用户名: 密码: 验证码:
W/WC粉末的形貌结构及其对WC-Co硬质合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,研发WC-Co硬质合金新型的粉末制备方法和烧结技术以开发高性能的超细/纳米或具有特殊微结构的硬质合金材料受到了广泛的重视,但关于粉末形貌结构对材料性能的影响还缺乏深入的研究。为此,本论文研究了W/WC粉末的形貌结构及其对WC-Co硬质合金组织和性能的影响。
     本论文通过对比分析不同氧化钨原料对W、WC粉末的形貌结构,尤其是晶粒聚集、均匀性的影响,开发出工业化的高效、可控的制备均匀纳米WC粉末的低成本工艺路线,制备出综合性能优良的WC-Co超细晶粒硬质合金;通过研究“高温还原-高温碳化”生产的中颗粒WC粉的形貌结构对其合金性能的影响,制备出具有显微组织均匀、WC硬质相尺寸适中、综合性能优良的低钴WC-Co硬质合金;通过研究不同氧化钨原料制备的不同形貌结构的W粉末对其扁平化程度及其WC-Co合金WC晶粒板晶化的影响,制备出板晶硬质合金。本论文得到了以下创新性研究成果。
     采用黄钨(YTO)为原料,制备了不同价态的氧化钨及纳米W粉末,同时将所获取的纳米W粉置于惰性气体中于不同温度分别保温不同时间,研究了氧化钨的相变过程中形貌结构的变化,探讨了纳米W粉制备过程中的颗粒长大机制。研究结果表明:还原过程产物均保持了部分YTO颗粒的方块状轮廓特征,呈现出不同程度的形貌结构遗传特性;受不同价态氧化钨的挥发性及其形貌结构的影响,所制备W粉末的粒度随氧化钨价态的降低而变细;过高的还原温度和过长的还原时间,将导致纳米W粉颗粒因烧结合并增粗而长大。
     以多种氧化钨为原料制备出了纳米W和WC粉末,研究了不同氧化钨原料对W、WC粉末的形貌结构,尤其是晶粒聚集、均匀性的影响。结果表明:纳米W粉基本上保持了其氧化钨前驱体粉末的形貌结构特征,WC粉末也呈现了不同程度的形貌结构遗传特性;受氧化钨的形貌结构的影响,W粉、WC粉末的均匀性和晶粒聚集的状况不同:以APT制备的黄钨(YTO、SYTO)为原料所获纳米W粉、WC粉末,晶粒聚集现象严重,且存在较多的粗大晶粒;紫钨(VTO)、细黄钨(MYTO)和细紫钨(AVTO)制备的W粉和WC粉末也均有不同程度的夹粗和晶粒聚集,而AMT制备的细黄钨(AYTO)为原料制备的纳米W粉、WC粉末夹粗少,均匀性好,晶粒聚集少,明显较优。粉末形貌及相成分单一,生产稳定性好,颗粒细小、均匀,具有疏松、多孔形貌结构的原料,更有利于制备优质纳米W粉和WC粉末。
     研究了不同形貌结构的纳米W粉末对WC粉末及WC-Co合金烧结性能的影响,并探讨了新型湿式球磨配碳和两步碳化工艺对纳米WC粉末均匀性及其烧结性能的影响,探索了低成本工业化制备均匀纳米WC粉末和显微组织均匀、综合性能优良的WC-Co超细晶粒硬质合金的新途径。实验结果表明:不同形貌结构纳米W粉制备的纳米WC粉末中的晶粒聚集和异常粗大颗粒的产生,主要与碳化过程中彼此接触的纳米W颗粒,尤其是团聚颗粒因烧结合并增粗而长大有关;颗粒细小,具有疏松、多孔形貌结构的氧化钨(细黄钨和紫钨)更容易制备出结构较疏松,分散性、均匀性较好的纳米W粉,继而制备出粒度均匀、晶格缺陷少的纳米WC粉末,用其所制备的WC-Co超细晶粒硬质合金性能也更佳;新型湿式球磨配碳和两步碳化工艺,均可以改善W和C粉末弥散分布的均匀性,能够有效抑制碳化时纳米W颗粒烧结合并增粗的现象,利于制备出粒度均匀、化学稳定性好的纳米WC粉末,用其所制备的显微组织均匀、综合性能优良的WC-7wt%Co超细晶粒硬质合金,洛氏硬度高达93.8,抗弯强度高达4450MPa。
     通过“高温还原-高温碳化”生产制备出高温中颗粒WC粉,并研究了其形貌结构对合金性能的影响,探索制备了具有显微组织均匀、WC硬质相尺寸适中、综合性能优良的低钴WC-Co硬质合金的新途径。结果表明:高温还原-碳化工艺可以制备出晶粒发育完整、晶格缺陷少、碳化完全、尺寸均匀的中颗粒WC粉末,其所制备的WC-6wt%Co合金组织结构均匀、WC硬质相晶形完整,平均晶粒度2.0μm-2.5μm,综合性能好,明显优于YG6合金,硬度和抗弯强度分别为90.0HRA和3000MPa。
     研究了不同形貌结构的氧化钨原料所制备W粉末形貌对其扁平化形貌结构及其对板晶硬质合金显微组织结构及性能的影响。结果表明:不同于蓝钨制备的高温中颗粒W粉颗粒呈类球状多面体形貌,采用黄钨为原料制备的W粉末颗粒呈多面体等轴状,更易于通过球磨获取扁平化程度高的W粉末,制备出板状晶明显的特殊显微组织结构的硬质合金。
Researches on various preparation methods of cemented carbide powders and sintering technologies for high performance WC-Co cemented carbides with ultrafine grain or special microstructures have been received extensive attention. However, the impacts of powder morphologies on properties of WC-Co cemented carbides need to be explored in depth. Therefore, in this paper, the effects of W/WC powders morphologies on microstructures and properties of WC-Co alloy were researched.
