用户名: 密码: 验证码:
钴基化合物及其复合材料的制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高比能电池体系对发展新能源与清洁能源技术,特别是电动汽车电源和大规模风能与太阳能的电力储存十分重要。采用具有多电子反应特征的电池体系原理上可以获得比常规单电子反应电池体系更高的能量密度。探索多电子反应电极材料、构建新型高能电池体系是电池技术发展的关键科学问题。基于金属Co和Co(Ⅱ)在电化学反应过程中进行2电子转移反应,可实现多电子反应功能,本论文以钻基化合物及其复合材料作为碱性二次电池的负极材料,对其电化学性能进行了研究,探索了其多电子反应机制,并在此基础上设计了一种新型二次电池体系。论文主要研究内容和结果如下:
     在本论文中,通过机械合金化法制备了Co-Si3N4复合材料,通过XRD、TEM、XPS对复合材料的结构、形貌和表面及体相的化学状态进行了表征,通过恒流充放电和循环伏安测试研究了复合材料用作碱性二次电池负极的电化学行为。研究结果表明,金属Co和Si3N4经高能球磨处理后,形成了纳米尺度的金属Co,并分散镶嵌在非晶态Si3N4化合物的表面。钴元素在复合材料中主要以金属态的形式存在,仅在样品表面存在一层CoO氧化层。基于金属Co和Co(Ⅱ)之间的可逆电化学氧化还原反应,Co-Si3N4复合材料(Co/Si物质的量比为2/1)在碱液中表现出403 mAh/g的高放电容量,且电极具有良好的循环稳定性。另外,将该材料添加到稀土镁基合金中可显著提高合金的首次放电容量。
     论文研究了采用热分解Co(OH)2前驱体制备了CoO和Co304材料,并将其用于碱性二次电池负极材料,研究了其电化学性能。采用XRD、SEM表征了样品的微观结构和形貌。通过恒流充放电和循环伏安测试研究了电极的放电容量及电化学反应机制。研究显示,制备的CoO在60 mA/g放电电流密度下,放电比容量较高,能够实现507 mAh/g的可逆电化学容量,其放电平台位于-0.8V附近,电化学反应归属为Co的氧化还原。研究同时表明,C0304的电化学容量也来自于Co的可逆氧化,由于在充电过程中C0304难以完全被还原生成金属Co,活性物质的利用不充分,电极的最高放电容量为391 mAh/g。以上研究结果表明,CoO和C0304在低电流密度放电情况下具有较高的放电容量,在大电流放电条件下具有稳定的循环性能。
     论文采用均相沉淀法合成了α-Co(OH)2和β-Co(OH)2,通过XRD和SEM对其结构和形貌进行了表征,重点研究了Co(OH)2电极材料的高倍率性能。其中,β-Co(OH)2较α-Co(OH)2具有更加优异的电化学性能,在1C和10C充放电倍率下放电容量分别达到455和338 mAh/g,且循环性能稳定。其中,β-Co(OH)2在电化学氧化还原过程中可实现平均转移数为1.58个电子,该研究成果为探索多电子反应材料提供了新思路。在此基础上,探索构筑了一种新的Ni/Co电池体系。该Ni/Co电池体系以α-Ni(OH)2为正极活性物质,α-Co(OH)2或β-Co(OH)2为负极活性物质。该Ni/Co模拟电池在1C充放电倍率下放电比能量能够达到165Wh/kg(以α-Ni(OH)2和β-Co(OH)2为活性物质),循环50周以后能量保持在158.8Wh/kg,其能量保持率为96.2%。该研究结果有助于探索和发展新型二次电池体系。
The need for high energy density batteries becomes increasingly important for the development of new and clean energy technologies, such as electric vehicles and electrical storage from wind and solar power. In principle, the rechargeable battery system based on electrode-active materials with multi-electron reaction can achieve higher energy density as compared to a battery system built on conventional electrode materials with a single-electron redox. Therefore, it is critical to explore electrode-active materials with multi-electron reaction and construct novel battery-systems with dramatically increased energy density for the development of battery technology. As a two-electron reaction process between metallic Co and Co2+ ions is involved in the electrochemcial reaction, multi-electron transfer can been realized in Co-based compounds or composites. In this thesis, the electrochemical properties of Co-based compounds and composites as negative-active materials for alkaline rechargeable battery were investigated in detail. Furthermore, a new rechargeable battery system was constructed based on the explorement of the new Co-based negative materials. The main contents and results presented in this thesis are shown as following:
     In this work, Co-Si3N4 composites were synthesized by direct ball-milling metallic Co and Si3N4 powders. The microstructure, morphology and chemical state of the ball-milled Co-Si3N4 composites were characterized by X-ray diffraction(XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of Co-Si3N4 composites used as negative materials in alkaline solution was investigated by galvanostatic charge-discharge process and cyclic voltammetry. It is demonstrated that Co exists as metallic state in the bulk phase of the composites except a trace of CoO on the surface. The metallic Co nanoparticles are highly dispersed on the amorphous inactive Si3N4 matrix. The maximum discharge capacity (403 mAh/g) of the Co-Si3N4 composites is obtained at the molar ratio of Co/Si=2/1 based on the reversible faradic reaction between Co and Co(Ⅱ). The Co-Si3N4 composite with the molar ratio of Co/Si=2/1 presents good cycle stability. Moreover, it is shown that the addition of Co-Si3N4 composites to the hydrogen storage PrMg12-Ni composite can notably enhance the initial discharge capacity of the hydrogen storage composite based on both the hydrogen electrochemical oxidation and Co electrochemical redox reaction.
