用户名: 密码: 验证码:
纳滤—厌氧氨氧化—高级氧化工艺深度处理干法腈纶废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腈纶生产过程中产生的废水成分复杂,生物降解性差,对环境造成危害较大,是目前废水处理领域的一大难题。以抚顺石化腈纶厂为例,现有处理工艺不能满足处理要求,经过二级生化处理后的尾水中仍含有较高浓度难降解有机物,氨氮和总氮浓度也较高且缺少可被反硝化利用的碳源。面对日益严格的污水排放要求,选择经济有效的后续深度处理工艺是腈纶生产企业的迫切需求。
     本研究中,通过对现有污水处理工艺中重要处理单元的水样进行全分析,分析难降解污染物组成,了解各污染物在生物处理工艺过程中的迁移和转化规律。经过现有厌氧-好氧过程处理后,干法腈纶废水(DAFW)中的腈类和酚类可以被生物降解,丙烯腈等含氮有机物降解过程中释放出氨氮,造成生化出水氨氮浓度大幅度升高;而残留的烷烃和腈类低聚物为难以降解的有机物,造成生化出水COD难以达到排放标准。针对腈纶废水氨氮浓度高和COD难以生物降解的特点,并对比多种工艺对腈纶废水的处理效果,提出了“纳滤-亚硝化/厌氧氨氧化-非均相电催化”为主体的深度处理工艺,并通过小试和中试实验验证了工艺的可行性。
     实验结果表明,纳滤不但可以有效截留腈纶废水二级生化尾水中的难降解有机物,还可以通过电荷平衡作用同时去除氨氮,使出水基本达到排放标准,同时经纳滤浓缩后可有效减少后续工艺处理水量。温度和TMP等参数均可影响纳滤产水效果,在跨膜压差为0.45-0.6MPa、温度为30-35℃并采用二级过滤的条件下,产水COD和氨氮分别为32mg/L和17mg/L。中试实验中,进水SS严重影响纳滤装置的稳定运行。增加预处理装置去除SS后连续运行时,跨膜压差变化不大,虽然缓慢增加,但始终在0.75MPa以下,说明纳滤系统处理腈纶废水二级生化出水时膜污染较轻。采用物理方法和化学方法对纳滤膜进行清洗和维护,可以有效的减轻膜污染和膜运行阻力。
     应用纳滤膜对腈纶废水二级生化尾水分离浓缩后,浓水再分别由亚硝化/厌氧氨氧化(anammox)和非均相电催化工艺进行脱氮除碳。实验采用膜生物反应器来实现亚硝化过程,利用其对微生物的高效截留作用,延长系统中微生物的污泥停留时间,强化亚硝化反应。对比中试和小试实验表明,采用硝化污泥作为优势菌种启动,可以较快的实现完全亚硝化。处理实际废水时NH4+-N去除率和NO2--N/NOX--N比率分别为85%和80%。投加KClO3可以有效控制出水N03--N浓度,并且HRT的缩短有助于强化控制效果。系统稳定运行时N03--N的转化率可以维持在较低水平,基本稳定在30mg/L以下。Anammox批式和小试连续实验表明,anammox工艺处理腈纶废水时其反应速率略有降低,但对厌氧氨氧化菌没有急性毒性和累积抑制作用。中试实验采用高纯度anammox菌接种的生物膜法,并用立体帘式结构无纺布填料进行挂膜,可以实现低接种菌量下的anammox反应器快速启动。在人工培养阶段,运行稳定后NH4+-N和N02--N的去除率分别可以达到90%和95%。与小试实验相比,中试实验处理实际废水时氨氮去除率和总氮去除率均有所下降,分别为85%和73%。现场实验中anammox菌对温度和SS较敏感,并且anammox菌属呈现多样化,由接种时的单一B. anammoxidans sp.转变成Kuenenia sp.为优势菌属,说明在处理腈纶废水的环境下,更有利于Kuenenia sp.的生长。
     本实验构建非均相电催化体系,在控制反应时间3h、反应槽压4V,H202的投加量为3mL并采用分段投加方式时,对腈纶废水纳滤浓缩后的浓水处理效果最佳,COD可降解到85mg/L左右,去除率可达到83%。
     小试和中试实验结果表明,通过本方案设计工艺对腈纶废水进行深度处理,可以同时有效去除废水中的难降解有机物和NH4+-N。并通过简单成本估算,本方案工艺工程建设总投资为1723万元,吨水运行费用为4.56元,环境效益可观,为实际工程应用提供理论依据和技术支持。
The wastewater from acrylic fiber production process presents significant harms to the enviroment because of its complex components and poor bio-degradation. Nowadays, it is a difficult problem in wastewater treatment field. Illustrated by the example of Fushun acrylic fiber factory of petrochemical company, the present wastewater treatment process could not satisfy the requirement of wastewater discharge standard. After secondary biotreatment process, the concentrations of COD and NH4+-N in effluent are still very high, and there is nearly no removal of TN due to the lack of available organic carbon source for denitrification. In order to meet the more stringent requirement of wastewater discharge standard, it is urgent for related enterprise to find an economical and effective advanced treatment process.
