用户名: 密码: 验证码:
吸附与电化学氧化联合处理染料废水的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料生产企业在生产过程中产生的染料废水成分相当复杂,往往含多种有机染料并且毒性强,色度深,pH值波动大,难降解,组分变化大,水量大,浓度高。所以染料废水是工业废水处理的难点,而开发有效的染料工业废水处理技术是环保行业关注的重要课题。
     针对染料废水污染问题,本文分析了染料废水的来源并阐述了染料废水的特征及染料废水的危害和染料废水的处理意义。通过对国内外染料废水处理现状分析确定采用吸附—电解联合处理法对染料废水进行处理。
     本文采用了大孔吸附树脂吸附与电化学氧化联用技术处理染料废水。先利用大孔吸附树脂吸附染料废水中的芳香族环类化合物,测定了各种实验条件下出水的CODcr和色度。实验结果表明:pH值对大孔树脂吸附染料废水产生明显影响。溶液碱性条件下更有利于大孔树脂吸附染料废水中的有机物。树脂用量越多对有机物的吸附越快,吸附量越多。但废水中有机物成分多样,仍然有一些污染物是比较难被大孔树脂吸附的,大孔树脂更容易吸附那些与其骨架相似的芳香族环类化合物。吸附时间越长大孔树脂吸附的有机物越多,反应时间超过7小时以后到8小时,CODcr变化不大,吸附达到平衡。但CODcr值仍然很大,所以需要联合电化学氧化法对废水进行再处理。
     本文应用热分解法自制了钛基二氧化铅阳极,钛基二氧化铅电极是不溶性阳极。主要是通过产生的羟基自由基来氧化废水中的有机物。羟基自由基的氧化电位高,在已知的氧化剂中仅次于F2,能够氧化绝大多数有机污染物,且无选择性,反应速率可以调节。但对于本文采用的染料废水原液处理效果不理想,副反应多,耗能大。对于大孔树脂吸附后的废水有良好的处理效果。实验结果表明:较高的电流强度更有利于废水中CODcr的去除。但是强度达到80mA,反应剧烈,副反应增多,电极两端产生大量气泡,影响有机物污染物的传质环境。搅拌对于电解体系来说主要是改善了传质环境,使电极产生的羟基自由基能够与有机物充分接触。从而提高有机物的去除率。本文选择了只起导电作用的Na2SO4为电解质,来考察电解质对电解的影响。发现不同电解质浓度对电解体系有影响。浓度越高越有利于电解。但当有机物浓度降低到一定程度后,高浓度电解质会使得电解反应过于剧烈,相比较下副反应会增多,同时又影响了羟自由基与污染物的接触。pH值对电极生成羟基自由基,污染物在废水中的形态、之间的相互作用都有影响,本文考察了不同pH值下电解3小时时污染物的去除情况。电解3小时pH值对CODcr的去除影响不大。极板间距对于废水CODcr去除率影响有限。
     大孔吸附树脂和电化学联用实验表明:大孔吸附树脂选择性吸收了染料废水中的芳香族环类化合物,而电解法对树脂吸附后的废水中残留的有机物去除有良好的针对性,反应速率快。整个系统扩大了对进水CODcr的适用范围,且总去除率可达99%,最终出水CODcr<100mg/L。
The dyeing wastewater. which produced in the production of dyeing factories is considerable complex. It contains many kinds of organic dyestuff. It has complex characteristic, such as strong toxicity, deep tone, the wide fluctuations, difficult biodegradable, the wide variation of composition, a large quantity of water and density. So dyeing wastewater is the difficulty of industry wastewater treatment. Understanding and developing effective technology of dyeing industry wastewater treatment is the important task of environmental protection industry.
     The study is in connection with the problem of the pollution of printing and dyeing wastewater, both analyzing the sources of dyeing wastewater and expounding the characteristics, harm and meanings of treatment of dyeing wastewater, while explaining conditions of dyeing wastewater at home and abroad.after fairly effective domestic and foreign methods of treatment have been both analyzed and contrasted, it is determined to use adsorption—Electrolysis to cope with dyeing wastewater.