     In this paper, the morphologies of W/WC powders prepared by different tungsten oxide materials were contrastive analysed, an efficient, controllable and lowcost industrialized process route for nano-WC powders was developed, and the ultrafine grain cemented carbides with excellent comprehensive performances were prepared subsequently. The effects of morphologies of medium-size WC powders, which prepared via high temperature reduction-carbonization process, on properties of cemented carbide were studied, and then high performance WC-6Co (%, mass fraction) alloys with medium-size WC grain and uniform microstructures were prepared. By study the effects of W powders with different morphologies on the flattening morphologies of W powders and the plate-like WC grains, the plate-like grain cemented carbide were prepared. The major contents and important results were given as follows.
     Different valence tungsten oxide powders and W nano-powders were prepared by yellow tungsten (YTO). W nano-powders were sintered under nitrogen gas with different temperature and duration. The morphology changes of different products in phase-transition were observed and analyzed. The growth mechanism of nano-powders was discussed. The results showed that the reduction products maintained a square shape features were similar to the morphologies of WO3powder particles, which showing morphology genetic characteristics from oxide precursors. Affected by volatile and morphologies of different valence tungsten oxide, the particle sizes of W powders were finer with reducing the valence state of tungsten oxides. The W nano-powders would agglomerate and grow up due to the sintering binding of particles if reduction duration was too long or reduction temperature was too high.
     W and WC nano-powders were prepared from different tungsten oxide powders. Effects of different raw materials on the morphologies, grain aggregation and uniformity of W and WC powders were researched. It showed that the W nano-powders basically maintained the morphology characteristics of tungsten oxide precursor powders, and WC powder also showed the morphology genetic characteristics. The state of aggregation and uniformity of W and WC powders was different due to the morphologies of different tungsten oxide powders. The W and WC powders prepared through yellow tungsten oxide powders (YTO, SYTO) using APT as raw materials, showed serious grain aggregation and more coarse grains. The W and WC powders prepared by violet tungsten oxide (VTO), fine yellow tungsten (MYTO) or fine violet tungsten oxide (AVTO) also showed both grain aggregation and coarse particles to some extent. But the W and WC nanopowders prepared from fine yellow tungsten (AYTO) using AMT as raw materials showed excellent performance with less coarse grain, less aggregation and better uniformity. All the above conclusions suggested that fine tungsten oxide raw powders with single phase composition, uniform particles size, loose and porous morphology structures were advantage to the preparation of high quality W and WC nano-powders.
     Effects of W nano-powders with different morphologies on properties of its corresponding WC powders and sintering properties of WC-Co alloy were researched. Impacts of new wet ball mixing method and two step carbonization processes on the uniformity and sintering properties of WC nanopowders were discussed. A novel and lowcost industrialized approach for preparing WC-Co ultrafine grain cemented carbide with excellent comprehensive properties was developed. The experimental results showed that the abnormal coarse WC grains were mainly due to the sintering binding of agglomeration W particles during carbonization process. Homogenous W and WC nanopowders with loose and porous morphology structures can be prepared from fine tungsten oxide powders with similar morphologies structure, and then prepared high performance ultrafine grain WC-Co cemented carbides. Both the wet ball milling method and two step carbonization process could improve the dispersivity of W powders and carbon black; restrain the aggregation and sintering combine phenomenon of nano-powders during carbonization process, which were beneficial to prepare high quality WC nano-powders with homogenous size and good chemical stability. The ultrafine WC-7Co(%, mass fraction) sintered composites prepared by wet ball milling method and two step carbonization method had homogenously microstructures and the excellent properties, the hardness and bending strength were achieved93.8HRA and4450MPa, respectively.
     High temperature medium-size WC powders were prepared through high temperature reduction-carburization process. Effects of morphologies on properties of alloys were researched. The new preparation method for low cobalt medium-size grain WC-Co hard alloys with homogeneous microstructure and excellent comprehensive performance was developed. It showed that the WC powders prepared by high temperature carburization process were carbonized completely, with uniform and integrated grains, high purity and low lattice defects. The WC-6Co (%, mass fraction) alloys had homogenously microstructure, integrated crystalline, and the grain size of WC crystalline was2μm to2.5μm. The properties of these alloys were better than that of YG6alloys, the hardness and bending strength were90.0HRA and3000MPa, respectively.
     Effects of the morphologies of tungsten powders prepared by different raw materials on the flattening morphologies of W powders and the microstructures and properties of plate-like grain cemented carbides were researched. It showed that the morphologies of W powders prepared by blue tungsten oxides (BTO) were spherical polyhedron. However, the W powders prepared by yellow tungsten oxides (YTO) were polyhedral equiaxial, which were easier access to prepare plate-like tungsten powders by ball milling, and prepare plate-like WC-Co cemented carbides.
引文
[1]Sabine Lay, Marc Loubradou, Patricia Daonnadieu. Ultra-fine microstructure in WC-Co cermets [J]. Advanced Engineering Materials,2004,6(10):811-814.