     In this study, complete water quality analysis of the important unit samples in present treatment process was carried out, in order to analyze the composition of refractory organic pollutants and investigate the transformation discipline of each kind of pollutant. After the anaerobic and aerobic biological treatment process, most of nitriles and phenols in dry-spun acrylic fiber wastewater (DAFW) could be biodegraded, and some nitrogenous organic compounds such as acrylonitrile degraded and formed ammonia which resulted in a high ammonium concentration in effluent. The composition of residual refractory organic compounds was alkanes and oligomers, which made the effluent COD concentration higher than the discharge standard. According to the characteristics of DAFW and comparison of the effects of several treatment processes, a new advanced treatment process was proposed which integrated nanofiltration, nitritation, anaerobic ammonia oxidation (anammox) and electro-heterogeneous catalytic oxidation. The feasibility of this process was investigated both in lab-scale and pilot-scale
     Experimental results showed that refractory organic matter remained in biochemical effluent was retained effectively and the ammonia nitrogen was also removed by the charge balance in the nanofiltration process simultaneously. The effluent basically met the discharge standard. Furthermore the treatment quantity of the subsequent process was reduced significantly by nanofiltration concentration process. The permeate quality of nanofiltration process was affected by operational parameters such as temperature and Trans-Membrane Pressure (TMP). After two stage filtration, COD and ammonia nitrogen concentration of the permeate were32mg/L and17mg/L under TMP of0.45-0.6MPa and the temperature between30-35℃. The pilot test indicated that the SS concentration of the influent had a critical influence on the stable operation of nanofiltration device. After using the pretreatment device to remove SS of the influent, the TMP was always below0.75MPa though it increased slowly during continuous operation. The membrane fouling was lighter when nanofiltration process was sued for advanced treatment of DAFW. The membrane pollution and running resistance could be effectively reduced by cleaning and maintaining nanofiltration membrane with physical and chemical method.
     After the nanofiltration process, nitritation/anammox and electro-heterogeneous catalytic oxidation were chosen to remove carbon and nitrogen from the nanofiltration concentrated liquid. The membrane bioreactor was used to realize the nitratation process, for its efficient microbial entrapment effect and longer sludge retention time. Compared with lab experiments, results of pilot tests indicate that the nitritation process could start up quickly when seeding mature nitrifying bacteria. The NHLt+-N removal efficiency and the ratio of NO2--N/NOX--N were85%and0.8, respectively. The addition of KClO3could control NO3--N concentration of the MBR effluent effectively, which could be enhanced with the shorter HRT. The conversion of NO3--N was maintained at relatively low level and the concentration of NO3--N was basically below30mg/L under stable operation period.
     The batch and continuous test results of anammox process showed that anammox reaction rate decreased slightly when treating DAFW, but there was no acute toxicity and cumulative inhibition to the anammox bacteria. Fast start-up of anammox reactor with low inoculation sludge was achieved by seeding of high purity anammox bacteria and the utilization of non-woven fabric of cubic stereo shade structure as biofilm carrier. In the artificial culture stage, the removal efficiencies of NH4+-N and NO2--N were maintained at90%and95%, respectively. When treating actual wastewater, anammox bacteria were sensitive to temperature and SS. During the period of stable operation, the removal efficiencies of NH4+-N and TN decreased to85%and73%, respectively. The anammox bacteria genus has diversified, which transformed from single B. Anammoxidans sp. in inoculum to Kuenenia sp. as the predominate bacteria in reactor, which indicated that the condition of treating DAFW benefited the growth of the Kuenenia sp.