     Next, the electrochemical performance of CoO and Co3O4 used as negative-active materials for rechargeable alkaline battery was also investigated. CoO and Co3O4 were obtained by decomposition of the a-Co(OH)2 precursor at 450℃in Ar and air atmosphere, respectively. XRD and SEM were used to characterize their microstructure and morphology. The discharge capacity and reversible faradic reaction involved in the material were elucidated through galvanostatic charge-discharge process and cycle voltammetry (CV) technique. It is shown that CoO has the highest capacity of up to 507 mAh/g at the discharge current density of 60 mA/g. The discharge potential plateau is around-0.8 V, consistent with Co redox potential in alkaline solution. The electrochemical reaction process of Co3O4 is similar to that of CoO. The maximum discharge capacity of Co3O4 is 391 mAh/g, indicating a low utilization of active materials due to the partially irreversible conversion between Co and Co3O4. It is concluded that CoO and Co3O4 electrodes exhibit a good capacity retention at the large discharge current density (400 mA/g), and enhanced capacity at the low discharge current density (60 mA/g).
     Finally, a-Co(OH)2 andβ-Co(OH)2 were synthesized controllably via homogeneous precipitation, their microstructure as well as morphology were examined in detail by XRD and SEM. The high-rate discharge ability of cobalt hydroxides using as negative-active material in alkaline solution was investigated. It is shown thatβ-Co(OH)2 exhibits improved discharge capacity and excellent electrochemical durability as compared toα-Co(OH)2. The maximum discharge capacities of 455 and 338mAh/g are achieved for theβ-Co(OH)2 electrode at 1 and 10 C rate, respectively. In particular, on average,1.58 electrons are involved in the practical electrochemical process of theβ-Co(OH)2 electrode. Meanwhile, a new rechargeable battery system, consisting of a-Ni(OH)2 as the positive-active material andβ-Co(OH)2 as the negative-active material, is proposed on the basis of multi-electron reactions. The output energy density of Ni/Co prototype cell reaches 165 Wh/kg (based on the weights of both a-Ni(OH)2 and (3-Co(OH)2 active materials) and stabilizes at 158.8 Wh/kg after 50 cycles, revealing an energy retention of 96.2%. The strategy adapted in the present study could be helpful to explore and develop new power sources with a high energy density.
引文
[1]陈曼珍.新型蓄电池原理与应用.人民邮电出版社,2004
    [2]李国欣.新型化学电源导论.上海复旦大学出版社,1992
    [3]Khler U. Kumper J. Ullrich M. High performance nickel-metal hydride and lithium-ion batteries. J. Power sources.2002,105:139-144
    [4]Liaw B Y. Yang X G. Reliable fast recharge of nickel metal hydride cells. Solid State Ion.. 2002.152-153:217-225
    [5]Jiang J J. Gasik M. Laine J. et al. Electrochemical evaluation of sintered metal hydride electrodes for electric vehicle applications.J. Alloy. Compd..2001,322:281-285
    [6]Dixit M, Jayashree R S, Kamath P V, et al. Electrochemically Imprenated Aluminum-Stabilized a-Nickel Hydroxide Electrodes. Electrochem. Solid-State Lett.,1999, 2:170~171
    [7]袁华堂,邹雅冰,王一菁.贮氢材料及其应用研究进展.化学通报.1994,12:891-897
    [8]吕鸣祥等.化学电源.天津大学出版社,1992
    [9]Bode H, Dehmelt K, Witte J. Zur kenntnis der nickel hydroxide electrode-Uber das nickel (Ⅱ)-hydroxidhydrat. Electrochim Acta,1966,11:1079~1087
    [10]Wehrens-Dijksma M, Notten P H L. Electrochemical Quartz Microbalance characterization of Ni(OH)2-based thin film electrodes. Electrochim. Acta,2006,51:3609~3621
    [11]余成洲,赖为华.氢镍电池的现状与发展方向.电池,2002,31:58-63
    [12]Wu B, White R E. Modeling of a nickel-hydrogen cell phase reactions in the nickel active material. J Electrochem. Soc.,2001.148:A595-A609
    [13]Oliva P, Leonardi J, Laurent J F. et al. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power Sources,1982,8:229~255
    [14]Cornilsen B C,Shan X. Loysell E P L. Structural comparion of nickel electrodes and precursor phases. J. Power Sources,1990,29:453~466
    [15]Delahaye-Vidal A, Beaudoin B. Sac-Epee N. et al. Structural and textural investigations of the nickel hydroxide electrode. Solid State Ionics,1996,84:239~248
    [16]Eriksson L, Palmqvist U, Rundlof H. et al. Structural aspects on the charged positive Ni electrode. J. Power Sources,2002,107:34~41
    [17]Law H H, Sapjeta J. A novel substrate for nickel-cadmium batteries. J. Electrochem. Soc., 1998,135:2418~2410.
