用户名: 密码: 验证码:
高超声速低温喷管横向射流混合反应机理的数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速低温喷管作为高能化学激光器先进喷管的代表,在气流输运、混合及反应方面发挥着举足轻重的作用。喷管光腔内会发生多种复杂的物理化学过程,涉及气体动力学、化学非平衡反应动力学以及增益介质的激光物理学,因此对这些关键过程开展全面深入的研究具有十分重要的意义。
     本文采用理论分析、数值仿真和实验研究等多种手段,对高超声速低温喷管横向射流的混合反应过程及光腔受激辐射过程进行机理性的研究。
     发展了适用于化学激光器喷管及光腔数值模拟的混合RANS/LES方法;综合运用多种流场显示技术和数值仿真手段,系统分析了HYLTE喷管超声速横向喷射流动的混合特征,获得了副喷管喷射角、副喷管间距和射流总压改变对混合特征和激波结构的影响规律。为了增强HYLTE喷管内多射流的混合效果,需要综合考虑射流穿透深度、射流与来流交界面面积、总压损失、混合距离及射流与来流的压力匹配等问题。
     通过对HYLTE氧化剂喷管前段进行数值分析得到喷管光腔耦合段入口截面上的流动参数,分析了氧化剂喷管入口总压、喉部高度、超声速段扩张角和氟原子复合效应对流场边界层厚度和气流均匀性的影响。
     对典型构型的HYLTE喷管光腔耦合段横向射流的非定常混合过程进行了数值仿真,结果表明,倾斜多射流引入的流向旋涡和交界面的扭曲拉伸是喷管流动混合的显著特征;分析了副喷管喷射角、副喷管串联间距、副喷管并联间距对射流穿透、总压损失及混合效率的影响:喷射角越大,反转旋涡对的强度越大,射流界面的扭曲拉伸越明显,同时射流穿透深度越大,混合效率越高,但压力损失也越大;串联间距及并联间距过大或过小均不利于混合效率和总压恢复性能的提高;增大副喷管喷射角对改善混合效果的作用最为明显。
     提出了DF化学激光器两种反应体系下的简化化学反应动力学模型,分析了简化对于预测燃烧温度、热力学参数、介质组分浓度、小信号增益及折射率分布的影响。结果显示,简化模型在有效概括DF化学反应过程的同时较大程度上提高了计算效率,更适合与三维数值仿真程序或软件进行流场耦合计算。
     采用简化模型、应用混合RANS/LES方法对HYLTE喷管基准构型和副喷管喷射角改变时的反应流场进行了数值模拟,结果表明,反应放热会导致流场中流向旋涡的强度低于冷态情况,但是反转旋涡对的存在使得反应界面扭曲,有利于燃料与氧化剂的扩散混合,可以加速化学反应进程和增益介质的形成;光腔流场存在局部的低频压力振荡,反应流场的总压损失也高于冷态流场;小信号增益主要分布在光腔中心线附近的狭窄区域,随着副喷管喷射角的增大,高增益区前移并且增益区长度明显缩短;副喷管喷射角增大,总压损失增大,介质气流的非均匀性增加;副喷管喷射角为40度时,高增益区分布位置适中而且增益区长度最长,可以有效降低激光器腔镜的负载。
     将几何光学模型耦合到反应流场计算中,模拟了超声速DF化学激光器光场从初始建立到稳定过程中流场及光场的变化情况,发现激光辐射主要影响激射能级分子的布居数和介质气体的能量,对基本流场参量的影响较小;无激射时在较宽的范围内都可以发生DF分子的粒子数全反转,有激射时激光输出是建立在DF分子振–转跃迁的粒子数部分反转基础上的。
     提出了一种基于HYLTE喷管的超声速DF-CO_2转移型化学激光器方案,分析了化学反应动力学模型、副喷管组分配比和工作参数对转移型激光器流场以及光学性能的影响,结果表明简化模型能更明了的解释激光器中的物理化学过程,也能准确预测激光器的性能参数;合理的选择副喷管组分配比和工作参数可以得到理想的、分布均匀的小信号增益系数。
Hypersonic low temperature (HYLTE) nozzle is an advanced nozzle for high power chemical laser, which has great influences on gas transporting, mixing and reacting. Many complicated processes are found to exist in this nozzle and contiguous cavity, including gas dynamics, nonequilibrium chemical kinetics, and laser physics of gain mediums. It is important to investigate into these key processes systematically. Using a combination of theoretical analysis, numerical simulation and experimental observation, the mechanism of mixing, reacting and radiating processes in the coupled section of HYLTE nozzle and cavity were studied.