     The COD removal of nanofiltration concentrated water was achieved by electro-heterogeneous catalytic oxidation process. The COD concentration was decreased to85mg/L and the COD removal efficiency was83%under the operation condition of reaction time3h, voltage4V and H2O2dosage of3mL.
     Results of the pilot and lab tests showed that the refractory organic pollutants and NH4+-N in DAFW could be removed effectively by application of the advanced treatment process. Simple cost estimation showed that engineering construction total investment of this process was17.23million RMB and operation cost was4.56yuan/ton.
引文
[1]Pereira-de-Oliveira L A, Castro-Gomes J P, Nepomuceno M C S. Effect of acrylic fibres geometry on physical, mechanical and durability properties of cement mortars [J]. Construction and Building Materials.2012,27(1):189-196.
    [2]孙晓波,朱利民.我国差别化腈纶的发展现状与对策[J].纺织导报.2007,8:50-53.
    [3]刘伟,刘生.中国腈纶行业的现状和发展[J].黑龙江科技信息.2007,17:16.
    [4]张前朗.中国石化腈纶产品核心竞争力构建途径探析[J].石油化工技术与经济,2012,28(2):13-17.
    [5]尹振文,崔丽惠.腈纶生产工艺与设备国产化的探讨[J].合成纤维.2006,9:14-17.
    [6]庞斌.DMF干法腈纶生产工艺[J].广东化纤.1997,1:7-12.
    [7]杨双春,郭绍辉,闫光绪.干法腈纶废水处理技术研究进展[J].合成纤维.2010,10:7-10.
    [8]魏守强,刘瑛,谢秀榜.铁屑-活性炭内电解法预处理干法腈纶废水的实验研究[J].沈阳工业学院学报.2003,22(2):49-56.
    [9]明爱玲,赵朝成.干法腈纶废水混凝处理研究[J].环境污染与防治.2010,32(7):62-65.
    [10]Na Y S, Lee C H, Lee T K, et al. Photo catalytic decomposition of nonbiodegradable substances in wastewater from an acrylic fibre manufacturing process [J]. Korean J Chem Eng.2005,22(2): 246-249.
    [11]蔡晓东,郑帼.腈纶废水处理的问题和研究现状[J].工业水处理.2006,26(3):12-15.
    [12]常鹤,武腾,柏琳,等.4种絮凝剂对腈纶废水的处理研究[J].化学与生物工程.2011,28(1):70-72.
    [13]陆斌,韦鹤平.内电解强化处理腈纶废水的试验研究[J].同济大学学报(自然科学版).2001,29(11):1294-1298.
    [14]刘海洪,宦国平,曹磊.气浮、微滤/超滤工艺处理腈纶工业废水研究[J].广东化工.2009,36(198):141-143.
    [15]Wu J J, Wu C, Ma H, et al. Treatment of landfill leachate by ozone-based advanced oxidation processes [J]. Chemosphere.2004,54(7):997-1003.
    [16]Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes [J]. Environment International.2009,35(2):402-417.
    [17]Wols B A, Hofman-Caris C H M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water [J]. Water Research.2012, 46(9):2815-2827.
    [18]Wu J J, Wu C, Ma H, et al. Treatment of landfill leachate by ozone-based advanced oxidation processes [J]. Chemosphere.2004,54(7):997-1003.
    [19]赵朝成,王志伟.臭氧氧化法处理腈纶废水研究[J].化工环保.2004,24:56-59.
    [20]佟皓,张洪林,李长波,等.硅藻土负载纳米Ti02光催化剂处理腈纶废水中COD的研究[J].当代化工.2012,41(1):15-17.
    [21]Li J, Luan Z, Yu L, et al. Pretreatment of acrylic fiber manufacturing wastewater by the Fenton process [J]. Desalination.2012,284:62-65.
    [22]王志伟,赵朝成,王峰,等.膜法预处理腈纶废水的性能研究[J].价值工程.2011,22(3):316-317.