    [18]Deepika S. Characteristics and effects of y-NiOOH on cell performance and a method to quantify. J. Electrochem. Soc.,1998,145:116~120
    [19]Faure C, Delmas C, Fouassier M, et al. Electrochemical behavior of a-cobalted nickel hydroxide electrodes. J. Power Sources,1991,36:497~506
    [20]Kamath P V, Dixit M, Indira L, et al. Stabilized a-Ni(OH):as electrode material for alkaline secondary cells. J. Electrochem. Soc.,1994,141:2956~2959
    [21]Indira L, Dixit M, Kamath P V. Electrosynthesis of layered double hydroxides of nickel with trivalent cations. J. Power Sources,1994,52:93~97
    [22]Kumar G V, Munichandraiah N, Kamath P V, et al. On the performance of stabilized a-nickel hydroxide as a nickel-positive electrode in alkaline storage batteries. J. Power Sources,1995. 56:111-114
    [23]Mridula D, Vishnu K P, Gopalakrishnan J. Zinc-substituted a-Ni(OH)2 as an electrode material for alkaline cells. J. Electrochem. Soc.,1999,146:79~82
    [24]Dixit M, Jayashree R S, Kamath P V, et al. Electrochemically Imprenated Aluminum-Stabilized α-Nickel Hydroxide Electrodes. Electrochem. Solid-State Lett.,1999, 2:170~171
    [25]Srinivasan V, Weidner J W, White R E. Mathematical models of the nickel hydroxide active material. J. Solid State Electrochem.,2000,4:367~382
    [26]Pan T, Wang J M, Zhao Y L,et al. Al-stabilized a-nickel hydroxide prepared by electrochemical impregnation. Mater. Chem. Phys.,2003,78:711~718
    [27]Liu H B, Xiang L, Jin Y. Hydrothermal Modification and Characterization of Ni(OH)2 with High Discharge Capability, Cryst. Growth Des.,2006,6:283~286.
    [28]Yang L J, Gao X P, Wu Q D, et al. Phase distribution and electrochemical properties of Al-substituted nickel hydroxides. J.Phys.Chem.C,2007,111:4614~4619
    [29]Wu Q D, Gao X P, Li G R, et al. Microstructure and electrochemical properties of Al-substituted nickel hydroxides modified with CoOOH nanoparticles. J. Phys. Chem. C, 2007,111:17082~17087
    [30]Jayashree R S, Kamath P V. Suppression of the α→β nickel hydroxide transformation in concentrated alkali:Role of dissolved cations. J. Appl. Electrochem.,2001,31:1315~1320
    [31]Demourgues-Guerlou L, Delmas C. Effect of iron on the electrochemical properties of the nickel hydroxide electrode. J. Electrochem. Soc.,1994,141:713-717
    [32]Liu B, Yuan H T, Zhang Y S, et al. Cyclic voltammetric studies of stabilized a-nickel hydroxide electrode. J. Power Sources,1999,79:277~280
    [33]Caravaggio G A, Detellier C, Wronski Z. Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. J. Mater. Chem.,2001,11:912~921
    [34]Hu W K, Noreus D. Alpha nickel hydroxides as light weight nickel electrode materials for alkaline rechargeable cells. Chem. Mater.,2003,15:974~978
    [35]Zhao Y L, Wang J M, Chen H, et al. Al-substituted a-nickel hydroxide prepared by homogeneous precipitation method with urea. Int. J. Hydrogen Energy,2004,29:889~896
    [36]Zhao Y L, Wang J M, Chen H, et al. Different additives-substituted a-nickel hydroxide prepared by urea decomposition. Electrochim. Acta,2004,50:91~98
    [37]Chen H, Wang J M, Pan T, et al. Physicochemical properties and electrochemical performance of Al-substituted a-Ni(OH)2 with additives for Ni-metal hydride batteries. J. Electrochem. Soc.,2003,150:A1399-1404
    [38]Chen H, Wang J M, Pan T, et al. The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. J. Power Sources, 2005,143:243-255
    [39]Tessier C, Demourgues G L, Faure C, et al. Structural study of zinc-substituted nickel hydroxides. J. Mater. Chem.,2000,10:1185~1193
    [40]Tessier C, Demourgues G L, Faure C, et al. Structural and textural evolution of zinc-substituted nickel hydroxide electrode materials upon ageing in KOH and upon redox cycling. Solid State Ionics,2000,133:11~23
    [41]Chen H, Wang J M, Pan T, et al. Effects of coprecipitated zinc on the structure and electrochemical performance of Ni/Al-layered double hydroxide. Int. J. Hydrogen Energy, 2002,27:489~496
    [42]Chen H, Wang J M, Zhao Y L, et al. Electrochemical performance of Zn-substituted Ni(OH)2 for alkaline rechargeable batteries. J. Solid State Electrochem.,2005,9:421~428
    [43]冯治库,杨宏秀,焦玉琏.稀土储氢材料的研究进展.稀有金属材料与工程,1990,1:59-70
    [44]Balasubramaniam R, Mungole M N, Rai K N. Hydriding properties of MmNi5 system with aluminium, manganese and tin substitutions. J. Alloys Compd.,1993,196:63~70
    [45]Adizc G D, Johnson J R, Reilly J J, er al. Cerium content and cycle life of multicomponent AB5 hydride electrodes. J. Electrochem. Soc.,1995,142:3429~3433
    [46]Tang W Z, Sun G T. Electrode stability of La-Ni-Mn hydride-forming materials prepared by conventional and rapid quenching techniques. J. Alloys Compd.,1994,203:195~198
    [47]Kim D M, Jeon S W, Lee J Y. A study of the development of a high capacity and high performance Zr-Ti-Mn-V-Ni hydrogen storage alloy for Ni-MH rechargeable batteries. J. Alloys Compd.,1998,279:209~214
    [48]Lee S M, Lee H, Kim J H,et al. A study on the development of hypo-stoichiometric Zr-based hydrogen storage alloys with ultra-high capacity for anode material of Ni/MH secondary battery. J. Alloys Compd.,2000,308:259~268
    [49]Zhang S K, Wang Q D, Lei Y Q, et al. The phase structure and electrochemical properties of the melt-spun alloy Zr0.7Ti0.3Mn0.4V0.4Ni1.2.J. Alloys Compds.,2002,330~332:855~860
    [50]Yang Q M, Ciureanu M, Ryan D H, et al. Composite hydride electrode materials. J. Alloys Compd.,1998,274:266~273
    [51]Yang J, Ciureanu M, Roberge R. Hydrogen storage properties of nano-composite of Mg and Zr-Ni-Cr alloys. Mate. Lett.,2000,43:234~239
    [52]Gao X P, Ye S H, Liu J, et al. Structure and electrochemical properties of Zr(V0.2Mn0.2Ni0.6-xCox)2.4. Int. J. Hydrogen Energy,1998,23:781-786
    [53]Gao X P, Sun Y M, Higuchi E, et al. Electrochemical properties and characteristics of the fluorinated Zr0.9Ti0.1V0.2Mn0.6Ni1.3La0.05 electrode. J. Alloys Compd.,1999,293~295: 707~711.