     The numerical simulation program suitable for the nozzle and optical cavity was developed, mainly based on the method of hybrid RANS/LES. Utilizing experimental techniques and numerical methods, the flow patterns and mixing characteristics of supersonic angled jets into a supersonic crossflow were investigated and analyzed comprehensively. The changing tendencies of the mixing characteristics with the altering of secondary injection angle, secondary orifice separation and injection stagnation pressure were examined. In order to enhance the mixing effect of multiple oblique injections in HYLTE nozzle, the penetration depth, the contacting area of jets and crossflow, the total pressure loss, the mixing length and the local pressure matching should be considered simultaneously.
     The forepart of HYLTE oxidant nozzle was simulated numerically with the purpose of obtaining the inlet flow parameters of the coupled section. The influences of the factors including the inlet stagnation pressure, the throat width, the expanding angle of supersonic section and the recombination effect of F atom on the thickness of the boundary layer and the homogeneity of the gas flow were analyzed.
     The three-dimensional unsteady mixing flowfields generated by supersonic transverse injections in HYLTE nozzle with several typical configurations were studied. Results showed that streamwise vortices, contacting surface distorting and stretching dominated and accelerated mixing. Geometric parameters, such as secondary injection angle, tandem distance and parallel distance affecting the penetration depth, the mixing efficiency and the total pressure loss were investigated. The strength of the counter rotating pairs of vortices, and as a result, the reactant surface entrainment increased with increasing injection angle. At the same time, the injectant penetration and mixing rate increased, which was consistent with the increase in total pressure loss. Neither the narrow nor the broad tandem/parallel distance would improve the mixing efficiency and pressure recovery coefficient. The parameter which made an obvious impact on HYLTE nozzle mixing performance was the injection angle of secondary nozzles.
     Based on the detailed DF chemical kinetic models of two different reactant systems, the relevant simplified chemical kinetic mechanisms were presented. The simplification affecting the calculation of the combustion temperature, the thermodynamic parameters, the DF mole fractions, the small signal gain and the refractive index were presented. Compared with the detailed mechanism, the simplified mechanism described the general DF combustion process effectively, and at the same time elevated computational efficiency to a great extent, therefore it was more suitable to couple with three-dimensional flowfield numerical simulation code or software.
     The reacting flowfields under three different injection angles were simulated with the simplified chemical kinetic model and hybrid RANS/LES method. Results showed that the strength of the streamwise vorticities was reduced as a result of heat release, but the existing of counter rotating pairs of vortices would distort the contacting surface and enhance the mixing of fuel and oxidant, and therefore accelerate the reacting process and the production of gain medium. Combusting flowfields could induce low-frequency pressure instability and higher total pressure losses in the cavity. Moreover, the small signal gain coefficient distributed in a narrow center region in the cavity. As the injection angle increased, the high gain zone appeared to be shorter and closer to the nozzle exit plane. Generally, larger injected angle was associated with greater total pressure loss and nonuniformity of the gas flow. The high gain zone distribution was appropriate and its length reached a maximum with the injection angle of 40 degree, which could reduce the lasing load of cavity mirrors efficiently.
     Geometric optical model was coupled to the reacting flowfield computation, the variation of flow and optical fields from the establishment to the stabilization status in supersonic DF chemical laser were simulated. It was observed that laser radiation generally had dominant effects only on the concentrations of the lasing species, and it had relatively minor effects on the basic fluid dynamic parameters. For the case without lasing, the complete population inversion phenomena could be found in wider range, which did not occur for lasing. The lasing output was based on the partial population inversion of the vibration- rotation transition in DF molecules.
     A kind of supersonic DF-CO_2 transfer chemical laser based on HYLTE nozzle was presented. The variations in the reacting flowfield and gain performance under different chemical kinetic models, secondary species ratios and operation parameters were obtained. Results showed that the simplification of kinetic model lent itself to easy physical interpretation and permitted efficient and accurate prediction of performance characteristics. Reasonable choices of secondary species ratios and operation parameters could acquire ideal small signal gain uniformly distributed.
引文
[1] Duncan W A, Rogers B J, Holloman M E, et al. Hydrogen fluoride overtone chemical laser technology [J]. AIAA Journal, 1991, 29 (12):2181-2184.
    [2] Graves B R, Duncan W A, Patterson S P, et al. HF overtone chemical laser technology [C]. Proc of SPIE, 1995, 2702:357-367.
    [3] Duncan W A, Patterson S P, Graves B R, et al. Gain generator optimization for hydrogen fluoride overtone and fundamental chemical laser [C]. Proc of SPIE, 1993, 1871:123-134.