    [23]Zhang C, Wang J, Zhou H, et al. Anodic treatment of acrylic fiber manufacturing wastewater with boron-doped diamond electrode:A statistical approach [J]. Chemical Engineering Journal.2010, 161(12):93-98.
    [24]陈劲松,王凯,李天增,等.水解+A/O+混凝沉淀处理丙烯腈-腈纶废水[J].工业水处理.2011,31(1):88-90.
    [25]Li J, Luan Z, Yu L, et al. Organics, sulfates and ammonia removal from acrylic fiber manufacturing wastewater using a combined Fenton-UASB (2 phase)-SBR system [J]. Bioresource Technology.2011, 102(22):1319-1326.
    [26]Li J, Wang J, Luan Z, et al. Evaluation of performance and microbial community in a two-stage UASB reactor pretreating acrylic fiber manufacturing wastewater [J]. Bioresource Technology.2011,102(10): 5709-5716.
    [27]Li J, Wang J, Luan Z, et al. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor [J]. Journal of Environmental Sciences.2012,24(2):343-350.
    [28]杨晓奕,蒋展鹏,师绍琪,等.单相厌氧与两相厌氧处理干法腈纶废水的研究[J].工业用水与废水.2002,33(2):21-24.
    [29]王元,徐志兵,彭方明.SBR工艺处理腈纶混合废水试验研究[J].安庆师范学院学报(自然科学版).2004,10(2):88-89.
    [30]计建洪,庄惠生,缪友兴.SBR工艺处理腈纶印染废水[J].印染.2005,6:34-36.
    [31]刘诗一,蒋进元,许吉现,等.生物膜法厌氧-好氧处理腈纶废水的中试研究[J].水处理技术.2012,38(6):66-69.
    [32]王永杰,蒋进元,周岳溪,等.序批式生物膜法处理腈纶废水的试验研究[J].水处理技术.2012,38(1):93-95.
    [33]辛旺,田智勇,李法云,等.复合式膜生物反应器处理干法腈纶废水启动试验研究[J].环境工程技术学报.2011,1(4):305-310.
    [34]杨崇臣,田智勇,宋永会,等.膜生物反应器(MBR)处理干法腈纶废水[J].环境科学研究.2010,23(7):912-917.
    [35]于忠臣,王松,吕炳南,等Fe2+/UV催化臭氧法降解腈纶废水[J].石油学报(石油加工).2009,25(6):896-903.
    [36]王烨,蒋进元,周岳溪,等Fenton法深度处理腈纶废水的特性[J].环境科学研究.2012,25(8):911-915.
    [37]王烨,蒋进元,周岳溪,等.新型高分子硅铁混凝剂深度处理腈纶废水研究[J].水处理技术.2012,38(5):87-90.
    [38]徐少阳,蒋进元,周岳溪,等.三级生物膜深度处理腈纶废水生化出水的脱氮研究[J].环境科学.2012,33(9):3172-3176.
    [39]程迪,张洪林,周磊,等.电化学氧化处理腈纶废水的研究[J].石油化工高等学校学报.2011,24(5):45-48.
    [40]陈静.低温等离子体处理腈纶废水的研究[D].安徽理工大学,2012.
    [41]卜祖坤,周桃红MIEX树脂在腈纶废水深度处理中的应用[J].工业安全与环保.2010,36(1):12-13.
    [42]Van der Bruggen B, Manttari M, Nystrom M. Drawbacks of applying nanofiltration and how to avoid them:A review [J]. Separation and Purification Technology.2008,63(2):251-263.
    [43]Kotrappanavar N S, Hussain A A, Abashar M E E, et al. Prediction of physical properties of nanofiltration membranes for neutral and charged solutes [J]. Desalination.2011,280(1-3):174-182.
    [44]Ji Y, An Q, Zhao Q, et al. Fabrication and performance of a new type of charged nanofiltration membrane based on polyelectrolyte complex [J]. Journal of Membrane Science.2010,357(1-2): 80-89.
    [45]Kelewou H, Lhassani A, Merzouki M, et al.Salts retention by nanofiltration membranes: Physicochemical and hydrodynamic approaches and modeling [J]. Desalination.2011,277(1-3): 106-112.
    [46]Cavaco Morao A I, Szymczyk A, Fievet P, et al. Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process [J]. Journal of Membrane Science.2008,322(2): 320-330.