    [54]Virkar A V, Ramam A. Crystal structure of AB3 and A2B7 rare earth-nickel phases. J Less-Common Met,1969,18:59~66
    [55]Kadir K, Sakai T, Uahara I. Synthesis and structure determination of a new series of hydrogen storage alloy:RMg2Ni9(R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J. Alloys Compds.,1997,257:115~121
    [56]Kadir K, Nuriyama N, Sakai T, et al. Structural investigation and hydrogen capacity of CaMg2Ni9:a new phase in the AB2C9. J. Alloys Compd.,1999,284:145~154
    [57]Kadir K, Sakai T, Uahara I. Structural investigation and hydrogen capacity of Y CaMg2Ni9 and (Yo.5Cao.5)(MgCa)Ni9:new phases in the AB2C9 system isostructural with LaMg2Ni9. J. Alloys Compd,1999,287:264~270
    [58]Kadir K, Sakai T, Uahara I. Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9type structure. J. Alloys Compd., 2000,302:112~117
    [59]Kadir T, Sakai T, Uehara 1. Synthesis and Structure Determination of a New Series of Hydrogen Storage Alloys:RMg2Ni9(R=La, Ce, Pr, Nd, Sm and Gd) Built from MgNi2 Laves-type Layers Alternating with AB5 Layers. J. Alloys Compd.,1997,257:115~121
    [60]Pan H G, Liu Y F, Gao M X, et al. A Study on the effect of annealing treatment on the electrochemical properties of Lao.67Mg0.33Ni2.5Co0.5 alloy electrodes. Int. J. Hydrogen Energy, 2003,28:113~117
    [61]Kadir K, Sakai T, Uehara 1, Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure. J. Alloys Compd., 2000,302:112~117
    [62]Kohno T, Yoshida H, Kawashima F, et al. Hydrogen storage properties of new ternary system alloys:La2MgNi9, La5Mg2Ni23, La3MgNi14. J. Alloys Compd.,2000,311:L5~L7
    [63]Chen J, Kuriyama N, Takeshita H T,et al. Hydrogen storage alloy with PuNi3-type structure as Metal hydride electrodes. Electrochem. Solid-State Lett.,2000,3:249-252
    [64]Liao B, Lei Y Q, Chen L X, et al. Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3-xNi9(x=1.6-2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries. J. Power Sources,2004,129:358~367
    [65]Liao B, Lei Y Q, Lu G L, et al. The electrochemical properties of LaxMg3-xNi9(x=1.0-2.0) hydrogen storage alloys. J. Alloys Comp.,2003,356~357:746~749
    [66]廖彬,雷永泉,吕光烈等.La-Mg-Ni系AB3型贮氢合金的相结构与电化学性能.金属学报,2005,41:41-48
    [67]刘永锋,潘洪革,高明霞等.金属学报,2003,39:666-672
    [68]Pan H G, Liu Y F, Gao M X, et al. The structure and electrochemical prpterties of La0.7Mg0.3(Ni0.85Co0.15)x (x=3.0-5.0) hydrogen storage alloys. Int. J. Hydrogen Energy,2003, 28:1219~1225
    [69]Liao B, Lei Y Q, Chen L X, et al. Effect of Co substitution for Ni on the structural and electrochemical properties of La2Mg(Ni1-xCox)9(x=0.1-0.5). Electrochimica Acta,2005,50: 1057~1063
    [70]Liao B, Lei Y Q, Chen L X, et al. The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La2Mg(Ni1-xAlx)9 (x=0-0.05) alloys. J. Alloys Compd.,2005,404~406:665~668
    [71]Liao B, Lei Y Q, Chen L X, et al. The structural and electrochemical properties of La2Mg(Ni1-xAlx)9 (x=0-0.03) hydrogen storage electrode alloys J. Alloys Compd.,2006,415: 239-243
    [72]Liao B, Lei Y Q, Chen L X, et al. A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9(M=Co,Mn,Fe, Al, Cu, Sn) hydrogen storage electrode alloys. J. Alloys Compd.,2004,376:186~195
    [73]Darriet B, Pezat M, Hbika A,et al. Application of magnesium rich rare-earth alloys to hydrogen storage. Int. J. Hydrogen energy,1980,5:173~178
    [74]Pezat M, Darriet B, Hagenmuller P. A comparative study of magnesium-rich rare-earth-based alloys for hydrogen storage. J. Less-Common Metals,1980,74:427~434
    [75]Gao X P, Wang Y, Lu Z W, et al. Preparation and Electrochemical Hydrogen Storage of the Nanocrystalline LaMg12 Alloy with Ni Powders. Chem. Mater.,2004,16:2515~2517.