    [4] McGregor R D, Haflinger D E, Lohn P D, et al. Modeling of HF chemical laser flowfields using the direct simulation monte carlo method [R]. AIAA 92-2980, 1992.
    [5] Waldo R E, Betts J A, Graves B R, et al. Approach for reduced heat loss in HYLTE laser module [R]. AIAA 97-2422, 1997.
    [6] Graves B R, Patterson S, Betts J A, et al. Ring manufacturing and fabrication for HYLTE nozzles [R]. AIAA 99-3474, 1999.
    [7] Kwok M A. Modeling HF gain generator F-atom flows [R]. AIAA 2000-2497, 2000.
    [8]袁圣付,华卫红,姜宗福. CW DF/HF化学激光器新型喷管气流掺混的三维模拟[J].中国激光(增刊), 2002, A29 (6):188-192.
    [9]怀英,贾淑芹,金玉奇.化学氧碘激光器内流场亚跨超音速混合的大涡模拟研究[J].强激光与粒子束, 2009, 21 (7):977-981.
    [10] Spencer D J. A continue-wave chemical laser [J]. Int. J. Chem. Kinetics, 1969, 1:4-39.
    [11] Spencer D J, Mirels H, Jacobs T A. Initial performance of a CW chemical laser [J]. Opto-Electronics, 1970, 2:155-160.
    [12] Cool T A, Falk T J, Stephens R R. DF-CO2 and HF-CO2 continuous-wave chemical lasers [J]. Applied Physics Letters, 1969, 15:318-320.
    [13]庄琦,桑凤亭,周大正.短波长化学激光[M].北京:国防工业出版社,1997.
    [14] Gross R W F, Bott J F. Handbook of chemical lasers [M]. John Wiley & Sons, 1976.
    [15]谈洪,李宗厚.气动激光技术[M].北京:国防工业出版社, 1997.
    [16] Driscoll R J, Tregay G W. Flowfield experiments on a DF chemical laser [J]. AIAA Journal, 1983, 21 (2):241-246.
    [17] Broadwell J E. Effect of mixing rate on HF chemical laser performance [J]. Applied Optics, 1974, 13 (4):962-967.
    [18]华卫红,姜宗福,赵伊君.连续波DF激光器高腔压运转的数值研究[J].强激光与粒子束, 1997, 9 (2):221-226.
    [19] Fedorov I A, Konkin S V, Rebone V K, et al. The results of investigations of overtone supersonic CW chemical HF lasers [C]. Proc of SPIE, 1998, 3574:355-360.
    [20] Konkin S V, Fedorov I A. Experimental investigation of a supersonic CW chemical HF laser with a three-jet nozzle array [C]. Proc of SPIE, 1998, 3574:612-617.
    [21] Voignier F, Merat F, Brunet H. Mixing diagnostic in a CW DF chemical laseroperating at high cavity pressure [C]. Proc of SPIE, 1990, 1937:297-301.
    [22] Cenkner A A, Driscoll R J. Laser-induced fluorescence visualization on supersonic mixing nozzles that employ gas-trips [J]. AIAA Journal, 1982, 20 (6):812-819.
    [23] Cenkner A A. Laser doppler velocimeter measurements on supersonic mixing nozzles that employ gas-trips [J]. AIAA Journal, 1982, 20 (3):383-389.
    [24] Driscoll R J. Mixing enhancement in chemical lasers, part I: Experiments [J]. AIAA Journal, 1986, 24 (7):11-20.
    [25] Albertine J R. Recent high energy lasers system tests using the MIRACL/SLBD [C]. Proc of SPIE, 1993, 1871:229-239.
    [26] Graves B R, Duncan W A, Patterson S P, et al. Optical system design, modeling, and analysis of selected line HF and DF lasers [C]. Proc of SPIE, 1994, 2119:68-79.
    [27] Horkovich J A. Recent advances in the ALPHA high power chemical laser program [R]. AIAA 97-2409, 1997.
    [28] Cordi A, Lurie h, Callaban D, et al. ALPHA high power chemical laser program [C]. Proc of SPIE, 1993, 1871:110-122.
    [29] Shwartz J, Nugent J, Card D. Tactical high energy laser [J]. Journal of Directed Energy, 2003, 1:14-26.
    [30]章雅平.国外激光武器的发展日趋成熟[J].光子对抗通讯, 1994, 10:1-12.
    [31] Park J S. Study of population inversion and laser beam generation in DF chemical laser system [D]. Division of Aerospace Engineering, KAIST (Doctor Degree Thesis), 2005.
    [32] Park J S, Baek S W. Effects of pressure ratio on population inversion in a DF chemical laser with concurrent lasing [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 92:31-49.
