用户名: 密码: 验证码:
ITO、AZO靶材用纳米粉体的制备与Ⅲ-Ⅴ族半导体合金薄膜的生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文“ITO、AZO靶材用纳米粉体的制备与III-V族半导体合金薄膜的生长研究”,在所进行的课题研究上分为两个主要方向:批量分别制备ITO靶材与AZO靶材用的SnO2、In2O3与ZnO纳米粉体和采用固态源分子束外延技术生长三元半导体合金薄膜的热力学研究。论文的主要内容分为透明导电氧化物薄膜及其陶瓷靶材、ITO靶材用纳米粉体的制备及工艺优化、AZO靶材用ZnO纳米粉体的制备及工艺优化、SSMBE生长III-V族半导体合金薄膜的研究四个部分。取得的主要成果和结论如下:
     1、利用高压反应釜水热法制备出ITO靶材用SnO2纳米粉体。系统研究了在批量(0.5kg/批)制备粉体的条件下,各项工艺参数:反应溶液浓度、前驱体溶液的pH值、水热反应温度、釜内反应最高压力以及水热反应时间等对于SnO2纳米粉体粒径、形貌以及晶型的影响,从而得到优化的制备工艺参数。发现了与文献报道中不同的现象:在保持反应最高压力恒定的情况下,水热反应温度对粒径的影响存在一个转变点(220℃),当反应温度低于220℃时,晶粒度会随着温度升高变大;当反应温度高于220℃时,随着温度升高其晶粒度反而呈现下降的趋势。水热反应时间也存在一个敏感点(12h),当反应时间低于12h时,随着反应时间的增加,SnO2开始成核并逐渐长大,晶粒度随着时间的增加而增大;当反应时间进一步增加到12h后,晶粒度随着时间的延长而变小。
     2、利用高压反应釜采用水热法对In2O3纳米粉体进行了批量制备工艺的研究,确定了利用水热法制得的中间产物In(OH)3经过高温烧结后得到In2O3纳米粉体的基本工艺。通过调整烧结温度,得到适宜的并能与SnO2粉体相匹配的In2O3纳米粉体,为粉体的进一步烧结以及制备ITO靶材奠定基础。
     3、采用直接沉淀化学法制备了AZO靶材用ZnO纳米粉体。结合XRD、SEM等粉体表征手段,对采用不同锌盐原料、反应溶液浓度、溶剂中乙醇的含量、煅烧温度等工艺条件对ZnO的粒径、形貌和晶型的影响进行了综合比较研究,并得到优化的制备工艺参数。
     4、采用固态源分子束外延技术生长III-V族半导体合金薄膜材料,建立了三元化合物的热力学理论模型,将晶格应变能和温度对吸附和脱附的影响这两个参数因子引入模型中,推导出束流、生长温度和组分在MBE生长过程中的相互关系,并根据实验生长数据模拟出所建模型的具体参数值。通过计算拟合得到的理论曲线与实验数据得到较好的吻合。该热力学模型对后续的III-V族半导体薄膜材料的生长具有一定的指导意义。
This dissertation is focused on the preparations of ITO and AZO tagetnanopowders and the growth of III-V semiconductor alloy films, which is dividedinto two main directions. One is the preparations of large-scale SnO2and In2O3nanopowders for ITO target materials and ZnO nanopowders for AZO. The other isthe thermodynamic alalysis of ternary semiconductor alloys grown by SSMBE. Thereare four main parts in this work: the summaries of transparent conductive oxide thinfilm target materials; the preparations and process optimizations of ITO nanopowders;the preparations and process optimizations of AZO nanopowders; the study of III-Vsemiconductor alloy compounds grown by SSMBE. In the following, the primaryachievements in this dissertation are described.
     1. SnO2nanopowders of ITO target materials have been prepared byhydrothermal method with an autoclave. In the case0.5kg/batch production, theeffects of synthesis conditions including concentration of initial solution, pH value ofprecursor solution, reaction temperature, maximum pressure and reaction time ongrain size, particle morphology and crystal structure have been systematically studied.Unlike previous reports, some unusual dependences of the grain size of SnO2onreaction temperature and time have been found. There is a transition point (220℃) inreaction temperature effect on the production grain sizes. When the temperature isbelow220℃,grain sizes become larger with the temperature rising; when it is above220℃, on the opposite, grain sizes become smaller with the temperature rising. Andthere is also a transition point (12h) in reaction time effect. When the time is less than12h, SnO2particles begin to nucleate and grow up with the time rising; when the timeis more than12h, grain sizes become smaller with the time rising opposite.