    [47]Gomes A C, Goncalves I C, Pinho M N D. The role of adsorption on nanofiltration of azo dyes [J]. Journal of Membrane Science.2005,255(1-2):157-165.
    [48]Koyuncu I, Topacik D. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures [J]. Separation and Purification Technology.2003,33(3): 283-294.
    [49]Han R, Zhang S, Zhao W, et al. Treating sulfur black dye wastewater with quaternized poly (phthalazinone ether sulfone ketone) nanofiltration membranes [J]. Separation and Purification Technology.2009,67(1):26-30.
    [50]Avlonitis S A, Poulios I, Sotiriou D, et al. Simulated cotton dye effluents treatment and reuse by nanofiltration [J]. Desalination.2008,221(1-3):259-267.
    [51]姚红娟,丁宁,王晓琳.膜分离技术在染料行业中的应用研究进展[J].现代化工.2003,23(12):15-19.
    [52]Bougen A, Rabiller-Baudry M, Chaufer B, et al. Retention of heavy metal ions with nanofiltration inorganic membranes by grafting chelating groups [J]. Separation and Purification Technology.2001, 25(1-3):219-227.
    [53]Balanya T, Labanda J, Llorens J, et al. Separation of metal ions and chelating agents by nanofiltration [J]. Journal of Membrane Science.2009,345(1-2):31-35.
    [54]张启修.湿法炼铜领域中的膜技术[J].有色金属.2002,54(4):81-85.
    [55]张启修,肖连生.膜技术在稀有金属冶炼中的应用[J].稀有金属.2003,27(1):1-7.
    [56]Muthukrishnan M, Guha B K. Effect of pH on rejection of hexavalent chromium by nanofiltration [J]. Desalination.2008,219(1-3):171-178.
    [57]Wahab Mohammad A, Othaman R, Hilal N. Potential use of nanofiltration membranes in treatment of industrial wastewater fromNi-P electroless plating [J]. Desalination.2004,168(15):241-252.
    [58]崔康平,李明,张焕祯,等.炼油厂外排水再生回用作循环冷却水[J].中国给水排水.2003,19(9):96-97.
    [59]Manttari M, Viitikko K, Nystrom M. Nanofiltration of biologically treated effluents from the pulp and paper industry [J]. Journal of Membrane Science.2006,272(1-2):152-160.
    [60]Tomani P, Seisto A. Separation methods for closed-loop manufacture of bleached kraft pulp-overview of an EU project [J].Desalination.1999,124(1-3):217-223.
    [61]E B. Two kinds of lithotrophs missing in nature [J]. Journal of basic Microbiology.1977,17(6): 491-493.
    [62]Mulder A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. FEMS Microbiology Ecology.1995,16(3):177-183.
    [63]Gali A, Dosta J, van Loosdrecht M C M, et al. Two ways to achieve an anammox influent from real reject water treatment at lab-scale:Partial SBR nitrification and SHARON process [J]. Process Biochemistry.2007,42(4):715-720.
    [64]Li H, Zhou S, Ma W, et al. Fast start-up of ANAMMOX reactor:Operational strategy and some characteristics as indicators of reactor performance [J]. Desalination.2012,286(1):436-441.
    [65]Vlaeminck S E, Terada A, Smets B F, et al. Nitrogen Removal from Digested Black Water by One-Stage Partial Nitritation and Anammox [J]. Environmental Science & Technology.2009,43(13): 5035-5041.
    [66]van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam [J]. Water Research. 2007,41(18):4149-4163.
    [67]M. S, JG. K, MSM. J. Key physiology of anaerobic ammonium oxidation [J].1999,65(7):3248-3250.
    [68]Jetten M S M, Wagner M, Fuerst J, et al. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process [J]. Current Opinion in Biotechnology.2001,12(3):283-288.
    [69]van Niftrik L A, Fuerst J A, Damste J S S, et al. The anammoxosome:an intracytoplasmic compartment in anammox bacteria [J]. FEMS Microbiology Letters.2004,233(1):7-13.
    [70]Schalk J, de Vries S, Kuenen J G, et al. Involvement of a Novel Hydroxylamine Oxidoreductase in Anaerobic Ammonium Oxidation [J]. Biochemistry.2000,39(18):5405-5412.