    [2]葛启录,肖振声,韩欢庆.高性能难熔材料在尖端领域的应用与发展趋势[J].粉末冶金工业,2000,10(1):7-13.
    [3]周建华,卢伟民.国内外硬质合金生产现状及近期发展动向分析[J].稀有金属与硬质合金,2006,34(1):36-41.
    [4]Fang Z Zak, Wang Xu. Sintering and mechanical properties of nanocrystalline cemented tungsten carbide-A review [J]. International Journal of Refractory Metals & Hard Materials, 2009,27(2):288-299.
    [5]Zhang Li, Wang Yuan jie, et al. Crack propagation characteristic and toughness of functionally graded WC-Co cemented carbide [J]. International Journal of Refractory Metals & Hard Materials,2008,26(4):295-300.
    [6]A. Mortensen, S. Suresh. Functionally Gradient Metals and Metal-ceramic Composites Part 1: Processing [J]. International Materials Reviews,1995,40 (6):239-265.
    [7]韩荣第.难加工材料的性能特点决定高效加工的有效途径[J].航空制造技术,2010,12(11):41-45.
    [8]沈壮行.中国工具工业的发展为什么赶不上制造业的需要--发展现状、问题浅析和改进建议[J].工具技术,2002,36(8):6-10.
    [9]曹自洋,何宁,李亮.微细切削加工技术[J].微细加工技术,2006,3(3):1-5.
    [10]邵刚勤,吴伯麟,魏明坤,袁润章.超细晶粒WC硬质合金的研制动态[J].武汉l:业大学学报,1999,21(6):18-20.
    [11]Carroll DF. Sintering and microstructural development in WC/Co-based alloys made with superfine WC powder [J]. International Journal of Refractory Metals & Hard Materials, 1999,17(1-3):123-32.
    [12]Jia K, Fischer TE, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites [J]. Nanostruct Mater,1998,10 (5):875-91.
    [13]杨德一,张孝华,孙志建.切削加工技术的发展趋势[J].机械,2008,35(5):1-3
    [15]熊建武,周进,陈湘瞬.高速切削加工技术的特点及应用要求[J].科学技术与工程,2006,6(10):1404-1406.
    [15]陈华辉,邢建东,李卫.耐磨材料应用手册[M].北京:机械工业出版社,2006:321-348.
    [16]吴冲浒,聂洪波,肖满斗.中国超细硬质合金及原料制备技术进展[J].中国材料进展,2012,31(4):39-46.
    [17]E. A. Almond, B. Roebuck. Some Characteristics of ultra-fine grained Hardmetals [J]. Metal Powder Report,1987,42(8):514-515.
    [18]G E. Spriggs. A History of Fine Grained Hardmetal [J]. International Journal of Refractory Metals and Hard Materials.1995,13(5):241-255
    [19]R. Porat, S. Berger, A. Rosen. Sintering Behavior and Mechanical Properties of Nanocrystalline WC-Co [C]. Materials Science Forum,1996,225:630-634.
    [20]G Gille, B. Szesny, K. Dreyer. Submicro and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Insert[C]. G Kneringer, P. Rodhammer, H. Wildner. Proceedings of 15th International Plansee Seminar, Tyrol, Austria,2001. Plansee holding AG:782-816.
    [21]Ning Liu, Sheng Chao, Haidong Yang. Cutting performances, mechanical property and microstructure of ultra-fine grade Ti(C,N)-based cermets[J]. International Journal of Refractory Metals & Hard Materials,2006,24 (5):445-452.
    [22]林晨光.中国超细和纳米晶WC-Co硬质合金的研究开发概况[J].中国W业,2005,20(2):19-22.
    [23]Konyashin I, Schafer F, Cooper R et al. Novel ultra-coarse hardmetal grades with reinforced binder for mining and construction [J]. International Journal of Refractory Metals & Hard Materials,2005,23(4):225.
    [24]李勇,谢淑华.WC粗晶硬质合金的研究进展[J].材料研究与应用,2009,3(2):77-80.
    [25]程继贵,雷纯鹏,邓莉萍.功能梯度材料的制备及其应用研究新进展[J].2003,10(1):28-31.
    [26]李壮,王家君,林晨光,崔舜.WC-Co超细硬质合金微观结构对其性能的影响[J].硬质合金,2009,26(3):188-193.
    [27]Mallika K, Komanduri R. Diamond coatings on cemented tungsten carbide tools by low-pressure microwave CVD [J]. Wear,1999,224(2):244-266.
    [28]M. Rosso, G. Porto, A. Geminiani, Studies of graded cemented carbides chemical components [J]. International Journal of Refractory Metals and Hard Materials,1999, 17(1-3):187-192.
    [29]李嘉,尹衍升,张金升等.纳米材料的分类及基本结构效应[J].现代陶瓷技术,2003,24(2):26-30.
    [30]X.Q. Ou, M. Song, T.T. Shen, D.H. Xiao, Y.H. He Fabrication and mechanical properties of ultrafine grained WC-10Co-0.45Cr3C2-0.25VC alloys [J]. Int. Journal of Refractory Metals and Hard Materials,2011,29(2):260-267.
    [31]高荣根.纳米结构WC-Co复合粉末的制备和应用[J].稀有金属与硬质合金,1999,137(2):49-53
    [32]张武装,刘咏,黄伯云.纳米晶WC-Co硬质合金的研究现状[J].材料导报,2007,21(2):79-82.