     2. The batch preparations of In2O3nanopowders have been studied byhydrothermal method with an autoclave. The results show that the synthetic powdersby hydrothermal method are In(OH)3, and the hydroxides will be transformed intoIn2O3after sintering. By adjusting the sintering temperature, In2O3nanopowders canbe matched with SnO2nanopoeders, which lays the foundation for further sintering of the powder targets.
     3. ZnO nanopowders of AZO target materials have been prepared by directprecipitation method. The powders are characterized by means of X-ray diffractionand Scanning electron microscopy. The effects of synthesis conditions includingdifferent zinc salts as precursor, concentration of initial solution, solvent mixeddifferent proportions of ethanol and sintering temperature on grain size, particlemorphology and crystal structure have been systematically studied.
     4. A thermodynamic model for solid source molecular beam epitaxy growth ofternary III-V semiconductor alloys has been established. The energy of lattice strainand the decomposition of group-V element are both incoporated into this model, anda clear relational expression among growth temperature, flux ratio and alloycomposition is derivated. The calculation results are presented as well as comparisonswith existing experimental data. This setup model has some directions for the growthof other III-V semiconductor thin film materials.
引文
[1]王华.特色功能材料——透明导电氧化物薄膜[J].材料导报,2005,19(11):101-104.
    [2] Vossen J L, Hass G, Francombe M H, et al. Physis of thin films [M]. New York: AcademicPress,1977:79~99.
    [3] Gordon R G. Preparation and properties of transparent conductors [J]. Materials ResearchSociety Symposium. Proceedings,1996,426:419-424.
    [4] Schuler T, Aegerter M A. Optical, electrical and structural properties of Sol-Gel ZnO: Alcoatings [J]. Thin Solid Films,1999,351:125-131.
    [5]范志新.应用物理学科新专业——液晶器件物理[J].物理,2000,29(11):688-691.
    [6]王敏,蒙继龙.透明导电氧化物薄膜的研究进展[J].表面技术,2003,32(1):5-7.
    [7]吕建国,汪雷,叶志镇,等. ZnO薄膜应用的最新研究进展[J].功能材料与器件学报,2002,8(3):303-308.
    [8]李世涛,乔学亮,陈建国.透明导电薄膜的研究现状及应用[J].激光与光电子学进展,2003,40(7):53-59.
    [9]张维佳,王天民,糜碧,等.纳米ITO粉末及高密度ITO靶制备工艺的研究现状[J].稀有金属材料与工程,2004,33(5):449-453.
    [10]张雪凤,潘震,王政红,等.电弧气化法制备纳米ITO粉末及高密度ITO靶的研制[J].材料开发与应用,2009,24(3):1-3,7.
    [11]许积文,王华,任明放,等.高密度与低电阻率ZnO:Al靶材的制备及缺陷分析[J].功能材料,2007,38(9):1457-1458,1463.
    [12]刘心宇,李海麒,江民红.常压固相烧结法制备ZAO靶材极其性能的研究[J].湖南科技大学学报(自然科学版),2008,23(1):27-30.
    [13]赵静,刘丽杰,蔡宁,等.掺杂量对ZnO陶瓷靶材性能影响的研究[J].人工晶体学报,2009,38(3):772-776.
    [14]王星明,白雪,段华英,等. AZO热压靶材的制备及性能表征研究[J].稀有金属,2011,35(3):398-403.
    [15]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997:166-261.
    [16]刘军,佘正国.粉末冶金与陶瓷成型技术[M].北京:化学工业出版社,2005:51-120.
    [17] Bates J L, Griffin C W, Marchant D D, et al. Electrical conductivity, seebeck coefficient andstructure of In2O3-SnO2[J]. American Ceramic Society Bulletin,1986,65:673-678.
    [18] Nadaud N, Lequeux N, Nanot M, et al. Structural studies of tin-doped indium oxide (ITO)and In4Sn3O12[J]. Journal of Solid State Chemistry,1998,135:140-148.
    [19]朱归胜,徐华蕊.高密度氧化铟锡(ITO)靶材的制备研究[J].云南大学学报,2007,29(6):601-606.
    [20]刑朋飞,邢伟,王政红,等. ITO靶材的微观结构分析[J].功能材料,2008增刊,39:258-260.
    [21]马晓波.透明导电薄膜用ITO靶材的制备工艺与微观组织/性能关系研究:[硕士学位论文].银川:宁夏大学,2011.
    [22]李晓杰,张越举.爆炸压实烧结ITO陶瓷靶材的实验研究[J].稀有金属材料与工程,2005,34(3):417-420.