    [71]Kartal B, Rattray J, van Niftrik L A, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology.2007,30(1):39-49.
    [72]Kimura Y, Isaka K, Kazama F. Effects of inorganic carbon limitation on anaerobic ammonium oxidation (anammox) activity [J]. Bioresource Technology.2011,102(6):4390-4394.
    [73]Jetten M S M, Strous M, van de Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium [J]. FEMS Microbiology Reviews.1998,22(5):421-437.
    [74]郑平,冯孝善.厌氧氨氧化菌基质转化特性的研究[J].浙江农业大学学报.1997,23:409-413.
    [75]Strous M, van Gerven E, Kuenen J G, et al. Effects of Aerobic and Microaerobic Conditions on Anaerobic Ammonium-Oxidizing (Anammox) Sludge [J]. Applied and Environmental Microbiogy. 1997,63(6):2446-2448.
    [76]Toh S T, Ashbolt N A. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater [J]. Applied Microbiology and Biotechnology.2002,59(2):344-352.
    [77]Scaglione D, Ruscalleda M, Ficara E, et al. Response to high nitrite concentrations of anammox biomass from two SBR fed on synthetic wastewater and landfill leachate [J]. Chemical Engineering Journal.2012,209(15):62-68.
    [78]Liang Z, Han Z, Yang S, et al. A control strategy of partial nitritation in a fixed bed bioflim reactor [J]. Bioresource Technology.2011,102(2):710-715.
    [79]Fernandez I, Vazquez-Padin J R, Mosquera-Corral A, et al. Biofilm and granular systems to improve Anammox biomass retention [J]. Biochemical Engineering Journal.2008,42(3):308-313.
    [80]Li Z, Ma Y, Hira D, et al. Factors affecting the treatment of reject water by the anammox process [J]. Bioresource Technology.2011,102(10):5702-5708.
    [81]Tang C, Zheng P, Chen T, et al. nhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process [J]. Water Research.2011,45(1):201-210.
    [82]JOSS A, SALZGEBER D, EUGSTER J. Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and Anammox in One SBR [J].2009,43(14):5301-5306.
    [83]Liang Z, Liu J. Landfill leachate treatment with a novel process:Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system [J]. Journal of Hazardous Materials.2008,151(1): 202-212.
    [84]郭勇,杨平,伍勇.生物流化床厌氧氨氧化脱氮处理垃圾渗滤液的研究[J].环境污染治理技术与设备.2004,5(8):19-22.
    [85]van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam [J]. Water Research. 2007,41(18):4149-4163.
    [86]Ahn Y, Choi H. Autotrophic nitrogen removal from sludge digester liquids in upflow sludge bed reactor with external aeration [J]. Process Biochemistry.2006,41(9):1945-1950.
    [87]Yamamoto T, Takaki K, Koyama T, et al. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox [J]. Bioresource Technology.2008,99(14): 6419-6425.
    [88]Ahn Y H, Hwang I S, Min K S. ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste [J]. Water Science and Technology.2004,49(5-6):145-153.
    [89]吕艳丽,单明军,王旭,等.短程硝化-厌氧氨氧化处理焦化废水的研究[J].冶金能源.2007,26(5):55-58.
    [90]Surpateanu M, Zaharia C. Advanced oxidation processes for decolorization of aqueous solution containing acid red G azo dye [J]. Central European Journal of Chemistry.2004,2(4):573-588.
    [91]王帅.基于FeOOH/AC催化剂类电芬顿体系的性能及应用研究[D].大连理工大学,2011.
    [92]张国权.掺杂葸醌/聚吡咯膜电极的电催化氧还原性能及应用研究[D].大连理工大学,2008.
    [93]Sires I, Arias C, Cabot P L, et al. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton [J]. Chemosphere.2007,66(9):1660-1669.
    [94]Flox C, Ammar S, Arias C, et al. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium [J]. Applied Catalysis B:Environmental.2006,67(1-2):93-104.
    [95]Sanchez-Sanchez C M, Exposito E, Casado J, et al. Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process [J]. Electrochemistry Communications. 2007,9(1):19-24.
    [96]Baldrian P, Merhautova V, Gabriel J, et al. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides [J]. Applied Catalysis B:Environmental. 2006,66(3-4):258-264.