    [76]Gao X P, Lu Z W, Wang Y, et al. Electrochemical Hydrogen Storage of Nanocrystalline La2Mg17 Alloy Ballmilled with Ni Powders. Electrochem. Solid-State Lett.,2004,5: A102~A104
    [77]Wang L, Wang X H, Chen LX, et al. Electrochemical performance of CeMg12+x wt%Ni (x=180-220) composites prepared by mechanical grinding. Int. J. hydrogen Energy,2006,31: 919~923
    [78]Wang Y, Lu Z W, Wang Y L, et al. Electrochemical hydrogen storage of ball-milled CeMg12 and PrMg12 alloys with Ni powders. J. Alloys Compd.,2006,421:236~239
    [79]Wang L, Wang X H, Chen L X, et al. Microstructure and electrochemcial properties of mechanically ground Ce2Mg17+x wt%Ni (x=0,50,100,200) composites. J. Alloys Compd., 2005,400:281~286
    [80]夏熙,张校刚.锌锰电池中锌电极的腐蚀(上).电池,1995,25:31-33
    [81]Gonnon E G, Hill B S. Implanted Probes Follow Changes in Electrolyte Compositon in Cycling Zn/NiOOH cells, J. Electrochem.Soc.,1990,137:377~382
    [82]Jain R, Adler T C, Mclarnonm F R, et al. Development of Long-Lived High-performance Zinc-Calcium/Nickel Oxide Cells, J. Appl. Electrochem.,1992,22:1039~1048
    [83]Shivkumar R, Pruthimal K G, Vasudevan T, Studies with Porous Zinc Electrode With Additives for Secondary Alkaline Batteries, J. Power Sources,1998,75:90~100
    [84]Kannangara D C W, Conway B E. Zinc Oxidation and Redeposition Process in Aqueous Alkali And Carbonate Solutions.Ⅰ. pH and Carbonate Ion Effect in Film Formation and Dissolution. J. Electrochem. Soc.,1987,134:894-906
    [85]Ravindran V, Muralidharan S. Cathodic Processes on Zinc in Alkaline Zincate Solutions, J. Power Sources,1995,55:237~241
    [86]Rehim E, Fouad S S, Wahab E E, et al. The influence of some sulphur-containing anions on the anodic behavior of zinc in an alkaline medium, J. Electroanal. Chem.,1996,401: 113~118
    [87]Diggle J, Damianovic A, Electrocrystallization of Zinc Dendrites in High-Purity,and Inhibitor Doped, Alkaline Zincate Solutions. J.Electrochem. Soc.,1970,117:65~68
    [88]Sharma Y, Aziz M, Yusof J, et al. Triethanolamine as an Additive to the Anode to Improve the Rechargeability of Alkaline Manganese Dioxide Batteries. J. Power Sources,2001, 94:129~131
    [89]de Souza A R, Arashiro E, Golveia H, et al. Pseudo capacitive Behavior of Ti/RhOx+Co3O4 Electrodes In Acidic Medium:Application to Supercapacitor Development Electrochemical Acta.2004,49:2015~2023.
    [90]Liu X M, Zhang Y H, Zhang X G,et al. Studies On Me/Al-layered Double Hydroxides (Me=Ni and Co) as Electrode Materials for Electrochemical Capacitors Electrochimical Acta.2004,49:3137~3141.
    [91]梁农.金属钴.江西冶金,1997,17:52-54
    [92]郭再萍,夏熙.提高金属氢化物电极性能的途径.电池,1998,28:33-44
    [93]Sakai T, Oguro K, Migumura H, et al. Some Factors Affecting the Cycle Lives of LaNi5 Based Alloy Electrodes of Hydrogen Batteries. Journal of the Less-Common Metals,1990, 161:193~202
    [94]Reilly J J, Adzic G D, Vogt T,et al. The Correlation Between Composition and Electrochemical Properties of Metal Hydride Electrodes. J. Alloys Compd., 1999,293-295: 569~582
    [95]Li S Q, Chen L X, Guo R, et al. Phase structures of RENi(4.3-x)CoxMn(0.4)Al(0.3) (x =0.5~1.3) hydrogen storage alloys and their electrochemical performance at high temperature. Rare Metal Mater. Eng.,2003,32:228~231
    [96]Senoh H, Ueda M, Furukawa N, et al. Theoretical evaduation for thermodynamic stability of constituents of Mm-based hydrogen storage alloy in 6M KOH solution at relatively high temperatures, J. Alloys Compds.,1998,280:114~124.
    [97]邸利芝,陈丽.CoO负极添加剂对镍氢电池性能的影响.硅酸盐通报,2003,3:88-90
    [98]Liu Z P, Ma R Z, Osada M, et al. Selective and Controlled Synthesis of α- and β-Cobalt Hydroxides in Highly Developed Hexagonal Platelets. J. Am. Chem. Soc,2005,127: 13869-13874
    [99]董桂霞,杜军,朱磊等.CoO作为电极材料的可能性.研究与设计.电源技术,2006,30:713-715
    [100]张密林,刘志祥.沉淀转化法制备的Co(OH)2的超级电容特性.无机化学学报,2002,18:513-517.