    [23]李晓杰,张越举,王金相,等. ITO纳米粉末爆炸压实烧结致密化陶瓷靶材研究[J].材料科学与工程学报,2004,22(1):12-14.
    [24]张树高,扈百直,吴义成,等.铟锡氧化物陶瓷靶材热等静压致密化研究[J].功能材料,2000,31(4):383-384.
    [25]钟毅,王达健,刘荣佩.铟锡氧化物靶材的应用及管状靶材的爆炸成形[J].稀有金属材料与工程,1997,4(26):60-63.
    [26]唐立丹,顾有松,张跃,等.锂掺杂ZnO陶瓷靶材制备及其掺杂引起的缺陷[J].物理化学学报,2008,24(9):1597-1601.
    [27]高橋誠一郎.酸化インジウムー酸化錫粉末及びそれを用いたスバッタリングターゲット並びに酸化インジウムー酸化錫粉末の製造方法.日本专利,20078752,2007.
    [28]刘黎明,杨培志,莫镜辉. ITO靶材黑化物的X射线光电子能谱分析[J].光学与光电技术,2009,(75):84-86.
    [29]郭青尉,李月南,华志强,等.YBCO高温超导靶材制备工艺研究[J].稀有金属,1994,18(3):194-198.
    [30] Nakashima K, Kumahara Y. Effect of tin oxide dispersion on nodule formation in ITOsputtering [J]. Vacuum,2002,66:221-226.
    [31] Fujita, Kobayashi, Itozaki, et al. Process for preparing superconducting material. EuropePatent,292340.1994.
    [32] Kentaro U, Osamu M, Tsutomu T, et al. Low resistivity ITO films prepared using the ultrahigh density ITO target [J]. Thin Solid Films,1998,334:30-34.
    [33]李锦桥. ITO靶材的发展现状[J].新材料产业,2000,11(12):35-37.
    [1]王树林,夏冬林. ITO薄膜的制备工艺及进展[J].玻璃与搪瓷,2004,32(5):51-54.
    [2] J Robertson. Electronic structure of SnO2, GeO2, PbO2, TeO2and MgF2[J]. Journal ofPhysics. C: Solid State Physics.1979,12:4767-4776.
    [3] Quaas M, Eggs C, Wulff H. Structural study of ITO thin films with the rietveld method [J].Thin Solid Films,1998,332:277-281.
    [4]江锡顺. ITO透明导电薄膜的组分、微结构及其光电特性研究:[硕士学位论文].合肥:安徽大学,2006.
    [5]段学臣,陈振华,周立.超细氧化铟-氧化锡(ITO)复合粉末的研制与结构特性[J].稀有金属.1998,22(5):396-399.
    [6]李风光,刘东平,邓培,等.纳米级球形In2O3(SnO2)粉末的制备及性能研究[J].稀有金属与硬质合金,1999,138(3):15-17.
    [7] Nimai C P, Sukhen D, Prasanta K B. The effect of Sn(IV) on transformation ofco-precipitated hydrated In(III) and Sn(IV) hydroxides to indium tin oxide (ITO) powder [J].Material Letters,2002,56:671-679.
    [8] Douglas M M. Sol-gel detived, air-baked indium and tin oxide films [J]. Thin Solid Films,1991,204:25-32.
    [9] Motoyuki T, Mamoru A. Sol-gel formation of ITO thin flm from a sol including ITO powder[J]. Journal of Sol-Gel Science and Technology.1997,8:717-720.
    [10] Yanagisawa K,Udawatte C P. Preparation and characterization of fine indium tin oxidepowders by hydrothermal treartment and postannealing method [J]. Journal of MaterialsResearch,2000,15(6):1404-1408.
    [11]朱归胜,徐华蕊,廖春图.单分散纳米氧化铟锡粉末的水热合成[J].无机材料学报,2005,20(2):479-483.
    [12] Hiratsuka, R S, Pulcinelli S H, Santilli C V. Formation of SnO2gels from dispersed sols inaqueous colloidal solution [J]. Journal of Non-Crystal Solids,1990,121:76-83.
    [13] Shek C H, Lai J K L, Lin G. M. Grain growth in nanocrystalline SnO2prepared by sol-gel route[J]. Nanostructured Materials,1999,11:887-893.
    [14] Shiomi H, Kakimoto C, Nakahira A. Preparation of SnO2monolithic gel by sol-gel method [J].Journal of Sol-Gel Science and Technology,2000,1999:759-763.
    [15] Takenaka S, Takahashi R, Sato S, et al. Pore size control of mesoporous SnO2prepared byusing stearic acid [J]. Microporous and Mesoporous Materials,2003,59:123-131.