    [33] Park J S, Baek S W. Numerical study of base effects on population inversion in DF chemical laser cavity [J]. International Journal of Heat and Mass Transfer, 2006, 49:4043-4057.
    [34] Park J S, Baek S W, Byun D. Variation of population inversion and gain characteristics with D2 injection angle in DF chemical laser cavity [J]. International Journal of Heat and Mass Transfer, 2008, 51:361-377.
    [35]邓锡铭,主编.中国激光史概要[M].北京:科学出版社, 1991.
    [36]颜慧芝.正支共焦非稳定腔输出光束能量分布的实验研究[J].中国激光, 1989, 16 (1):49-52.
    [37]姚翠月,孙超君,郭建增等.氮作稀释剂DF化学激光器性能评价[J].强激光与粒子束, 1992, 4 (4):588-591.
    [38]黄瑞平,孙以珠,桑凤亭等.连续波HF化学激光器小信号增益的测量[J].中国激光, 1983, 11 (5):281-283.
    [39]桑凤亭,周大正,金玉奇等.化学激光[M].北京:化学工业出版社, 2000.
    [40]桑凤亭,顾成洲,庄琦等.燃烧驱动连续波氟化氢(氘)化学激光器-三维列阵小孔喷管研究[J].强激光与粒子束, 1991, 3 (3):323-329.
    [41]桑凤亭,金玉奇,多丽萍.化学激光及其应用[M].北京:化学工业出版社, 2006.
    [42]多丽萍,杨柏龄.气流化学激光测试诊断技术[M].北京:科学出版社, 2005.
    [43]刘泽金,陆启生,赵伊君.高能非稳腔激光器光束质量评价的探讨[J].中国激光, 1998, 25 (3):193-196.
    [44]陈金宝,赵伊君,刘泽金等.燃烧驱动连续波DF化学激光器的输出光谱[J].国防科技大学学报, 1999, 21 (3):29-33.
    [45]杜少军,陆启生,赵伊君等.激光窗口形状对应力和光束位相影响的数值计算[J].强激光与粒子束, 2000, 12 (3):273-276.
    [46]刘天华,姜宗福,陈付幸等.高能激光器气动窗口光束质量测量方法探讨[J].红外与激光工程, 2002, 31 (3):216-266.
    [47]华卫红.高功率连续波DF/HF化学激光器数值模拟研究[D].长沙:国防科学技术大学(博士学位论文), 1997.
    [48]华卫红,姜宗福,赵伊君.喷管结构对化学激光器性能的影响[C].第十二届全国激光学术会议, 1996.
    [49]华卫红,姜宗福,赵伊君.三喷管型连续波HF化学激光器性能的数值模拟研究[J].中国激光, 1997, A24 (3):221-228.
    [50]华卫红,姜宗福,赵伊君.连续波DF化学激光器的数值模拟研究-不同燃料和稀释剂的性能差异[J].中国激光, 1998, A25 (1):197-204.
    [51]袁圣付.连续波DF/HF化学激光器新型增益发生器的理论设计[D].长沙:国防科学技术大学(博士学位论文), 2002.
    [52]袁圣付. CW DF/HF化学激光器性能与流场参数的相互关系[J].中国激光, 2001, A28 (5):402-406.
    [53]袁圣付,华卫红,姜宗福.采用超音速低温喷管的小型连续波DF化学激光器性能分析[J].中国激光, 2003, 30 (4):295-299.
    [54]李兰.连续波DF/HF化学激光器增益发生器结构与运转模式数值模拟研究[D].长沙:国防科学技术大学(博士学位论文), 2010.
    [55]李兰,华卫红,袁圣付等.连续波DF/HF化学激光器收缩段氦气膜注入式新型喷管的理论研究[J].中国激光, 2009, 36 (2):362-366.
    [56]李兰,华卫红,袁圣付等.连续波氟化氘/氟化氢化学激光器TRIP技术混合机理[J].强激光与粒子束, 2009, 21 (1):15-19.
    [57]李兰,袁圣付,华卫红等.扰流气对TRIP增益发生器影响的数值分析[J].强激光与粒子束, 2009, 21 (6):826-830.
    [58]唐力铁.燃烧驱动DF/HF化学激光器压力恢复若干问题研究[D].长沙:国防科学技术大学(博士学位论文), 2005.
    [59]徐万武.高性能、大压缩比化学激光器压力恢复系统研究[D].长沙:国防科学技术大学(博士学位论文), 2003.
    [60] Cool T A. The transfer chemical laser: a review of recent research [J]. IEEE Journal of Quantum Electronics, 1973, QE-1 (1):72-83.
    [61] Roberts T G, Ala H. Supersonic chemical transfer laser [R]. United States Patent:3832650, 1974.