    [33]龙坚战,李宁,蒋显全,胥永刚.纳米晶硬质合金的组织性能及其应用[J].机械,2004,31(1):52-54
    [34]Zheng Y., Jacob J. S., Sudarshan T. S.. WC-Co enjoys proud history and bright future [J]. Metal Powder Report,1998,53 (2):32-36.
    [35]王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械,2002,29(4):63-65
    [36]Zhu Y. C, Ding C. X., Yukimura K., et al. Deposition and characterization of nanostructured WC-Co coationg[J]. Cermics international,2001,27(6):669-674.
    [37]Savarimuthu A C, Taber H F, Megat I, et al. Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications [J]. Journal of Thermal Spray Technology,2001,10 (3):502-510.
    [38]鲍君峰,侯玉柏,张康.纳米WC-Co粉末的研究现状及应用[J].热喷涂技术,2010,02(3):30-34
    [39]余立新,胡惠勇.世界硬质合金材料技术新进展[J].硬质合金,2006,23(1):52-57
    [40]周菊秋,张忠健.中国硬质合金工业现状、技术创新和发展方向[J].中国W业,2009,24(5):67-74.
    [41]李学芳.超细硬质合金的最新应用情况[J].硬质合金,2012,18(4):216-222
    [42]谢海唯,张守全,吴冲浒,程登峰.0.2μm级硬质合金的制备及其应用性能[J].粉末冶金材料科学与工程,2010,15(6):640-643
    [43]B H Kear, L E Me Candlish. Chemical Processing and Properties of Nano-structured WC-Co Materials [J]. Nanostructured Materials,1993,3(1-6):19-30.
    [44]F. Arenas, I B de Arenas, J. Ochoa, S A Cho. Influence of VC on the Microstructure and Mechanical Properties of WC-Co Sintered Cemented Carbides [J]. International Journal of Refractory Metals and Hard Materials,1999,17(1-3):91-97.
    [45]G. Gille, B. Szesny, K. Dreyer. Submicro and Ultrafine Grained Hardmetais for Microdrills and Metal Cutting Insert. G. Kneringer, P. Rodhammer, H. Wildner. Proceedings of 15th International Plansee Seminar,Tyrol, Austria,2001. Plansee holding AG:782-816.
    [46]X. Wang, Z. Z. Fang, H. Y. Sohn. Nanocrystalline Cemented Tungsten Carbide Sintered by an Ultra-high-pressure Rapid Hot Consolidation Process. J. Engquist. Proceedings of the 2007 International Conference on Powder Metallurgy & Particulate Materials, Denver. US, 2007. Princeton, Newyork, Metal Powder Industries:8-10.
    [47]Michalski A, Siemiaszko D. Nanocrystalline cemented carbides sintered by the pulse plasma method [J]. International Journal of Refractory Metals & Hard Materials,2007,25 (2): 153-158.
    [48]张凤林,王成勇,朱敏.纳米硬质合金进展[J].稀有金属,2002,26(1):54-58.
    [49]佘建芳.德国维迪阿公司超细硬质合金的发展[J].稀有金属与硬质合金,2002,30(2):54-58.
    [50]张立,陈述,刘刚et a1.高性能超细、纳米硬质合金及其制备过程中的关键技术问题[J].材料导报,2005,19(11):4-7.
    [51]宗霞,鲁玉祥.稀土硬质合金的发展现状[J].矿山机械,2010,38(22):1-6.
    [52]韩韡,许晓静,刘延山.硬质合金刀具材料的研究现状与发展思路[J].工具技术,2012,36(10):3-8.
    [53]Elfwing M, Norgren S. Study of solid-state sintered fine-grained cemented carbides [J]. International Journal of Refractory Metals and Hard Materials,2005,23(4-6):242-248.
    [54]张光亮,谢文,黄文亮等.WC粒度分布对WC-Co硬质合金力学性能影响的模拟分析[J]. 硬质合金,2013,001:1-7
    [55]Farid Akhtar, Islam S. Humail, S.J. Askari, Jianjun Tian, Guo Shiju. Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC-(W, Ti, Ta)C-6 wt% Co cemented carbides [J]. International Journal of Refractory Metals & Hard Materials,2007,25(4-6):405-410.
    [56]李晓东,王兴庆,解迎芳,何宝山,郭海亮.纳米晶硬质合金进展[J].上海金属,2004,26(3):52-56.
    [57]廖寄乔,唐美英.氧化钨相成分对超细W粉均匀性的影响[J].稀有金属材料与工程,2001,30(6):453-456.
    [58]雷纯鹏.纳米WC-Co复合粉末的制备及其烧结技术应用研究现状[C].第九次全国硬质合金学术会议论文集,2006:195-199.
    [59]Jonathan Weidowa, Jenni Zackrisson b, Bo Jansson b, Hans-Olof Andren a. Characterisation of WC-Co with cubic carbide additions[J]. Int. Journal of Refractory Metals & Hard Materials,2009,27(2):244-248.
    [60]Hwan Cheol Kim a, In Kyoon Jeong a, In Jin Shon a, In Yong Ko a, Jung Mann Doh b Fabrication of WC-8 wt.%Co hard materials by two rapid sintering processes [J]. International Journal of Refractory Metals & Hard Materials,2007,25(4):336-340.