    [16] Ardizzone S, Cappelletti G, Ionita M, et al. Low-temperature sol–gel nanocrystalline tin oxideIntegrated characterization of electrodes and particles obtained by a common path [J].Electrochimica Acta,2005,50:4419-4425.
    [17] Shimizu Y, Jono A, Hyodo T, et al. Preparation of large mesoporous SnO2powder for gassensor application [J]. Sensors and Actuators B,2005,108:56-61.
    [18]古凤才,赵竹萱,李英慧,等.表面修饰二氧化锡纳米微晶的制备与表征[J].物理化学学报,2003,19(7):621-625.
    [19] Zhang J R, Gao L. Synthesis and characterization of nanocrystalline tin oxide by sol gelmethod [J]. Journal of Power Sources,2004,117:1425-1430.
    [20] Lu F, Chen S Y, Peng S Y. Ultrafine SnO2prepared by supercritical fluid drying technique(SCFDT) for gas sensors [J]. Catalysis Today,1996,30:183-188.
    [21]陆凡,陈诵英,彭少逸. SnCl2制备超细二氧化锡及其表征[J].燃烧化学学报,1997,25(4):294-298.
    [22]王建,里敦钫,管洪涛.超声波-溶胶-凝胶法制备纳米二氧化锡粉末[J].云南冶金,2002,31(4):42-44.
    [23]贺蕴普,李亚栋,李龙泉,等.纳米SnO2的制备[J].应用化学,1998,15(6):92-93.
    [24] Baik N, Sakai G, Miura N, et al. Preparation of stabilized nanosized tin oxide particles byhydrothermal treatment [J]. Journal of American Ceramic Society,2000,83:2983-2987.
    [25]杨幼平,张平民,张永龙,等.水热法制备超细均匀二氧化锡粉体[J].铜业工程,2004(4):23-25.
    [26]王东新,钟景明,孙本双,等.水热合成法对纳米氧化锡粉体粒径和形貌的控制研究[J].无机化学学报,2008,24(6):892-896.
    [27]刘冬,施哲,朱云.凝胶水热法制备纳米二氧化锡[J].云南冶金,2003,32(1):26-29.
    [28] Pires F I, Joanni E, Savu R, et al. Microwave-assisted hydrothermal synthesis ofnanocrystalline SnO powders [J]. Materials Letters,2008,62:239-242.
    [29] Bose A C, Kalpana D, Thangadurai P, et al. Synthesis and characterization of nanocrystallineSnO2and fabrication of lithium cell using nano-SnO2[J]. Journal of Power Sources,2002,107:138-141.
    [30] Song K C, Kang Y. Preparation of high surface area tin oxide powders by a homogeneousprecipitation method [J]. Material Letters,2000,42:283-289.
    [31] Acarbas O, Ender S, Ayd n D. Preparation of nanosized tin oxide (SnO2) powder byhomogeneous precipitation [J]. Ceramics International,2007,33:537-542.
    [32] Ibarguen C A, Mosquera A, Parra R, et al. Synthesis of SnO2nanoparticles through thecontrolled precipitation route [J]. Materials Chemistry and Physics,2007,101:433-440.
    [33]杨林宏,张建成,沈悦.分散剂对纳米相二氧化锡制备的影响[J].上海大学学报(自然科学版),2002,8(3):209-212.
    [34]张晓顺,邱竹贤,翟秀静,等.超声波一化学沉淀法制备纳米二氧化锡[J].东北大学学报(自然科学版),2005,26(4):265-267.
    [35]潘庆谊,徐甲强,刘宏民,等.微乳液法纳米SnO2材料的合成、结构与气敏性能[J].无机材料学报,1999,14(1):83-89.
    [36]张义华,张景新,王学勤,等.二氧化锡纳米粒子的制备及表征[J].大连理工大学学报,2000,40(1):64-66.
    [37] Song K C, Kim J H. Preparation of nanosize tin oxide particles from water-in-oilmicroemulsions [J]. Journal of Colloid and Interface Science,1999,212:193-196.
    [38] Song K C, Kim J H. Synthesis of high surface area tin oxide powders via water-in-oilmicroemulsions [J]. Powder Technology,2000,107:268-272.
    [39] Chen D L, Gao L. Novel synthesis of well-dispersed crystalline SnO2nanoparticles bywater-in-oil microemulsion-assisted hydrothermal process [J]. Journal of Colloid andInterface Science,2004,279:137-142.
    [40]段学臣,甘亮珠.纳米氧化锡的制备与结构特性[J].湖南大学学报(自然科学版),1999,26(4):54-57,62.