    [97]陈震,陈晓,郑曦,等.溶液pH及电流浓度对电化学法生成羟基自由基降解机制的影响[J].环境科学研究.2002,15(3):42-52.
    [98]张芳,李光明,赵修华,等.电-Fenton法废水处理技术的研究现状与进展[J].工业水处理.2004,24(12):9-13.
    [99]水和废水检测分析方法[M].北京:中国环境科学出版社,2002.
    [100]Kim Y M, Park D, Lee D S, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment [J]. Journal of Hazardous Materials.2008,152(3):915-921.
    [101]JHG Slangen P K. Nitrification inhibitors in agriculture and horticulture:A literature review[Z].1984: 5:1-76.
    [102]Yamada-Onodera K, Mukumoto H, Katsuyama Y, et al. Degradation of long-chain alkanes by a polyethylene-degrading fungus, Penicillium simplicissimum YK [J]. Enzyme and Microbial Technology.2002,30(6):828-831.
    [103]曹微寰,徐德强,张亚雷,等.烷烃降解菌的筛选及其降解能力[J].中国环境科学.2003,23(1):25-29.
    [104]Serge M M, Li Y W, Lei Z, et al. Microbial communities involved in anaerobic degradation of alkanes [J]. International Biodeterioration and Biodegradation.2011,65(1):1-13.
    [105]王丽坤,王启山,孙晓明,等.壳聚糖助凝对三氯化铁絮体形态和强度的影响[J].中国环境科学.2009,29(7):718-721.
    [106]Tezcanli-Giiyer G, Ince N H. Individual and combined effects of ultrasound, ozone and UV irradiation:a case study with textile dyes.Ultrasonics [J].2004,42(1-9):603-609.
    [107]Xu B, Chen Z, Qi F, et al. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/03:Efficiency, product and mechanism [J]. Journal of Hazardous Materials.2010, 179(1-3):976-982.
    [108]Nadezhdin A D. Mechanism of ozone decomposition in water. The role of termination [J]. Industrial & Engineering Chemistry Research.1988,27(4):548-550.
    [109]Benitez F J, Beltran-Heredia J, Acero J L, et al. Ozonation Kinetics of Phenolic Acids Present in Wastewaters from Olive Oil Mills [J]. Industrial & Engineering Chemistry Research.1997,36(3): 638-644.
    [110]Ristic M, Music S, Godec M.Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ions in perchlorate containing aqueous solutions[J].Journal of Alloys and Compounds.2006,417(1-2):292-299.
    [111]Mazille F, Schoettl T, Klamerth N, et al. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH [J]. Water Research.2010,44(10):3029-3038.
    [112]Weckler B, Lutz H D.Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganeite (β), lepidocrocite (γ), and feroxyhite (δ) [J]. European Journal of Solid State and Inorganic Chemistry.1998,35(8-9):531-544.
    [113]Christensen A N, Jensen T R, Bahl C R H, et al. Nano size crystals of goethite, a-FeOOH:Synthesis and thermal transformation [J]. Journal of Solid State Chemistry.2007,180(4):1431-1435.
    [114]Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of y-FeOOH to a-FeOOH in acidic solutions containing metal ions [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2005,266(1-3):155-159.
    [115]李海涛,李玉平,张安洋,等.新型非均相电-Fenton技术深度处理焦化废水[J].环境科学.2011,32(01):171-178.
    [116]Baldrian P, Merhautova V, Gabriel J, et al. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides [J]. Applied Catalysis B:Environmental.2006, 66(3-4):258-264.
    [117]Xu G, Xu X, Yang F, et al. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules [J]. Journal of Hazardous Materials.2011,185(1):249-254.
    [118]Tsushima I, Kindaichi T, Okabe S. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR [J]. Water Research.2007,41(4):785-794.
    [119]Zhong C, Xu Z, Fang X, et al. Treatment of Acid Mine Drainage (AMD) by Ultra-Low-Pressure Reverse Osmosis and Nanofiltration [J].2007,24(9):1297-1306.
    [120]Ben Amar N, Saidani H, Deratani A, et al. Effect of Temperature on the Transport of Water and Neutral Solutes across Nanofiltration Membranes [J]. Langmuir.2007,23(6):2937-2952.