    [61]D. Sivaprahasam, S.B. Chandrasekar, R. Sundaresan. Microstructure and mechanical properties of nanocrystalline WC-12Co consolidated by spark plasma sintering [J]. International Journal of Refractory Metals & Hard Materials,2007,25 (2):144-152.
    [62]刘舜尧,张春友.纳米硬质合金开发与应用[J].矿冶工程,2000,20(1):70-72.
    [63]Li Q Z, Zhang H F, Zhang X B, et al. Nanocrystalline tungsten Carbide encapsulated in carbon shells [J]. Nanostructured Materials,1998,10(2):179-184.
    [64]T. Ryu, H. Y-Sohn, Q Hart, Y U Kim, K S Hwang,, et al. Nanograined WC-Co Composite Powders by Chemical Vapor Synthesis[J]. Metallurgical and Materials Transactions B.2008, 39(1):1-6.
    [65]Zhu Y T, Manthiram A. A new route for the synthesis of tungsten carbide-cobalt nanocomposites [J]. Journal of the American Ceramic Society,1994,77(10):2777-2778.
    [66]Muhammed M, Wahlberg S, Grenthe I. Method of preparing powders for hard materials:U.S. Patent 5,594,929[P].1997-1-14.
    [67]Wahlberg S, Grenthe I, Muhammed M. Nanostructured hard material composites by molecular engineering 1. Synthesis from soluble tungstate salts [J]. Nanostructured Materials,1997,9(1):105-108.
    [68]Zhang Z, Wahlberg S, Wang M, et al. Processing of nanostructured WC-Co powder from precursor obtained by co-precipitation[J]. Nanostructured Materials,1999,12(1):163-166.
    [69]C. Adorjan, A. Bock, S. Myllymaki, W. D. Schubea, K. Konttud. WC/Co composite Powders via Hydrothermal Reduction of Co3O4 suspensions[J]. International Journal of Refractory Metals and Hard Materials.2008,26(6):569-574.
    [70]马学鸣.机械合金化制备WC-Co纳米硬质合金[J].上海大学学报自然科学版,1998,4 (2):156-151.
    [71]李炯义,曹顺华,林信平等.反应热处理技术制备纳米晶wC-6Co硬质合金复合粉末[J].金属热处理,2005,30(7):56-59.
    [72]张武装,高海燕,黄伯云.纳米晶WC-Co复合粉末制备的研究[J].稀有金属材料与工程,2007,36(7):1254-1256.
    [73]M. Sherif El-Eskandarany, Amir A. Mahday, H. A. Ahrned. A. H. Amer. Synthesis and Characterizations of Ball milled Nanoerystalline WC and Nanocomposite WC-Co Powders and Subsequent Consolidations[J]. Journal of alloy and compounds ,2000, 312(1-2): 314-325
    [74]G L. Tan, Y. S. Zhou. X. J. Wu. Nanostructured W2C Prepared by Mechanical-chemical Reaction [J]. The Chinese Journal of Nonferrous Metals. 1998, 8: 214-216
    [75]罗崇玲,易茂中,谭兴龙,戴煜.新型直接碳化法制备超细WC粉及其烧结体的结构与性能[J].粉末冶金技术,2007,25(4):243-250.
    [76]郭琳.高温快速直接碳化制取超细WC粉末[J].华南理工大学学报(自然科学版),2002,30(3):87-89.
    [77]Z Q Ban, L L Shaw. Synthesis and Processing of Nanostructured WC-Co Materials[J]. Journal of Materials Science, 2002,37(16): 3397-3403.
    [78]Subrahmanyam J. Composites by combustion synthesis [J]. Key Engineering Materials, 1995, 108: 105-122.
    [79]缪曙霞,殷声,李建勇,赖和怡.自蔓燃高温合成法(SHS)制备WC[J].中国有色金属学报,1994,4(2):79-81.
    [80]欧阳亚非,邬荫芳,彭泽辉WC-Co复合粉末的流态化合成及其应用[J].中国W业,1999,14(4-6):210-215.
    [81]吴伯麟,邵刚勤,段兴龙等.纳米晶复合WC一钴粉末的工业化制备技术[J].材料导报,2000,14(7):54-58
    [82]Gille G, Szesny B, Leitner G. A new WC powder as well as powder related properties and sintering behaviour of 0.6-View Record in Scopus//Full Text via CrossRef Cited by in Scopus WC-Co hardmetals[C]//Proceedings of the 14th Plansee International Seminar, Cemented Carbides and Hard Materials. 2: 139-67.
    [83]Porat R, Berger S, Rosen A. Synthesis and processing of nanoerystalline WC/Co powders[C]//14 th International Plansee Seminar' 97. 1997: 582-595.
    [84]Fang Z, Eason J W. Study of nanostructured WC-Co composites [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(5): 297-303.
    [85]Ungar T, Borbe1y A, Goren-Muginstein G R, et al. Particle-size, size distribution and dislocations in nanoerystalline tungsten-carbide [J]. Nanostructured Materials, 1999, 11(1): 103-113.
    [86]Goren-Muginstein G R, Rosen A. Proceeeding of 14* International Plansee Seminar. Eds, G Kneringer. P. Rodhammerand P. Withartitz. Plansee AG Reutte, 1997, (2): 642.
    [87]王忆民.高温粉末WC和气压烧结对YG8硬质合金性能的影响[J].硬质合金,2005, 22(2):86-89.