    [41] Bhagwat M, Shah P, Ramaswamy V. Synthesis of nanocrystalline SnO2powder by amorphouscitrate route [J]. Material Letters,2003,57:1604-1611.
    [42] Cirera A, Vila A, Cornet A, et al. Properties of nanocrystalline SnO2obtained by means of amicrowave process [J]. Materials Science and Engineering: C,2001,15:203-205.
    [43] Zhu J J, Zhu J M, Liao X H, et al. Rapid synthesis of nanocrystalline SnO2powders bymicrowave heating method [J]. Material Letters,2002,53:12-19.
    [44] Jouhannaud J, Rossignol J, Stuerga D. Rapid synthesis of tin (IV) oxide nanoparticles bymicrowave induced thermohydrolysis [J]. Journal of Solid State Chemistry,2008,181:1439-1444.
    [45]郭金玲,沈岳年.用Scherrer公式计算晶粒度应注意的几个问题[J].内蒙古师范大学学报(自然科学汉文版),2009,38(3):357-358.
    [46] Fan W L, Zhao W, You L P, et al. A simple method to synthesize single-crystalline lanthanideorthovanadate nanorods [J]. Journal of Solid State Chemistry,2004,177:4399-4403.
    [1] Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO [J].Progress in Materials Science,2005,50:293-340.
    [2] Izyumskaya N, Avrutin V, zgürü, et al. Preparation and properties of ZnO and devices [J].Physica Status Solidi (b),2007,244:1439-1450.
    [3] Albrecht J D, Ruden P P, Limpijumnong S, et al. High field electron transport properties ofbulk ZnO [J]. Journal of Applied Physics,1999,86:6864~6867.
    [4] Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO [J]. PhysicalReview Letters,1999,82:2552-2555.
    [5] Bamiduro O, Mustafa H, Mundle R, et al. Metal-like conductivity in transparent Al: ZnOfilms [J]. Applied Physics Letters,2007,90:252108-252111.
    [6] Kim T H, Jeong S H, Kim I S, et al. Magnetron sputtering growth and characterization ofhigh quality single crystal Ga-doped n-ZnO thin films [J]. Semicondtor Science andTechnology,2005,20: L43-L46.
    [7] Wang Z L, Song J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J].Science,2006,312:242-246.
    [8] Niyom H, Ekasiddh W, Teerakiat K, et al. Sensor response formula for sensor based on ZnOnanostructures [J]. Sensors and Actuators B: Chemical,2010,144:67-72.
    [9] Dietl T, Ohno H, Matsukura F, et al. Zener Model Description of Ferromagnetism inZinc-Blende Magnetic Semiconductors [J]. Science,2000,287:1019-1022.
    [10] Kittilstved K R, Norberg N S, Gamelin D R. Chemical Manipulation of High-TCFerromagnetism in ZnO Diluted Magnetic Semiconductors [J]. Physical Review Letters,2005,94:147209-147204.
    [11]黄树来,马瑾,刘晓梅,等. ZnO-SnO2透明导电膜的低温制备及性质[J].半导体学报,2004,25(1):56-59.
    [12]施昌勇,沈克明.溅射电压和铝掺杂对透明导电氧化锌薄膜性能的影响[J].稀有金属,2000,24(2)154-156.
    [13] Aktaruzzaman A F, Sharma G L, Malhotra L K. Electrical, optical and annealingcharacteristics of ZnO:Al films prepared by spray pyrolysis [J]. Thin Solid Films,1991,198:67-74.
    [14]祖庸,雷闫盈,王训,等.纳米ZnO的奇妙用途[J].化工新型材料,1999,27(3):14-16.
    [15]张伟,王凤珠.利用立式震动磨制备超细粉的研究[J].功能材料,1997,28(5):511-513.
    [16] Tsuzuki T, McCormict P G. ZnO nanoparticles synthesized by mechanochemical processing[J]. Scripta Materialia,2011,44:1731-1734.
    [17]王国平,石晓波,汪德先.室温固相反应制备纳米氧化锌[J].合肥工业大学学报,2002,25(1):32-35.
    [18]余磊,邹贵田.微波诱导固-固相反应合成纳米氧化锌[J].贵州师范大学学报(自然科学版),2004,22(4):78-80.
    [19] Prasad V, D’Souza C, Yadav D, et al. Spectroscopic characterization of zinc oxide nanorodssynthesized by solid state reaction [J]. Spectrochimica Acta Part A,2006,65:173-178.
    [20] Chu Shenyuan, Yan T. Characteristics of sol-gel synthesis of ZnO-based powders [J]. Journalof Material Science Letters,2000,19:349-352.