    [101]Chuan L, James A R, Branko N P, Characterization of sol-gel derived cobalt xergels as electrochemical capacitor. J. Electrochem. Soc,1998,145:4097~4101
    [102]Poizot P, Larulle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407:496~499
    [103]Poizot P, Laruelle S, Grugeon S, et al. Electrochemical reactivity and reversibility of cobalt oxides towards lithium. C. R. Acad. Sci., Ser. II c:Chim.,2000,3:681-691
    [104]Wang G X, Chen Y, Konstantiov K, et al. Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources,2002,109:142~147
    [105]Do J S, Weng C H. Preparation and characteriation of CoO used as anodic material of lithium battery. J. Power Sources,2005,146:482~486
    [106]Do J S, Weng C H. Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries. J. Power Sources,2006,159:323~327
    [107]Yu Y, Chen C H, Shui J L, et al. Nickel-foam-supportied recticular CoO-Li2O composite anode materials for lithium ion batteries. Angew. Chem.Int. Ed.,2005,44:7085~7089
    [108]Yu Y, Shi Y, Chen C H. Effect of lithia and substrate on the electrochemcial performance of a lithia/cobalt oxide composite thin-film anode. Chem. Asian J.,2006,1:826~831
    [109]蔡振平.锂离子电池负极材料C0304的制备及性能.电源技术,2003,27:370-372
    [110]Yuan Z, Huang F, Feng C, et al. Synthesis and electrochemical performance of nanosized CO3O4. Mater. Chem. Phys.,2003,79:1-4
    [111]Du N, Zhang H, Chen B, et al. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:A highly efficient material for Li-battery applications. Adv. Mater.,2007,19:4505~4509
    [112]Li Y, Tan B, Wu Y. Mesoporous CO3O4 nanowire array for lithiuim ion batteries with high capacity and rate capability. Nano lett.,2008,8:265~270
    [113]Li Y, Tan Z. W, Qin Q Z. A nanocrystalline thin film electrode for Li-ion batteries. Thin Solid Films,2003,441:19~24
    [114]Cao L, Xu F, Liang Y Y, et al. Preparation of the Novel Nanocompposite Co(OH)2/Ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density. Adv. Mater.,2004,16:1853~1857
    [115]Liang Y Y, Li H L, Zhang X G. A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes. Mater. Sci. Eng. A.,2008,473:317~322
    [115]Jayashree R S, Kamath P V. Electrochemical systhesis of a-cobalt hydroxide. J. Mater. Chem.,1999,9:961~963
    [116]Ramesh T N, Rajamathi M, Kamath P V. Ammonia induced precipitation of cobalt hydroxide:observation of turbostratic disorder. Solid State Ionics,2003,5:751-756.
    [117]Gupta V, Gupta S, Miura N, Potentiostatically deposited nanostructured CoxNi1-x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sources, 2008,175:680~685
    [118]Wang Y, Yang W S, Zhang S C, et al. Synthesis and Electrochemical Characterization of Co-Al Layered Double Hydroxides. J. Electrichem. Soc.,2005,152:A2130-A2137
    [119]Liang Y Y, Bao S J, Li H L, Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors. J. Solid State Electrochem,2007,11:571~576
    [120]Lu Z W, Yao S M, Li G R, et al. Microstructure and electrochemical properties of the Co-BN composites. Electrochim. Acta.,2008,53:2369~2375
    [121]Wang Y D, Ai X P, Yang H X. Electrochemical Hydrogen Storage Behaviors of Ultrafine Amorphous Co-B Alloy Particles. Chem. Mater.,2004,16:5194~5197
    [122]Wang Y D, Ai X P, Cao Y L, et al. Exceptional electrochemical activities of amorphous Fe-B and Co-B alloy powders used as high capacity anode materials. Electrochem. Commun.2004,6:780~784
    [123]王雅东,艾新平,杨汉西,超细非晶态Fe-B和Co-B合金粒子的电化学行为.电化学,2004,10:175-180
    [124]Cao Y L, Zhou W C, Li X Y, et al. Electrochemical hydrogen storage behavior of ultrafine Co-P particles prepared by directed ball-milling method. Electrochim. Acta,2006,51: 4285~4290.
    [125]He G, Jiao L F, Yuan H T, et al. Preparation and electrochemical hydrogen storage property of alloy CoSi. J. Electrochem. Commun.,2006,8:1633~1638
    [126]Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci.,2010,3:174~189
    [127]Bard A J, Parsons R, Jordan J. Standard Potentials in Aqueous Solution, Marcel Dekker Inc., New York,1985
    [1]J.Eckert, L.Schultz, K.Urban, Appl. Phys. Lett., Formation of quasicrystals by mechanical alloying.1989,55:117~119
    [2]晋勇,孙小松,薛屺.X射线衍射分析技术.北京:国防工业出版社,2008:250-251
    [3]林梦海,林银钟,结构化学.北京;科学出版社,2004,206-221
    [4]现代仪器分析实验讲义.南开大学中心实验室,2005:38-40
    [5]刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1988:32-53
    [6]吴辉煌.应用电化学基础.厦门:厦门大学出版社,2006:108-111
    [7]高小霞.电分析化学导论.北京:科学出版社,1986:310-313
    [8]查全性.电极过程动力学导论.北京:科学出版社,2002:104-107
    [1]Bai Y, Wu C, Wu F, et al. Investigation of FeB alloy prepared by an electric arc method and used as the anode material for alkaline secondary batteries. Electrochem. Commun.,2009, 11:145~148
    [2]Yu X W, Licht S. High capacity alkaline super-ion borede battery. Electrochim. Acta, 2007,52:8138~8143
    [3]He G, Jiao L F, Yuan H T, et al. Preparation and electrochemical hydrogen storage property of alloy CoSi. Electrochem. Commun.,2006,8:1633~1638
    [4]Wang Y D, Ai X P, Yang H X. Electrochemical Hydrogen Storage Behaviors of Ultrafine Amorphous Co-B Alloy Particles. Chem. Mater.,2004,16:5194~5197
    [5]Wu C, Bai Y, Wang X. et al. Comparisons of Co-B alloys synthesized via different methods for secondary alkaline batteries. Solid State Ionics 2008,179:924~927
    [6]Liu Y, Wang Y J, Xiao L L, et al. Structure and electrochemical hydrogen storage behaviors of alloy Co2B. Electrochem. Commun.,2007,9:925~929
    [7]Chung S R, Wang K W, Perng T P. Electrochemical Hydrogenation of Crystalline Co Power. J. Electrochem. Soc.,2006,153:A1128-A1131.