    [88]谢宏,肖逸锋,贺跃辉等.低压烧结对硬质合金组织和性能的影响[J].中国w业,2006,21(6):27-31.
    [89]Z. Xiong, Q. Q. Shao, X. L. Shi, et al. Ultrafine Hardmetals Prepared by WC-10 wt.% Co Composite Powder[J]. International Journal of Refractory Metals and HardMaterials,2008, 26(3):242-250.
    [90]X. L. Shi, Q. Q. Shao, X. L. Duan, et al. Characterizations of WC-10Co Nanocomposite Powders and Subsequently Sinterhip Sintered Cemented Carbide [J]. Materials Characterization,2006,57(4-5):358-370
    [91]梁忠友等.纳米陶瓷成型、烧结方法研究进展[J].佛山陶瓷,2001,11(3):8-10.
    [92]齐志宇,李静,李成威等.高压热等静压工艺烧结超细WC-10Co复合粉烧结体[J].鞍山科技大学学报,2007,30(2):124-127.
    [93]Azcona I, Ordonez A, Sanchez J M, et al. Hot isostatic pressing of ultrafine tungsten carbide-cobalt hardmetals [J]. Journal of materials science,2002,37(19):4189-4195.
    [94]Laptev A V. Structural Features and Properties of Alloy 84% WC-16% Co, Obtained by Hot Pressing in the Solid and Liquid Phases. Part 1. Effect of the Temperature at which the Specimens are Prepared on Their Density and Structure [J]. Powder Metallurgy and Metal Ceramics,2000,39(11-12):607-617.
    [95]Sun J, Zhang F, Shen J. Characterizations of ball-milled nanocrystalline WC-Co composite poeders and subsequently rapid hot pressing sintered cermets[J]. Materials Letters,2003, 57(21):3140.
    [96]Monika Willer- Porada, et al. Microwave sintering of cemented carbides and ceramics [J]. International Journal of Refractory Metals and Hard Materials,1997,13(1):11-16.
    [97]Agrawal D, Cheng J, Seegopaul P, et al. Grain growth control in microwave sintering of ultrafine WC-Co composite powder compacts [J]. Powder Metallurgy,2000,43(1):15-16.
    [98]Dreyer K, Gerdes T, Willert-Porada M. Microwave sintering of hardmetals [J]. International Journal of Refractory Metals and Hard Materials,1998,16(4):409-416.
    [99]周健,程吉平.微波烧结WC-Co细晶硬质合金工艺与性能[J].中国有色金属学报,1999,9(3):465-468.
    [100]Cha S I, Hong S H, Kim B K. Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders[J]. Materials Science and Engineering:A,2003, 351(1):31-38..
    [101]J. F Zhao, T. Holland, C. Unuvar, Z. A. Munir. Sparking plasma sintering of nanometric tungsten carbide [J]. International Journal of Refractory Metals and Hard Materials,2009, 27 (1):130-139.
    [102]沈以赴,冯尚龙,李景新等.纳米WC/Co经激光烧结后的晶粒再细化[J].焊接学报,2005,26(1):9-11
    [103]Chen I W, Wang X H. Sintering dense nanocrystalline ceramics without final-stage grain growth [J]. Nature,2000,404(6774):168-171..
    [104]Parasiris A, Hartwig K T. Consolidation of advanced WC-Co powders [J]. International Journal of Refractory Metals and Hard Materials,2000,18(1):23-31.
    [105]Vassen R, Stover D. Processing and properties of nanophase ceramics [J]. Journal of materials processing Technology,1999,92:77-84.
    [106]郑峰.几种金属元素对w粉粒度的影响[J].硬质合金,1995,12(3):143-145.
    [107]张立,王元杰,余贤旺,王振波.WC粉末粒度与形貌对硬质合金中WC晶粒度、晶粒形貌与合金性能的影响[J].中国W业,2008,23(4):23-26.
    [108]He X F, Shi J H. Study on technology for carburization of high quality coarse-grained wc[J]. Rare Metals Letters,2005,24(10):28-35.
    [109]Wu X W, Luo J S, Lu B Z, et al. Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature [J]. Transactions of Nonferrous Metals Society of China, 2009,19:s785-s789.
    [110]吴厚平,张立,王元杰等.化学包裹粉工艺制备粗晶粒WC-Co硬质合金[J].中国有色金属学报,2010,20(4):701-705.
    [111]Satoshi Kinoshita, et al. High temperature strength of WC-Co base cemented carbide having highly oriented plate-like triangular prismatic WC grains [J]. Journal of the Japan Society of Powder and Powder Metallurgy,2002,49(4):299-305.
    [112]Satoshi Kinoshita. et al. Effects of starting powder size and ball milling time on microstmcture of WC-Co base cemented carbides prepared from W+C+Co base mixed powder [J]. Journal of the Japan Society of Powder and Powder Metallurgy,2003,50 (5): 377-384.
    [113]Satoshi Kinoshita, et al. Micrestmctural development and properties of new WC-Co base hardmetal prepared from CoxWyCz+C instead of WC [J]. Journal of the Japan Society of Powder and Powder Metallurgy,2001,48 (7):621-628.
    [114]吴恩熙,汪秀全,曾青,陈力.含板状WC晶粒硬质合金制备方法的研究[J].硬质合金,2006,23(2):75-77.