    [21]刘素琴,黄可龙,宋志方,等. Sol-gel法制备ZnO压敏陶瓷及其电性[J].无机学报,2002,15(2):376-380.
    [22]李强,高濂,栾伟玲,等.纳米ZnO制备工艺中电位于分散性的关系[J].无机材料学报,1999,14(5):813-817.
    [23] Jing Liqiang, Xu Zili, Sun Xiaojun. The surface properties and photocatalytic activities ofZnO ultrafine particles [J]. Applied Surface Science,2001,180:308-314.
    [24]李栋梁,董峰亮,邹炳锁.直接沉淀法制备纳米ZnO[J].化工新型材料,2002,30(6):47-49.
    [25]刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体[J].无机材料学报,1999,14(3):391-396.
    [26]张绍岩,丁士文,刘淑娟,等.均相沉淀法合成纳米ZnO及其光催化性能研究[J].化学学报,2002,60(7):1225-1229.
    [27]王卓,钱雪峰,朱子康,等.单分散无团聚及强紫外吸收的纳米氧化锌的制备方法[J].中国专利,1562762.2005.
    [28] Lu C, Yeh C. Influence of hydrothermal conditions on the morphology and particle size ofzinc pxide powder [J]. Ceramics Internional,2000,26:351-357.
    [29] Wu L L, Wu Y S, Lu W. Preparation of ZnO nanorods and optical characterization [J].Physica E,2005,28:76-82.
    [30] Fan L B, Song H W, Li T, et al. Hydrothermal synthesis and photoluminescent properties ofZnO nanorods [J]. Journal of Luminescence,2007,122:819-821.
    [31] Hingorani S, Pillai V, Kumar P. Microemulsion mediated synthesis of zinc-oxidenanoparticles forvaristor studies [J]. Materials Research Bulletin,1993,28:1300-1310.
    [32]何秋星,刘蕤,杨华,等.微乳液法制备纳米ZnO粉体[J].甘肃工业大学学报,2003,29(3):72-75.
    [33] Wu Run, Wu Jun, Xie Changsheng, et al. Morphological characteristic of ZnO/ZnOnanopowders and the optical properties [J]. Materials Science and Engineering:A,2002,328:196-200.
    [34] Tomokiyo Y, Takoshi M, Tanaka E. Shape and structure of zinc oxide particles prepared byvapor phase oxidation of zinc vapor [J]. Journal of American Ceramic Society,1988,71:391-395.
    [35]赵新宇,郑柏存,李春忠,等.喷雾热解合成ZnO超细粒子工艺及机理研究[J].无机材料学报,1996,11(4):611-616.
    [36]李晓娥,樊安,祖庸.纳米级氧化锌的研究进展[J].现代化工,2000,20(7):23-36.
    [37]俞建群,贾殿赠,郑毓峰.纳米氧化镍、氧化锌的合成新方法[J].无机化学学报,1999,15(1):95-98.
    [38]张永康,刘建本,易保华,等.常温固相反应合成纳米氧化锌[J].精细化工,2000,17(6):43-34.
    [39]石晓波,李春根,汪德先,等.制备纳米氧化锌的新方法[J].合成化学,2002,10(2):183-185.
    [40]王国平,石晓波,汪德先,等.室温固相反应制备纳米氧化锌[J].合肥工业大学学报(自然科学版),2002,25(1):32-35.
    [41]黄志明,刘建斌,许民.纳米氧化锌的固相合成[J].化工新型材料,2003,31(12):35-37.
    [42]林元平,南策文,邓元.一种纳米ZnO粉体的合成方法.中国专利,1410354.2003.
    [43]李东升,史振民,秦振平,等.前体法制备纳米ZnO[J].吉首大学学报(自然科学版),2001,22(1):75-77.
    [44]佘云川,张会臣,刘世永,等.ZnO纳米微粒的制备与表征[J].大连海事大学学报,2002,25(3):93-96.
    [45]卢晓蓉,徐国跃,王岩,等.纳米ZnO的制备及红外发射率研究[J].南京航空航天大学学报,2003,35(5):464-467.
    [46]尚汴卿,陆兆仁,袁琴华.纳米氧化锌晶体的制备与光催化性质[J].东华大学学报(自然科学版),2004,30(5):29-33.
    [47]曹建明.溶胶一凝胶法制备ZnO微粉及其电学性质[J].应用化工,2005,34(5):285-287.
    [48]刘超锋,祖庸,陈晓东,等.纳米氧化锌的制备与研究[J].化工新型材料,1995,23(11):13-15.