    [62] Airey J R. ARPA-NRL laser program [R]. AD785234, 1974.
    [63] Fedorov I A, Konkin S V, Rebone V K, et al. Effect of the method of secondary-fuel supply on the characteristics of a CW chemical HF laser with a three-jet nozzle array [J]. Quantum Electronics, 2001, 31 (6):520-524.
    [64] Driscoll R J. Effect of reactant-surface stretching on chemical laser performance [J]. AIAA Journal, 1984, 22 (1):65-74.
    [65] Sentman L H, Eyre A J, Wootton B P, et al. Comparison of CW HF laserperformance for several nozzles [R]. AIAA 99-3649, 1999.
    [66] Wisniewski C F, Hewett K B, Manke G C, et al. Small signal gain measurements in a small scale HF overtone laser [J]. Applied Physics A, 2003, 77:337-342.
    [67] Yang T T, Hsia Y C, Moon L F, et al. Advanced mixing nozzle concepts for COIL [C]. Proceedings of SPIE, 2000, 3931:116-130.
    [68] Yang T T, Dickerson R A, Moon L F, et al. High mach number, high pressure recovery COIL nozzle aerodynamic experiments [R]. AIAA 2000-2425, 2000.
    [69]余真,李守先,陈栋泉.喷管、光腔及压力恢复系统一体化设计[J].强激光与粒子束, 2007, 19 (4):533-537.
    [70] Tei K, Sugimoto D, Fujioka T. Cold flow test of a new high-pressure nozzle bank for chemical oxygen iodine laser [R]. AIAA 2004-2736, 2004.
    [71] Ferrell J E, Kendall R M, Tong H. Recombination effects in chemical laser nozzles [R]. AIAA 73-643, 1973.
    [72] Zelazny S W, Driscoll R J, Raymonda J M. Modeling of DF/HF CW lasers: An examination of key assumptions [R]. AIAA 77-0063, 1977.
    [73] Hendricks W L, Mikatarian R R, Gross B J. Solutions for the full Navier-Stokes equations for reacting three-dimensional chemical laser cavity and diffuser flow fields [R]. AIAA 81-1133, 1981.
    [74] Long J E, Smith W. A 2D CFD comparison of straight versus contoured wall HF chemical laser nozzle designs [R]. AIAA 92-2979, 1992.
    [75] Egorov Y E, Rotinian M A, Strelets M K, et al. Navier-Stokes simulation of supersonic combustion in CW chemical laser with acount of upwind influence of cavity processes on nozzle array flow [J]. Numerical Methods in Thermal Problems, 1991, 7 (2):1186-1192.
    [76]庄琦,谢行滨,桑凤亭.激光诱导荧光法和化学发光法诊断连续波HF化学激光器超音速流场[J].宇航学报, 1984, 7:66-69.
    [77]周学华,陈海韬.连续波HF化学激光器计算浓度场的简化模型[J].中国激光, 1984, 11 (9):527-532.
    [78]刘文广,陆启生,刘泽金.基区无吹氦环柱型高超音速低温喷管流场分析[J].力学学报, 2006, 38 (2):162-169.
    [79]刘文广,陆启生,袁保论等.收缩段线型对超音速喷管氟原子气相复合的影响[J].力学学报, 2006, 38 (3):392-397.
    [80] Waldo R E. Advanced CW hydrogen fluoride chemical laser performance [C]. Proc of SPIE, 1993, 1871:254-264.
    [81] Carroll D L. Chemical laser modeling with genetic algorithms [J]. AIAA Journal, 1996, 34 (2):338-346.
    [82] Hyde J C, Huriock S C. Advanced chemical laser nozzle concepts [R]. AFWL-TR-74-173, 1975.
    [83] Rapagnani N L, S.J.Davis. Laser-induced I2 fluorescence measurements in a chemical laser flowfield [J]. AIAA Journal, 1979, 17 (12):1402-1404.
    [84] Driscoll R J, Tregay G W. Flowfield experiments on a tripped DF chemical laser [R]. AIAA 81-1271, 1981.
    [85] Konkin S V, Fedorov I A. Experimental investigation of a supersonic CW chemical HF laser with a three-jet nozzle array [C]. Proc of SPIE, 1998, 3574:612-617.
    [86] Sentman L H. Mechanisms of HF laser performance [C]. Proc of SPIE, 2001, 4184:137-144.
    [87]黄瑞平,谢行滨,桑凤亭等.连续波HF化学激光器中“热”流场的测量[J].应用激光, 1982, 2:4-6.
    [88]孙思远,桑凤亭,周必迁等.激光诱导荧光法显示超声速化学激光器的全流场[J].力学学报, 1984, 16 (1):92-96.