    [115]吴晓东,刘兴国,柴永新.W03循环氧化还原法制备超细w粉的研究[J].稀有金属材料与工程,2007,36(3):460-463.
    [116]廖寄乔,黄志锋,吕海波等.不同氧化钨氢还原制取超细w粉[J].中南工业大学学报,2000,31(1):51-54.
    [117]罗斌辉,张华明.不同氧化钨原料对w粉性能的影响研究[J].硬质合金,2006,23(3):139-142.
    [118]陈邵衣.超细W粉、WC粉末研制方法述评——推荐用传统流程生产超细WC粉[J].中国w业,1999,14(5):146-149.
    [119]Hiroyuki Saito, Akira Iwabuchi. Tomoharu Shimizu b Effects of Co content and WC grain size on wear of WC cemented carbide [J]. Wear,2006,261(2):126-132.
    [120]林高安.W粉形貌与粒度分布对成形性和压坯强度的影响[J].粉末冶金材料科学与工程,2009,14(4):260-264.
    [121]A.V. Shatov, S.A. Firstov, I.V. Shatov. The shape of WC crystals in cemented carbides[J]. Materials Science and Engineering A,1998,242(1-2):7-14.
    [122]李志林,朱丽慧.含板状WC晶粒WC-10%Co硬质合金的组织和性能[J].中南大学学报(自然科学版),2010,41(2):521-525.
    [123]朱丽慧,赵海锋,黄清伟,马学鸣.高能球磨热压烧结制备定向排布板状硬质合金[J].中南大学学报(自然科学版),2004,35(3):358-362.
    [124]张立,陈述,张传福,黄伯云.含板状晶WC双模组织结构硬质合金的研究[J].稀有金属,2004,28(6):979-982.
    [125]Gurland J, Plateau J. The mechanism of ductile rupture of metals containing inclusions[R]. Brown Univ., Providence; Institut de Recherches de la Siderugie, St.-Germain-en-Laye, France,1963.
    [126]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [127]林宏尔,铃木寿等.WC-lOCo硬质合金的抗弯强度与断裂源的关系[J].日本金属学会志,1974,38(11):1013-1019.
    [128]姜文伟,陈响明.氧化钨微观结构的研究[J].稀有金属与硬质合金,2009,37(3):8-11.
    [129]徐斌,王成均,吕小刚.钴粉生产技术研究进展[J].粉末冶金技术,2010,28(3):224-229.
    [130]谭兴龙,易茂中,罗崇玲.球形钻粉的应用及其在超细晶硬质合金中的应用[J].中国有色金属学报,2008,18(2):209-214.
    [131]张丽英,晏洪波,徐晓娟,吴成义,吴庆华,崔萍.W粉和碳黑粉粒度对超细WC粉质量的影响[J].粉末冶金工业,2001,11(2):22-25.
    [132]Yiwen L, Ronglu S, Enxi W, et al. Effects of Co Doped VC/Cr3C2 on Microstructure and Properties of Ultrafine Cemented Carbides[J]. RARE METAL MATERIALS AND ENGINEERING,2009,38:229-233.
    [133]稀有金属手册编辑委员会.稀有金属手册:下册[M].北京:冶金工业出版社,1992:531-536.
    [134]Bonache V, Salvador M D. Microstructural control of ultrafine and nanocrystalline WC-12Co-VC/Cr3C2 mixture by spark plasma sintering [J]. Ceramics International,2011, 37(3):1139-1142.
    [135]Hwan-Cheol Kim, In-Jin Shon. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion [J]. International Journal of Refractory Metals & Hard Materials,2006,24(3):202-209.
    [136]Liu Sha, Huang Ze-lan. Preparing nano-crystalline rare earth doped WC/Co powder by high energy ball milling [J]. International Journal of Refractory Metals & Hard Materials,2006, 24(6):461-464.
    [137]Tan G L, Wu X J. Mechanochemical synthesis of nano-crystalline tungsten carbide powders [J]. Powder Metallurgy,1998,41(4):300-302.
    [138]高海燕,张武装,曹顺华.机械合金化制备纳米WC硬质合金粉的研究[J].稀有金属与硬质合金,2002,30(3):29-32.
    [139]Magnusson M H, Deppert K. Single-crystalline of tungsten nanoparticles produce by thermal decomposition of tungsten hexcarbonyl [J]. Journal of Material Research,2000, 15(7):1564-1569.
    [140]Raghunathan S, Bowrell D L. Synthesis and evaluation of advanced nanocrystalline tungsten-based materials [J]. P/M Science & Technology Briefs,1999,11(1):9-14.
    [141]刘文彬,宋晓艳,张久兴等.氧化物混合粉原位反应制备超细WC-Co复合粉的研究[J].中国粉体工业,2008,5(1):19-23.
    [142]陈响明,施超波,易丹青.紫钨生产的亚微米级W粉和WC粉的形貌[J].硬质合金,2002,19(2):64-69.
    [143]彭泽辉,李玲.紫色氧化钨制取工艺的研究及其应用[J].稀有金属与硬质台金,2003,31(2):8-11.
    [144]陈述茂,廖小英,张秋和等.传统流程生产超细W粉的工艺优化[J].中国W业,2005,20(2):36-39
    [145]陈绍衣,钱崇梁.氧化钨氢还原过程中的物相转变[J].中南工业大学学报,1995,26(5):604-609.