     In this study, dyeing wastewater was treated by that macroporous resin adsorption method combined with electrochemical oxidation process. Macroporous resin has adsorbed compounds in the aromatic ring which were in deying wastewater. We have measured the Chemical Oxygen Demand (CODcr) and color under various experimental conditions. Experimental results shows that:pH value of dyeing wastewater made significant impact when doing absorption. Under alkaline conditions. Macroporous is more conducive to adsorption of organic compounds in wastewater. The more amount of resin the faster adsorption of organic compounds and the more adsorption amount. Variety of organics components in wastewater, There are still some contaminants are more difficult to be macroporous resin adsorption. Macroporous resin is more easily absorbed aromatic ring compounds which have the same frame structure with it. When time growing, more organic compounds be adsorbed. Reaction time over 7 hours to 8 hours, CODcr have been little changed, so the adsorption reach equilibrium. But the CODcr value is still large, amounting to less than emission standards Therefore it need to combine electrochemical oxidation for wastewater re-treatment.
     In this paper, a titanium-made thermal decomposition of lead dioxide anode. Titanium is insoluble lead dioxide anode electrode. Mainly through hydroxyl radicals produced to oxidize organic matter in wastewater. Hydroxyl radicals have High oxidation potential. Second only to the known oxidant F2. Most organic pollutants can be oxidated without select. Reaction rate can be adjusted. But for the liquid dye wastewater used in this treatment are not effective. Many side reactions, high energy consumption. For water which had been treated by Macroporous resin have a good result. The results show that Higher current strength is more conducive to the removal of CODcr in wastewater. when the strength reaches 80mA, Severe reactions and side effects increase, Electrodes at both ends had generated a large number of bubbles. Mass of organic environmental pollutants. For the electrolytic system,mixing mainly to improve the environment of mass transfer. Hydroxyl radicals produced by the electrode to full contact with the organic matter. Thereby enhancing the removal rate of CODcr. This paper chose the Na2SO4 to be electrolyte which Only play the role of conducting. Study the impact of electrolyte on the electrolytic. We found that different concentration of electrolyte influence on the electrolytic system The higher the concentration the better electrolysis. When the organic matter concentration decreased to a certain extent, High electrolyte concentration will make the electrolysis reaction is severe, At the same time side effects will be increased. It affects Hydroxyl radicals contact with the contaminants. pH value have impact on hydroxyl radicals, on the form of pollutants in wastewater. and the interaction among pollutants. This paper examines the different pH, electrolysis time 3 hours pollutant removal situation. PH value of electrolyte 3 hours had little effect on CODcr removal, plate distance has little impact on CODcr removal rate