    [121]Liang Z, Han Z, Yang S, et al. A control strategy of partial nitritation in a fixed bed bioflim reactor [J]. Bioresource Technology.2011,102(2):710-715.
    [122]Liang Z, Liu J. Control factors of partial nitritation for landfill leachate treatment [J]. Journal of Environmental Sciences.2007,19(5):523-529.
    [123]Belser L W, Mays E L. Specific Inhibition of Nitrite Oxidation by Chlorate and Its Use in Assessing Nitrification in Soils and Sediments [J]. Applied and Environmental Microbiology.1980,39(3): 505-510.
    [124]Ling J, Chen S. Impact of organic carbon on nitrification performance of different biofilters [J]. Aquacultural Engineering.2005,33(2):150-162.
    [125]张小玲,彭党聪,王志盈,等.低DO紊动床内有机物对硝化过程的影响[J].中国给水排水.2002,18(5):10-13.
    [126]Gabarro J, Ganigue R, Gich F, et al. Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration [J]. Bioresource Technology.2012,126:283-289.
    [127]Yoo H, Ahn K, Lee H, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor [J]. Water Research.1999,33(1):145-154.
    [128]Fernandez I, Vazquez-Padin J R, Mosquera-Corral A, et al. Biofilm and granular systems to improve Anammox biomass retention [J]. Biochemical Engineering Journal.2008,42(3):308-313.
    [129]Lu H, Zheng P, Ji Q, et al. The structure, density and settlability of anammox granular sludge in high-rate reactors [J]. Bioresource Technology.2012,123:312-317.
    [130]Yang J, Zhang L, Hira D, et al. High-rate nitrogen removal by the Anammox process at ambient temperature [J]. Bioresource Technology,2011,102(2):672-676.
    [131]Lotti T, van der Star W R L, Kleerebezem R, et al. The effect of nitrite inhibition on the anammox process [J]. Water Research.2012,46(8):2559-2569.
    [132]Batstone D J, Keller J. Variation of bulk properties of anaerobic granules with wastewater type [J]. Water Research.2001,35(7):1723-1729.
    [133]Dapena-Mora A, Fernandez I, Campos J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme and Microbial Technology.2007,40(4):859-865.
    [134]Hong S, Elimelech M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes [J]. Journal of Membrane Science.1997,132(2):159-181.
    [135]Listiarini K, Chun W, Sun D D, et al. Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes [J].Journal of Membrane Science.2009,344(1-2):244-251.
    [136]Hong S, Elimelech M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes [J]. Journal of Membrane Science.1997,132(2):159-181.
    [137]Boussu K, Belpaire A, Volodin A, et al. Influence of membrane and colloid characteristics on fouling of nanofiltration membranes [J]. Journal of Membrane Science.2007,289(1-2):220-230.
    [138]Ni S, Gao B, Wang C, et al. Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules [J]. Bioresource Technology.2011,102(3): 2448-2454.
    [139]Bae H, Park K, Chung Y, et al. Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR [J]. Process Biochemistry.2010,45(3): 323-334.
    [140]Dosta J, Fernandez I, Vazquez-Padin J R, et al. Short-and long-term effects of temperature on the Anammox process [J]. Journal of Hazardous Materials.2008,154(1-3):688-693.
    [141]Third K A, Paxman J, Schmid M, et al. Enrichment of Anammox from Activated Sludge and Its Application in the CANON Process [J]. Microbial Ecology.2005,49(2):236-244.
    [142]Ni S, Gao B, Wang C, et al. Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules [J]. Bioresource Technology.2011,102(3): 2448-2454.
    [143]Tran H, Park Y, Cho M, et al. Anaerobic ammonium oxidation process in an upflow anaerobic sludge blanket reactor with granular sludge selected from an anaerobic digestor [J]. Biotechnology and Bioprocess Engineering.2006,11(3):199-204.
    [144]Fernandez I, Vazquez-Padin J R, Mosquera-Corral A, et al. Biofilm and granular systems to improve Anammox biomass retention [J]. Biochemical Engineering Journal.2008,42(3):308-313.
    [145]Yang Z, Zhou S, Sun Y. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor [J]. Journal of Hazardous Materials.2009,169(1-3):113-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700