    [8]Zhu Y C. Yang Q, Zheng H G. et al. Flower-like cobalt nanocrystals by a complex precursor reaction route. Mater.Chem. Phys.,2005,91:293-297.
    [9]Lu Z W, Yao S M, Li G R. et al. Microstructure and electrochemical properties of the Co-BN composites. Electrochim. Acta.,2008,53:2369~2375
    [10]Zhang X N, Pan G L, Li G R, et al. Si-Si3N4 composites as anode materials for lithium ion batteries. Solid State Ionics,2007.178:1107~1112
    [11]Bard A J. Parsons R, Jordan J. Standard Potentials in Aqueous Solution, Marcel Dekker Inc., New York,1985
    [12]Cao Y L, Zhou W C, Li X Y, et al. Electrochemical hydrogen storage behavior of ultrafine Co-P particles prepared by directed ball-milling method Electrochim. Acta,2006.51: 4285~4290
    [13]Haran B S,Popov B N, White R E. Studies on Electroless Cobalt Coatings for Microencapsulation of Hydrogen Storage Alloys. J. Electrochem. Soc.,1998,145: 3000-3007
    [14]Senoh H. Ueda M. Furukawa N. et al. Theoretical evaluation for thermodynamic stability of constituents of Mm-based hydrogen storage alloy in 6M KOH solution at relatively high temperatures. J. Alloys Compd.,1998,280:114~124
    [15]Brusic V, Frankel G S, Schrott A G. et al. Corrosion Inhibition of Cobalt with a Thin Film of Cu-BTA. J. Electrochem. Soc.,1993,140:2507~2511
    [16]Wang L P,Lin Y M,Zeng Z X,et al. Electrochemical corrosion behavior of nanocrystalline Co coations explained by higher grain boundary density. Electrochim. Acta,2007,52: 4342~4350.
    [17]Elumalai P, Vasan H N, Munichandraiah N. Electrochemical studies of cobalt hydroxide-an additive for nickel electrodes. J. Power Sources,2001.93:201~208
    [18]Durairajan A, Haran B S, Popov B N, et al. Cycle life and utilization studies on cobalt microencapsulated AB5 type metal hydride. J. Power Sources,1999,83:114~120
    [19]Ambrosio R C. Ticianelli E A. Electrochemical and X-Ray Absorption Spectroscopy Studies of Cobalt Coatings on a Hydrogen Storage Alloy. J. Electrochem. Soc.,2003,150: E438-E443.
    [20]Pralong V, Delahaye-Vidal A. Beaudoin B. et al. Electrochemical Behavior of Cobalt Hydroxide Used as Additive in the Nickel Hydroxide Electrode. J. Electrochem. Soc.,2000, 147:1306~1313.
    [21]无机化学:上册.第三版.武汉大学吉林大学等编曹锡章等修订.高等教育出版,1986:506
    [22]Wang Y. Gao X P. Lu Z W. et al. Effects of metal oxides on electrochemical hydrogen storage of nanocrystalline LaMg12-Ni composites. Electrochim. Acta,2005.50:2187~2191.
    [23]Niessen R A H, Vermeulen P, Notten P H L. The electrochemistry of Pd-coated MgySc(1 thin film electrodes:A thermodynamic and kinetic study. Electrochim.Acta,2006.51: 2427~2436.
    [24]Ma T J, Hatano Y,Abe T, et al. Effects of bulk modification by Pd on electrochemcial properties of MgNi. J. Alloys Compd.2005,391:313~317
    [25]Guo Z P, Huang Z G, Konstantinov K, et al. Electrochemical hydrogen storage properties of nonstoichiometric amorphous MgNi1+x-carbon composites(x=0.05-0.3). Int. J. Hydrogen Energy,2006,31:2032~2039.
    [26]Wang F X, Gao X P, Lu Z W, et al. Electrochemical properties of Mg-based alloys containing carbon nanotubes. J. Alloys Compd.,2004,370:326~330.
    [27]Iwakura C, Inoue H, Nohara S, et al. Effects of surface and bulk modification on electrochemical and physicochemical characteristics of MgNi alloys. J. Alloys Compd., 2002,330:636~639.
    [28]Zander D, Lyubenova L, Koster U, et al. The catalytic effect of Nb2O5on the electrochemical hydrogenation of nanocrystalline magnesium. J. Alloys Compd.,2006,413:298-301.