     The results show that macroporous resin adsorbs aromatic compounds which were in the wastewater, then electrochmical oxidation process treats those remains very well, which were left from adsorption, the whole system makes greater range of CODcr of dyeing wastewater could be treated,and the CODcr removal of dyeing wastewater was approximately 99%. Finally the CODcr of treated wastewater was under 100 mg/1.
引文
[1]Mark A. Shannon, Paul W. Bohn, Menachem Elimelech.Science and technology for water purification in the coming decades.[J]Nature2008,452:301-310
    [2]许昭怡,张全兴,陈金龙.大孔树脂吸附法在含酚废水处理中的应用[J].上海环境科学,2000,19(9):429-431
    [3]李佳珍.染料、染色工业废水处理.化学工业出版社,1997
    [4]孟范平,易怀昌.各种吸附材料在印染废水处理中的应用[J]材料导报.2009,23(7):69-73
    [5]Yahya S, Musa I, Amjad H, et al. Effect of solution pH ionic strength and temperature on adsorption behavior of reactive dyes on activated carbon [J]. Dyes and pigments,2008,77(1):16
    [6]叶玲,肖子敬,黄继泰.改性膨润土在红色染液脱色处理中的应用[J].华侨大学学报(自然科学版),2000,21(4):366
    [7]弓晓峰,张文涛,崔秀丽.海泡石在废水处理中的应用研究[J].环境污染治理技术与设备,2003,4(9):27
    [8]张竹青.粉煤灰对有机活性染料脱色效果的研究[J].吉林农大学报,2003,25(4):416
    [9]Mane V S, Mall D I, Srivastava C V. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice hush ash[J]. J Environ Manage,2007,84(4):390
    [10]李志平,欧阳玉祝,麻成金,戴雨萱,瞿张.大孔树脂吸附法处理印染废水的研究[J]广西民族学院学报.2005,11(2):95-97
    [11]王萍.膜分离技术在污水回用中的应用.[D]合肥工业大学硕士学位论文.2002
    [12]夏俊方.膜分离技术处理电镀废水的实验研究.[D]西南交通大学研究生学位论文.2002
    [13]余国琮,袁希钢.我国蒸馏技术的发展现状[J]现代化工.1996.10:7-12
    [14]JING Xiao-hui,YOUKe-fei,DING Xin-yu,CAI Zai-sheng. Research and Development in Techniques of Dyeing Wastewater Treatment[J]. Journal of Nantong University (Natural Science),2005,4(3):18-21
    [15]Shen Z Z, Ch en J Z, Wu S J. S on olysis and mineraliz at ion of pent achl orophen ol by means of varying parameters. Journal of Environment al S cien ces, 2004,16(3):431~435
    [16]高宇,傅敏,黄俊.超声波协同电化学氧化降解苯胺的研究[J].化工环保.2003,23(6):318-321
    [17]卞华松,张大年,刘静等.水溶液中硝基苯的超声微电场降解[J].环境化学.2002,21(3):264-269
    [18熊宜栋,硝基苯制药废水的超声处理研究[J].工业水处理,2003,23(1):44-46
    [19]张良林,徐晓军,郭建民.均相Fenton氧化—曝气生物滤池处理酸性玫瑰红染料废水[J].化工环保,2006,6(1):38-40
    [20]刘淼,刁伟力,吴迪,焦听倩,李延莉,全福民,羟自由基在电极电解过程中的形成规律[J],高等学校化学学报,2005,26(12):2223-2226
    [21]刘歆,刘泽洋,冷粟,陈嵩岳,刘南,王宪恩.絮凝处理染料废水的电解实验研究[J]东北师大学报,2010,42(4)96-100
    [22]汤鸿宵.羟基聚合氯化铝的絮凝形态学[J].环境科学学报.1998.18(1):1-10
    [23]俞小明,杨岳平,徐新华.高级光化学氧化技术及应用[J]环境科学导刊.2010,29(2):4-6
    [24]李田.光化学氧化法的类型及研究进展[J]环境污染与防治.1993,15(1):32-34
    [25]崔斌.Fe2O3掺杂TiO2薄膜对甲基紫溶液光催化降解[J].应用化学2001,18(12):958-961
    [26]白波.纳米Ti02薄膜光催化降解酸性粒子元青溶液的研究[J].2002,24(3):140-143
    [27]杨爱丽.负载型光催化剂降解有机废水的研究进展,工业水处理[J].2003,23(3):1-4
    [28]张立超.大庆油田化工工业污水处理技术研究[D].吉林:吉林大学硕士学位论文,2009
    [29]石玲玲,大孔树脂对灰黄霉素提取液中色素的吸附脱色[D].内蒙古:内蒙古 工业大学硕士学位论文,2007
    [30]高蓉,刘明霞等.化香树果序多酚在大孔吸附树脂上吸附特性及热力学研究[J]离子交换与吸附,2010,26(6)542-550
    [31]吕建.大孔树脂在食品中果绿检测及废水处理中的应用研究.[D]浙江:浙江工商大学硕士学位论文,2009
    [32]COMNINELLIS C, NERINI A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment [J]. J App l Electrochem,1995,25(1):23-28.
    [33]SMITH De Sucre V, WATKINSON A P. Anodic oxidation of phenol for waste water treatment [J]. Can J Chem Eng,1981,59(1):52-59.
    [34]LIN S H, SHYU C T, SUN M C. Saline wastewater treatment by electrochemical method[J]. Wat Res,1998,32(4):1 059-1 066.
    [35]PULGARIN C, ALDER N, PERINGER P, et al. Electrochemical detoxification of a 1,4 benzoquinone solution in wastewater treatment [J]. Wat Res.1994, 28(4):887-893.
    [36]SHARIFIAN H, KIRK D W. The Electrochemical Oxidation of phenol[J]. J Electrochem Soc,1986,133(5):921-924.
