81-S88.
    22. Woodhouse, M.; Parkinson, B. A., Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev.2009,38(1),197-210.
    23.小久见善八,电化学.北京:科学出版社OHM社2002.
    24. Kudo, A.; Omori, K.; Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc.1999, 121(49),11459-11467.
    25. Niu, C.; Sichel, E.; Hoch, R.; Moy, D.; Tennent, H., High power electrochemical capacitors based on carbon nanotube electrodes. Applied Physics letters 1997,70(11), 1480-1483.
    26.褚道葆;张金花;冯德香;李晓华;姚文俐,纳米TiO2膜电极的电化学阻抗谱.应用化学2006,23(3),252-255.
    27.杨术明,染料敏化纳米晶太阳能电池.郑州:郑州大学出版社2007.
    28. Long, M. C.; Cai, W. M.; Kisch, H., Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-CO3O4. Journal of Physical Chemistry C 2008, 112 (2),548-554.
    29. ChemLa, M.; Dufreche, J. F.; Darolles, I.; Rouelle, F.; Devilliers, D.; Petitdidier, S.; Levy, D., Bias voltage dependent electrochemical impedance spectroscopy of p-and n-type silicon substrates. Electrochimica Acta 2005,51 (4),665-676.
    30. Dai, J.; Hu, L. H.; Lin, W. Q.; Dai, S. Y., Study on the flatband potential of nanoporous TiO2 film electrode. Acta Physica Sinica 2008,57 (8),5310-5315.
    31. Pleskov, Y. V.; Mazin, V. M.; Evstefeeva, Y. E.; Varnin, V. P.; Teremetskaya, I. G.; Laptev, V. A., Photoelectrochemical determination of the flatband potential of boron-doped diamond. Electrochem. Solid State Lett.2000,3 (3),141-143.
    32. Khan, S. U. M.; Akikusa, J., Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. Journal of Physical Chemistry C 1999,103 (34), 7184-7189.
    33. Burgeth, G.; Kisch, H., Photocatalytic and photoelectrochemical properties of titania-chloroplatinate(Ⅳ). Coordination Chemistry Reviews 2002,230 (1-2),41-47.
    34. Xu, H.; Liu, L.; Jia, N. Q.; Yang, J.; Yan, M. M.; Jiang, Z. Y, Photoeletrochemical properties of TiO2 films modified with gold nanoparticles. Chinese Journal of Chemistry 2005,23(1),18-22.
    35. Boschloo, G.; Fitzmaurice, D., Spectroelectrochemical investigation of surface states in nanostructured TiO2 electrodes. J. Phys. Chem. B 1999,103 (12),2228-2231.
    36. Rusina, O.; Macyk, W.; Kisch, H., Photoelectrochemical properties of a dinitrogen-fixing iron titanate thin film. J. Phys. Chem. B 2005,109 (21),10858-10862.
    37.孙伟;鄂利海,电极微分电容的交流阻抗测量方法.抚顺石油学院学报2000,20(2),19-22.
    38. Sayama, K.; Nomura, A.; Zou, Z. G.; Abe, R.; Abe, Y.; Arakawa, H., Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chemical Communications 2003, (23),2908-2909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700