    [89]蔡光明,宋影松,杨维东等.氟化氢泛频化学激光器高超声速低温喷管研究[J].强激光与粒子束, 2002, 14 ( 2):228-232.
    [90]施建华,姜宗福,袁圣付等. HYLTE喷管流场混合性能的实验与数值模拟研究[J].强激光与粒子束, 2004, 16 (10):1240-1244.
    [91]施建华,姜宗福,袁圣付等.连续波DF/HF化学激光器HYLTE喷管混合性能的研究[J].中国激光, 2005, 32 (5):627-631.
    [92]杨文革. DF激光器小信号增益实验研究[D].长沙:国防科学技术大学研究生院(硕士学位论文), 2002.
    [93]郭婷婷,李少华,徐忠.横向紊动射流的数值与实验研究进展[J].力学进展, 2005, 35 (2):211-220.
    [94] Boreisho A S, Barkan A B, Vasil'ev D N, et al. Highly efficient CW chemical oxygen-iodine laser with transsonic iodine injection and a nitrogen buffer gas [J]. Quantum Electronics, 2005, 35 (6):495-503.
    [95] Ben-Yakar A. Experimental investigation of mixing and ignition of transverse jets in supersonic crossflow [D]. Stanford University (Doctor Degree Thesis), 2000.
    [96]刘君.超声速完全气体和H2/O2非平衡气体的复杂喷流流场数值模拟[D].绵阳:中国空气动力研究与发展中心(博士学位论文), 1993.
    [97]杨彦广,章起华,刘君.高超声速主流中完全气体横向喷流干扰特性研究[J].空气动力学学报, 2005, 23 (3):299-306.
    [98]赵桂林,彭辉,胡亮等.超声速流动中侧向喷流干扰特性的实验研究[J].力学学报, 2004, 36 (5):577-582.
    [99] Fric T F, Roshko A. Vortical structure in the wake of a transverse jet [J]. Journal of Fluid Mechanics, 1994, 279:1-47.
    [100] Ben-Yakar A, Kamel M, Morris C. Experimental investigation of H2 transverse jet combustion in hypervelocity flows [R]. AIAA 97-3019, 1997.
    [101] Hollo S D, Mcdaniel J C, Hartfield R J. Characterization of supersonic mixing in a nonreacting Mach 2 combustor [R]. AIAA 92-0093, 1992.
    [102] Hermanson J C, Winter M. Mie scattering imaging of a transverse sonic jet in supersonic flow [J]. AIAA Journal, 1993, 31 (1):129-132.
    [103] VanLerberghe W M, Santiago J G, Dutton J C, et al. Mixing of a sonic transverse jet injected into a supersonic flow [J]. AIAA Journal, 2000, 38 (3):470-479.
    [104] VanLerberghe W M, Dutton J C, Luncht R P, et al. Penetration and mixing studies of a sonic transverse jet injected into a Mach 1.6 crossflow [R]. AIAA 94-2246, 1994.
    [105] Mays R B, Thomas R H, Schetz J A. Low angle injection into a supersonic flow [R]. AIAA 89-2461, 1989.
    [106] Fuller E J, Thomas R H, Schetz J A. Effects of yaw on low angle injection into a supersonic flow [R]. AIAA 91-0014, 1991.
    [107] Fuller E J, Mays R B, Thomas R H. Mixing studies of helium in air at high supersonic speeds [J]. AIAA Journal, 1992, 30 (9):2234-2243.
    [108] Bayley D J, Hartfield R J. Experimental investigation of angled injection in a compressible flow [R]. AIAA 95-2414, 1995.
    [109] Williams S, Hartfiel R J. An analytical investigation of angled injection into a compressible flow [R]. AIAA 96-3142, 1996.
    [110] Bowersox R D W. Characterization of the three dimensional turbulent flow structure of angled injection into a supersonic cross flow [R]. AIAA 96-2662, 1996.
    [111] Bowersox R D W. Turbulent flow structure characterization of angled injection into a supersonic crossflow [J]. Journal of Spacescraft and Rockets, 1997, 34 (2):205-213.
    [112] Cox-Stouffer S K, Gruber M R. Effects of injector yaw on mixing characteristics of aerodynamic ramp injectors [R]. AIAA 99-0086, 1999.
    [113] Han D, Orozco V. Gross-entrainment behavior of turbulent jets injected obliquely into a uniform crossflow [J]. AIAA Journal, 2000, 38 (9):1643-1649.
    [114] Tomioka S, Jacobsen L S, Schetz J A. Angled injection through diamond-shaped orifices into a supersonic stream [R]. AIAA 2001-1762, 2001.