    [49]雷闫盈,李晓娥,祖庸,等.沉淀法制备纳米氧化锌的研究[J].陕西化工,2000,29(1):16-19.
    [50]祖庸,李晓娥,樊安,等.沉淀法制备纳米氧化锌的研究[J].西北大学学报(自然科学版),2001,31(3):232-234.
    [51]李国栋,李本林,陈晓熠,等.无团聚纳米氧化锌的制备与机理研究[J].中国陶瓷,2003,39(4):6-9.
    [52]徐华军,朱振中,陈烨璞.沉淀法制备纳米ZnO超细粉体[J].无锡轻工大学学报,2001,20(2):174-176,185.
    [53]丁士文,张绍岩,刘淑娟,等.直接沉淀法制备纳米ZnO及其光催化性能[J].无机化学学报,2002,18(10):1015-1019.
    [54]冯勋,张旭东,张峻,等.活性纳米ZnO的制备[J].河南化工,2003,20(4):19-21.
    [55]李茂琼,顾应龙.纳米氧化锌粉体的合成[J].大理学院学报,2004,3(3):77-79.
    [56]李长全,罗小玲,傅敏恭.直接沉淀法制备纳米ZnO及其抗菌试验的研究[J].化工新型材料,2005,33(5):55-57.
    [57]闫晓燕,卫英慧,胡兰青,等.纳米ZnO粉体的制备及其表征[J].太原科技大学学报,2005,26(3):224-227.
    [58]高濂,王金敏.一直经改进的沉淀法制备纳米氧化锌粉体的方法.中国专利,1460643.2003.
    [59]祖庸,刘超锋,李晓娥,等.均匀沉淀法合成纳米氧化锌[J].现代化工,1997,17(9):33-35.
    [60]李晓奇,高首山,王开明,等.纳米ZnO粉体的制备[J].鞍山钢铁学院学报,2001,24(2):110-111.
    [61]许宗祥,张健,林敬东,等.纳米ZnO粉体的制备及其影响因素[J].厦门大学学报(自然科学版),2002,41(4):472-475.
    [62]秦秀娟,邵光杰,李慧,等.高品质纳米氧化锌粉体的制备及其表征[J].燕山大学学报,2002,26(2):236-238,241.
    [63]史文峰,刘献明,吴涛,等.纳米ZnO的制备及其物理表征[J].新疆有色金属,2003,(增刊):48-50.
    [64]李东英,安黛宗,刘珩.均匀沉淀法制备纳米氧化锌和片状氧化锌粉体[J].云南化工,2003,30(3):37-39.
    [65]陈传志,周祚万.纳米氧化锌的制备及其中红外、紫外一可见光吸收特性[J].功能材料,2004,35(1):97-99.
    [66]丁士文,张绍岩,刘树娟,等.水热合成纳米ZnO及其光催化性能研究[J].河北大学学报(自然科学版),2002,22(3):246-249.
    [67]何顺爱,周双喜,张兰,等.水热沉淀法制备ZnO纳米粉体[J].桂林工学院学报,2004,24(1):80-83.
    [68]吴莉莉,吕伟,伦宁,等.纳米氧化锌的制备与光学性能表征[J].山东大学学报(工学版),2005,35(2):1-4.
    [69]徐甲强,潘庆谊,孙雨安,等.纳米氧化锌的乳液合成、结构表征与气敏性能[J].无机化学学报,1998,14(3):355-359.
    [70]崔若梅,张文礼,徐中理,等.纳米氧化锌的制备与表征[J].化学世界,1999.40(12):630-633.
    [71]颜肖慈,余林颇,罗春霞,等.纳米氧化锌微乳液法的研制和表征[J].十堰职业技术学院学报,2002,15(2):67-68.
    [72]何秋星,刘蕤,杨华,等.微乳液法制备纳米ZnO粉体[J].甘肃工业大学学报,2003,29(3):72-75.
    [1] Poek C K, Yan B P, Yang E S. InGaP/GaAs HBT power amplifier with CMRC structure [J].Microwave and Optical Technology Letters,2005,46:84-88.
    [2] Feng M, Holonyak N, Chan R, Quantum-well-base heterojunction bipolar light-emittingtransistor [J]. Applied Physics Letters,2004,84:1952-1954.
    [3] McGill L, Wu J W, Fitzgerald E A. Yellow-green strained-InGaP quantum-wellepitaxial-transparent-substrate light emitting diodes [J]. Journal of Applied Physics,2004,95:7561-7566.
    [4] Wang H C, Su Y K, Lin C L, et al. Improvement of AlGaInP multiple-quantum-welllight-emitting diodes by modification of ohmic contact layer [J]. Japanese Journal of AppliedPhysics,2004,43:1934-1936.