    [37]杨书铭,黄长盾,纺织印染废水治理技术.[M]化工工业出版社,2002年5月第H版
    [38]CHUANPING F, NORIO S, SATORU S. Development of high per formance electrochemical wastewater treatment system[J].J Haz a rd Mater,2003, B103: 65-78.
    [39]王辉,王建中,张萍.电化学氧化法处理难降解有机废水的研究进展[J].宝鸡文理学院学报.2004.24(4):279-283
    [40]D.C. Johnson, N. Roovic, J. Feng, L.L. Houk, K.T. Kawago, Eletrochem. Soc. Proc.95-26(1996)176
    [41]C.P. Huang, Chien-Sheng Chu,1st Chem. Oxid. Proc. Intern. Symp., Technomic, Lancaster,Pa,1992,p p.2 39-53
    [42]Ch. Comninellis, C. Pulgarin, J. Appl. Electrochem.21 (1991) 703
    [43]Ch. Comninellis, C. Pulgarin, J. Appl. Electrochem.23 (1993) 108. (b)
    [44]V. Smith De Sucre, A.P. Watkinson, Can. J. Chem. Eng.59 (1981)52
    [45]H. Sharifian, D.W. Kirk, J. Eslectrochem. Soc.133 (1986) 921
    [46]王辉,王建中,张萍.电化学氧化法处理难降解有机废水的研究进展[J].宝鸡文理学院学报.2004.24(4):279-283
    [47]孙境蔚.电絮凝技术在废水处理中的应用[J].泉州师范学院学报.2006,24(6):55-59
    [48]董晓丹,王恩德,王晨煜.用电凝聚装置去除废水中重金属离子[J].安全与环境学报,2002,2(1):24-27
    [49]王翠,史佩红,杨春林,耿艳楼.电化学法在废水处理中的应用[J].2004,21(1):49-53
    [50]张清松,吴辉煌.苯酚在热分解法制备的SnO2/Ti电极上的电氧化研究[J].电化学,1999,5(4):401-405
    [51]冯玉杰等,电化学技术在环境工程中的应用[M],北京:化学工业出版社2002
    [52]张招贤,钛基二氧化铅电极的改进和应用[J],氯碱工业,1996,(8):17-23
    [53]冯玉杰,沈宏,崔玉虹等,钛基二氧化铅电催化电极的制备及电催化性能研究[J],分子催化,2002,16(3):181-186
    [54]Daneshvar,N.Ashassi-Sorkhabi, H. Tizpar, A..Decolorization of orange by electrocoagulation method[J]. Seperation & Purification Technology,2003,31 (2):153-162
    [55]刘怡,张剑辉,梁龙五.高色度印染脱色处理[J].工业水处理,1998,18(4)16-25
    [56]康春莉,徐自立,马小凡,环境化学实验[M],长春:吉林大学出版社,2000,87-89
    [57]国家环境保护总局.水和废水检测分析方法[M]第4版.北京;中国环境科学出版社,2002:211-213
    [58]夏玉宁.化学实验室手册(M)化学工业出版社2003
    [59]冷粟,非均相电催化氧化处理硝基苯废水的研究.[D]吉林:吉林大学硕士学位论文.2009
    [60]R.T.Pelegrini,R.S.Freire, N.Duran. R.Bertazzoli. Photoassisted-electrochemical degradation of organic pollutants on a DSA type oxide electrode:process test for a phenol synthetic solution and its application for the E1 bleach Kraft mill effluent[J], Environ.Sci.Technol,2001,35(13):2849-2583
    [61]冷粟,非均相电催化氧化处理硝基苯废水的研究[D].吉林:吉林大学硕士学位论文.2009
    [62]刘淼,刁伟力,吴迪,焦昕倩,李延莉,全福民,羟自由基在电极电解过程中的形成规律[J],高等学校化学学报,2005,26(12):2223-2226
    [63]Xu W Y, Gao T y, Fan J H. Reduction of nitrobenzene by the catalyzed Fe-Cu process[J].J Hazard Materi,2005,B123:232-241
    [64]李鸿江,温致平,赵由才.大孔吸附树脂处理工业废水研究进展[J]安全与环境工程2010,17(3)21-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700