    [115] Sundararaj K, Dhandapani S. Numerical investigation on influence of injection angle on mixing in a staged transverse injection of fuel into supersonic airstream [J]. International Journal of Applied Engineering Research, 2007, 2 (3):467-481.
    [116] Fay J E, Rossmann T. Mixing measurements of transverse and oblique sonic jets in supersonic cross flow [R]. AIAA 2005-3713, 2005.
    [117] Dziuba M, Fay J, Rossmann T. Detailed study of mixing enhancement by jet modulation and oblique injection [R]. AIAA 2007-0117, 2007.
    [118] Adbelhafez A, Gupta A K, Balar R, et al. Evaluation of oblique and transverse fuel injection in a supersonic combustor [R]. AIAA 2007-5026, 2007.
    [119] Schadow K C, Gutmark E, Wilson K J, et al. Mixing characteristics of a ducted elliptical jet [J]. Journal of Propulsion and Power, 1988, 4 (4):328-333.
    [120] Gruber M R, Nejad A S, Chen T H, et al. Mixing and penetration studies of sonic jets in a Mach 2 freestream [J]. Journal of Propulsion and Power, 1995, 11 (2):315-323.
    [121] Gruber M R, Nejad A S. Transverse injection from circular and elliptic nozzles into a supersonic crossflow [J]. Journal of Propulsion and Power, 2000, 16 (3):449-457.
    [122] Gruber M R, Nejad A S, Dutton J C. Circular and elliptical transverse injection into a supersonic crossflow-the role of large-scale structures [R]. AIAA 95-2150, 1995.
    [123] Gruber M R, Nejad A S, Dutton J C. An experimental investigation of transverse injection from circular and elliptical nozzles into a supersonic crossflow [R]. Tech. Rep. WL-TR-96-2102, 1996.
    [124] Gruber M R, Nejad A S, Goss L P. Surface pressure measurements in supersonic transverse injection flowfields [R]. AIAA 97-3254, 1997.
    [125] Gruber M R, Nejad A S, Chen T H, et al. Large structure convection velocity measurements in compressible transverse injection flowfields [J]. Experiments in Fluids, 2005, 22:397-407.
    [126] Zukoski E E, Spaid F W. Secondary injection of gases into a supersonic flow [J]. AIAA Journal, 1964, 2 (10):1689-1696.
    [127] Cox-Stouffer S K, Gruber M R. Effects of spanwise injection spacing on mixing characteristics of aerodynamic ramp injectors [R]. AIAA 98-3272, 1998.
    [128] Mathur T, Cox-Stouffer S K, Hsu K Y, et al. Experimental assessment of a fuel injector for scramjet applications [R]. AIAA 2000-3703, 2000.
    [129] Schetz J A, Billig F S. Penetration of gaseous jets injected into a supersonic stream [J]. Journal of Spacecraft and Rockets, 1966, 3 (11):1658-1665.
    [130] Schetz J A, Thomas R H, Billig F S. Mixing of transverse jets and wall jets in supersonic flow [C]. IUTAM Symposium on Separated Flows and Jets, 1990.
    [131] Kishore A, Ghia U, Ghia K N. Numerical simulation of dual-jet system in cross flow [C]. 5th Joint ASME/JSME Fluids Engineering Conference, 2007
    [132] Ibrahim I M, Gutmark E J. Dynamics of single and twin circular jets in cross flow [R]. AIAA 2006-1281, 2006.
    [133] Yao Y. Numerical visualization of vortex flow behavior in square jets in cross-flow [J]. Journal of Visualization, 2008, 11 (4):319-327.
    [134] Yao Y. Direct numerical simulation of multiple jets in cross-flow [J]. Modern Physics Letters B, 2009, 23 (3):249-252.
    [135] Rizzatta D P. Numerical simulation of slot injection into a turbulent supersonic stream [J]. AIAA Journal, 1992, 30 (10):2434-2439.
    [136] Beketaeva A O, Naimanova A Z. Numerical simulation of a supersonic flow with transverse injection of jets [J]. Journal of Applied Mechanics and Technical Physics, 2004, 45 (3):367-374.
    [137] Tam C J, Baurle R A, Gruber M R. Numerical study of jet injection into a supersonic crossflow [R]. AIAA 99-2254, 1999.
    [138] Foster L E, Engblom W A. Computation of transverse injection into supersonic crossflow with various injector orifice geometries [R]. AIAA 2004-1199, 2004.
    [139] He H, Yu S T J. Three-dimensional simulation of transverse injection in a supersonic flow by the CESE method [R]. AIAA 2003-375, 2003.