    [5] Olson J M, Kurtz S R, Kibbler A E, et al. A27.3%efficient Ga0.5In0.5P/GaAs tandem solarcell [J]. Applied Physics Letters,1990,56:623-625.
    [6] Tatsuya T, Eiji I, Hiroshi K. Over30%efficient InGaP/GaAs tandem solar cells [J]. AppliedPhysics Letters,1997,70:381-383.
    [7] Wolfgang G, Jan S, Simon P P, et al. Current-matched triple-junction solar cell reaching41.1%conversion efficiency under concentrated sunlight [J]. Applied Physics Letters,2009,94:223504-223507.
    [8] Wei Y Q, Wang S M, Wang X D, et al. Long-wavelength InGaAs/GaAs quantum-well lasersgrown by molecular beam epitaxy [J]. Journal of Crystal Grown,2005,278:747-750.
    [9] Li N, Guo F M, Zhen H L, et al. Detection wavelengths and photocurrents of very longwavelength quantum-well infrared photodetectors [J]. Infred Physics&Technology,2005,47:29-36.
    [10] Foxon C T, Joyce B A. Interaction kinetics of As2and Ga on {100} GaAs surfaces [J].Surface Science,1977,64:293-304.
    [11] Foxon C T, Joyce B A. Surface processes controlling the growth of GaxIn1xAs and GaxIn1xPalloy films by MBE [J]. Journal of Crystal Growth,1978,44:75-83.
    [12] Dong Jianrong, Wang Zhanguo, Liu Xianglin, et al. Photoluminescence of orderedGa0.5In0.5P grown by metalorganic vapor phase epitaxy [J]. Applied Physics Letters,1995,67:1573-1575.
    [13] Seki H, Koukitu A. Thermodynamic analysis of molecular beam epitaxy of III–Vsemiconductors [J]. Journal of Crystal Growth,1986,78:342-352.
    [14] Hou H Q, Liang B W, Chin T P, et al. In situ determination of phosphorus composition inGaAs1xPx grown by gas-source m olecular beam epitaxy [J]. Applied Physics Letters,1991,59:292-294.
    [15] Ivanov S V, Kop'ev P S, Ledentsov N N. Thermodynamic analysis of segregation effects inmolecular beam epitaxy [J]. Journal of Crystal Growth,1990,104:345-354.
    [16] Cunningham J E, Santos M B, Goossen K W, et al. Dimerization induced incorporationnonlinearities in GaAsP [J]. Applied Physics Letters,1994,64:2418-2420.
    [17] Ivanov S V, Sorokin S V, Kop'ev P S, et al. Composition, stoichiometry and growth ratecontrol in molecular beam epitaxy of ZnSe based ternary and quaternary alloys [J]. Journalof Crystal Growth,1996,159:16-20.
    [18] Turco F, Massies J. Strain-induced In incorporation coefficient variation in the growth ofAl1-xInxAs alloys by molecular beam epitaxy [J]. Applied Physics Letters,1987,51:1989-1991.
    [19] Egorov A Y, Kovsh A R, Ustinov V M, et al. A thermodynamic analysis of the growth ofIII-V compounds with two volatile group V elements by molecular beam epitaxy [J]. Journalof Crystal Growth,1998,188:69-74.
    [20] Yangqiu L, Akinori K, Hisashi S. Thermodynamic analysis of InxGa1-xN growth conditions inmolecular beam epitaxy [J]. Journal of Applied Physics,2000,88:571-575.
    [21] Hao Zhibiao, Ren Zaiyuan, Wen Peng, et al. Studies on incorporation of As2and As4in III-Vcompound semiconductor with two group V elements grown by molecular beam epitaxy [J].Journal of Crystal Growth,2001,224:224-229.
    [22] Wang Y Q, Wang Z L, Brown T, et al. Thermodynamic analysis of anion exchange duringheteroepitaxy [J]. Journal of Crystal Growth,2002,242:5-14.
    [23] Ilegems M, Panish M B, Arthur J R. Phase equilibria and vapor pressures in the Ga+Psystem [J]. The Journal of Chemical Thermodynamics,1974,6:157-177.
    [24] Panish M B, Arthur J R, Phase equilibria and vapor pressures of the system In+P [J]. TheJournal of Chemical Thermodynamics,1970,2:299-318.
    [25] Hasen hrl S, Kúdela R, Novák J, et al. Anisotropic surface structure in ordered strainedInGaP [J]. Materials Science and Engineering B,2002,88:134-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700