    [146]Schubert W D, Lassner E. Production and characterization of hydrogen-reduced submicron tungsten powders-Part 1:State of the art in research, production and characterization of raw materials and tungsten powders[J]. International Journal of Refractory Metals and Hard Materials,1991,10(3):133-141.
    [147]郭峰.氧化钨氢气还原制备超细W粉的研究现状[J].粉末冶金材料科学与工程,2007,12(4):205-209.
    [148]Chonghu Wu. Preparation of ultrfine tungsten powders by in-situ hydrogen reduction of nano-needle violet tungsten oxide [J]. Int. Journal of Refractory Metals and Hard Materials, 2011,29(6):686-691.
    [149]傅小明.蓝钨还原W粉过程相成分探讨[J].上海有色金属,2004,25(4):149-152.
    [150]王岗,李海华,黄宗伟等.蓝钨与紫钨氢还原法生产超细W粉的比较[J].稀有金属材料与工程,2009,38 suppl(1):548-551.
    [151]罗骥,郭志猛,林涛,郝俊杰.纳米W粉烧结合并长大规律[C].中国粉末冶金新技术及难熔金属粉末冶金会议论文集,2008:206-210.
    [152]陈邵衣.紫色氧化钨制取W粉[J].中南矿冶学院学报,1994,25(5):607-611.
    [153]游峰,范景莲,田家敏,刘涛.不规则形貌W粉的形成机理[J].中国钨业,2010,25(1):34-37.
    [154]Bjorldund KL, Lu J, I-iesder P, et al. Kinetics thermodynamics and microstructure of tungsten rods grown by thermal laser CVD[J]. Thin Solid Film,2002,4(16):41-48.
    [155]黄新,孙亚丽,颜杰.两步碳化法生产优质粗颗粒碳化钨粉末[J].中国钨业,2007,22(6):39-42.
    [156]陈响明,施超波,易丹青等.紫钨生产的亚微米级W粉和WC粉的形貌[J].硬质合金,2002,19(2):64-69.
    [157]Liao J Q, Huang B Y. Particle size characterization of ultrafine tungsten powder[J]. International Journal of Refractory Metals and Hard Materials,2001,19(2): 89-99.
    [158]朱静,蔺锡伟,郭薇等.纳米粒子粒径评估及测试方法的比较[J].金属学报,1993,29(1):1-10.
    [159]朱丽慧,邵光杰,刘一雄,Dave SiddIe.纳米W粉和超细W粉的粒度分布表征[J].粉末冶金工业,2007,17(6):5-8.
    [160]王文利,李笃信,李昆.氧化镐粉末的表面改性研究[J].硬质合金,2007,24(4):198-202.
    [161]Bjorldund KL, Lu J, Iiesder P, et al. Kinetics thermodynamics and microstructure oftungsten rods grown by thermal laser CVD[J]. Thin Solid Film,2002,4(16):41-48.
    [162]雷纯鹏,唐建成,刘刚等.氧化钨还原过程中的形貌结构遗传特性研究[J].稀有金属与硬质合金,2012,40(5):1-6.
    [163]李艳,林晨光,曹瑞军.超细晶WC-Co硬质合金用纳米钻粉的研究现状与展望[J].稀有金属,2011,35(3):451-457.
    [164]程继贵,雷纯鹏,蒋阳等.纳米W-Cu粉末的均相沉淀法制备及其烧结性能[J].中国有色金属学报,2005,15(1):89-93.
    [165]Hongtao Wang, Z. Zak Fang, Kyu Sup Hwang, et al. Sinter-ability of nanocrystalline tungsten powder[J]. Int. Journal of Refractory Metals & Hard Materials,2010,28(2): 312-316.
    [166]Porat R, Berger S, Rosen A. Dilatometric study of the sintering mechanism ofnanocrystalline cemented carbides[J]. Nanostruct Mater [J].1996;7(4):429-36.
    [167]Lan Sun, Cheng-Chang Jia, Min Xian. A research on the grain growth of WC-Co cemented carbide [J]. International Journal of Refractory Metals & Hard Materials,2007,25 (2): 121-124.
    [168]Sadangi R K, McCandlish L E, Kear B H, Seegopaul P. Grain growth inhibition inliquid phase sintered nanophase WC/Co alloys[J]. Int J Powder Metall,1999,35(1):27-33.
    [169]Densley J M, Hirth J P. Fracture toughness of a nanoscale WC-Co tool steel[J]. Scripta Mater 1997; 38 (2):239-44.
    [170]Zhang J X. Effect of reduction and carburization temperature of tungsten powder on WC-phase substructure and mechanical properties of WC-Co cemented carbide [J]. International Journal of Refractory Metals & Hard Materials,1988,7(4):224.
    [171]张克从,张月.晶体生长科学与技术(上)[M].北京:科学出版社,1997.
    [172]Shatov AV Ponomalw S S, Firstov S A. Modeling the effect of flatter shape of WC crystals on the hardness of WC-Ni [J]. International Journal of Refractory Metals and Hard Materials,2009,27(2):198-212.
    [173]Park Y J, Hwang N M, Yoon D Y. Abnormal growth of faceted(WC)grains in a (Co) liguid matrix[J]. Metallurgical and Materials Transactions A,1996,27(9):2809-2819.
    [174]Michael S, Wolf-Dieter S, Zobetz E, et al. On the formation of very larbe WC crystals during sintering of ultrafine WC-Co alloys [J]. International Journal of Refractory Metals & Hard Materials,2002,20(1):41-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700