    [29]Wang Y, Lu Z W, Wang Y L,et al. Electrochemcial hydrogen storage of ball-milled CeMg12 and PrMg12 alloys with Ni powders. J. Alloys Compd.,2006,421:236~239
    [1]Wu J B, Tu J P, Wang X L, et al. Synthesis of nanoscale CoO particles and their effect on the posotive electrodes of nickel-metal hydride batteries. Int. J. Hydrogen Energy,2007,32(5): 606~610
    [2]Palmas S, Ferrara F, Vacca A, et al. Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium. Electrochim. Acta,2007,53:400~406
    [3]Zheng M B, Cao J, Liao S T, et al. Preparation of mesoporous Co3O4 nanoparticles via solid-Liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. J. Phys. Chem. C,2009,113:3887~3894
    [4]Wang X, Yu L J, Wu X L, et al. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C,2009,113: 15553~15558
    [5]Liu Z P, Ma R Z, Osada M, et al. Selective and controlled synthesis of α-and β-cobalt hydroxides in highly developed hexagonal platelets.J. Am. Chem. Soc.,2005.127(40): 13869~13874
    [6]Lu Z W. Yao S M, Li G R. et al. Microstructure and electrochemical properties of the Co-BN composites. Electrochim. Acta.2008,53:2369-2375
    [7]Yao S M, Xi K. Li G R. et al. Preparation and electrochemical properties of Co-Si3N4 nanocomposites. J. Power Sources.2008.184:657~662
    [8]Haran B S. Popov B N, White R E. Studies on electroless cobalt coatings for microencapsulation of hydrogen storage alloys. J. Electrochem. Soc.,1998,145:3000-3007
    [9]Senoh H, Ueda M, Furukawa N, et al. Theoretical evaluation for thermodynamic stability of constituents of Mm-based hydrogen storage alloy in 6M KOH solution at relatively high temperatures. J. Alloys Compd.,1998,280:114~124
    [10]董桂霞,杜军,朱磊等.CoO作为电极材料的可能性.研究与设计.电源技术,2006.30(9):713-715
    [11]Oshitan M. Takayama T. Takashima K, et al. A study on the swelling of a sintered nickel hydroxide electrode. J Appl Electrochem,1986,16(2):403~412
    [12]Xiong S L,Yuan C Z. Zhang X G, Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem. Eur. J., 2009,15:5320~5326
    [13]Zhan F M, Geng B Y, Guo Y J, Porous Co3O4 Nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem. Eur. J.,2009,15(25):6169~6174
    [14]Chung S R, Wang K W, Sheen S R, et al. Electrochemical reduction and hydrogenation of Co Oxides. Electrochem. Solid-State Lett.,2007.10(7):A155~A158
    [1]Kohler U. Antonius C, Bauerlein P. Advances in alkaline batteries. J. Power Sources,2004, 127:45~52
    [2]Wang G J. Fu L.J. Zhao N H. et al. An Aqueous Rechargeable Lithium Battery with Good Cycling Performance. Angew. Chem. Int. Ed.,2007,46:295~297
    [3]Song H K. Palmore G T R. Redox-Active Polypyrrote:Toward Polymer-based Batteries. Adv. Mater.,2006,18:1764~1768
    [4]Notten P H L,Roozeboom F, Niessen R A H,et al.3-D Integrated All-Solid-State Rechargeable Batteries. Adv. Mater.,2007,19:4564~4567
    [5]Hu W K,Noreus D. Alpha Nickel Hydroxides as Lightweight Nickel Electrode Materials for Alkaline Rechargeable Cells. Chem. Mater.,2003.15:974~978
    [6]Elumalai P, Vasan H N, Munichandraiah N. Electrochemical studies of cobalt hydroxide— an additive for nickel electrodes. J. Power Sources,2001,93:201-208
    [7]Lu Z W, Yao S M, Li G R, et al. Microstructure and electrochemical properties of the Co-BN composites. Electrochim. Acta.2008,53:2369~2375
    [8]Yao S M Xi K, Li G R, et al. Preparation and electrochemical properties of Co-Si3N4 nanocomposites. J. Power Sourses,2008,184:657~662
    [9]Xu Z P, Zeng H C. Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds. Chem. Mater.,1999,11:67~74
    [10]Liu Z P, Ma R Z, Osada M, K. et al. Selective and Controlled Synthesis of α-and β-Cobalt Hydroxides in Higly Developed Hexagonal Platelets. J. Am. Chem. Soc.,2005,127: 13869~1378
    [11]Kamath P V, Therese G H A, Gopalakrishnan J. On the Existence of Hydrotalcite-Like Phases in the Absence of Trivalent Cations. J. Solid State Chem.1997,128:38-41
    [12]Wu Q D, Gao X P, Li G R,et al. Microstructure and Electrochemical Properties of Al-Substituted Nickel Hydroxides Modified with CoOOH. J. Phys. Chem. C,2007,111: 17082~17087
    [13]Haran B S, Popov B N,White R E,Studies on Electroless Cobalt Coatings for Microencapsulation of Hydrogen Storage Alloys. J. Electrochem. Soc.,1998,145: 3000~3007
    [14]Hu W K, Gao X P, Noreus D, et al. Evaluation of nano-crystal sized a-nickel hydroxide as an electrode material for alkaline rechargeable cells. J Power Sources,2006,160:704~710
    [15]Sugimoto A, lshida S, Hanawa K. Preparation and Characterization of Ni/Al-Layered Double Hydroxide. J Electrochem. Soc.,1999,146:1251~1255
    [16]Chen H, Wang J M,Zhao Y L, et al. Electrochemical performance of Zn-substituted Ni(OH)2 for aklaline rechargeable batteries. J. Solid State Electrochem.,2005.6:421~428
    [17]Liu B. Yuan H T, Zhang Y S. Impedance of Al-substituted α-nickel hydroxide electrodes. Int. J. Hydrogen Energy,2004,29:453~458
    [18]Brock T, Stopford W. Bioaccessibility of metals in human health assessment:Evaluating risk from exposure to cobalt compounds. J. Environ. Monit.,2003,5:71N~76N.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700