    [140]孙得川,胡春波,蔡体敏.带有横向射流的三维超声速湍流流场分析[J].应用数学和力学, 2002, 23 (1):99-105.
    [141] Seonghyeon H, Haecheon C. Unsteady simulation of jets in a cross flow [J]. Journal of Computational Physics, 1997, 134:342-356.
    [142] Srinivasan R, Bowersox R D W. Assessment of RANS and DES turbulence models for supersonic jet interaction flows [R]. AIAA 2005-499, 2005.
    [143] Won S H, Jeung I S. DES Study of two-dimensional transverse injection jet into a supersonic cross flow [C]. Asian Joint Conference on Propulsion and Power, 2006.
    [144] Won S H, Jeung I S, Choi J Y. DES study of transverse jet injection into supersonic cross flows [R]. AIAA 2006-1227, 2006.
    [145] Won S H, Jeung I S. Three-dimensional dynamic characteristics of transverse fuel injection into a supersonic crossflow [R]. AIAA 2008-2515, 2008.
    [146] Peterson D M, Subbareddy P K, Candler G V. DES investigations of transverse injection into supersonic crossflow using a hybrid unstructured solver [R]. AIAA 2006-903, 2006.
    [147] Yuan L L, Street R L. Large-eddy simulation of a round jet in crossflow [J]. Journal of Fluid Mechanics, 1999, 379:71-104.
    [148] Fiorina B, Lele S K. Numerical investigation of a transverse jet in a supersonic crossflow using large eddy simulation [R]. AIAA 2006-3712, 2006.
    [149] Kawai S, Lele S K. Mechanisms of jet mixing in a supersonic crossflow: A study using large-eddy simulation [R]. Center for Turbulence Research Annual Research Briefs:353-365, 2007.
    [150] Kawai S, Lele S K. Large-eddy simulation of jet mixing in supersonic crossflows [J]. AIAA Journal, 2010, 48 (9):2063-2083.
    [151] Higglns K, Schmidt S. Simulation of a sonic jet injected into a supersonic cross-flow [C]. 16th Australasian Fluid Mechanics Conference, 2007.
    [152] Tylczak E B, Peterson D M, Candler G V. Hybrid RANS/LES simulation of transverse jet in supersonic crossflow with laser energy deposition [R]. AIAA 2010-4856, 2010.
    [153] Boles J A, Edwards J R, Baurle R A. Large-eddy/Reynolds-averaged Navier-Stokes simulations of sonic injection into Mach 2 crossflow [J]. AIAA Journal, 2010, 48 (7):1444-1455.
    [154] Ivanova E, Noll B, Aigner M. Unsteady simulation of turbulent mixing in jet in crossflow [R]. AIAA 2010-4724, 2010.
    [155] Manke G C, Hager G D. A review of recent experiments and calculations relevant to the kinetics of the HF laser [R]. AIAA 2002-2219, 2002.
    [156] Bullock D L, Valley M M. Detailed model of HF-DF chemical lasers [C]. Proc of SPIE, 1986, 642:20-27.
    [157] Mirels H. Translational and rotational nonequilibrium effect in CW chemical lasers [C]. Proc of SPIE, 1988, 1031:248-258.
    [158] Manke G C, Hager G D. A review of recent experiments and calculations relevant to the kinetics of the HF laser [J]. J. Phys. Chem. Ref. Data, 2001, 30 (3):713-733.
    [159] Cohen N. A review of rate coefficients in the H2-F2 chemical laser system- supplement [R]. SAMSO-TR-78-41, 1978.
    [160] Cohen N. A review of rate coefficients in the D2-F2 chemical laser system [R]. ADA043812, 1977.
    [161] Cohen N, Bott J F. A review of rate coefficients in the H2-F2 chemical laser system [R]. SAMSO-TR-76-82, 1976.
    [162] Cuellar E, Pimentel G C. Rotational laser emission by HF in the CIF-H2 chemical laser [J]. J. Chem. Phys., 1979, 71:1385-1391.
    [163] Cohen N, Kwok M A, Wilkins R L, et al. The status of rotational nonequilibrium in HF chemical lasers [R]. AIAA 83-1699, 1983.
    [164]Sentman L H. Rotational nonequilibrium in CW chemical laser [J]. J. Chem. Phys., 1975, 62:3523-3537.
    [165] Sentman L H. Line suppression and single line performance of a CW HF chemical laser [J]. Applied Optics, 1976, 15:744-747.
    [166] Hall R J. Rotational nonequilibrium and line-selected operation in CW DF chemical lasers [J]. IEEE Journal of Quantum Electronics, 1976, QE-12:453-462.
    [167]桑凤亭,黄瑞平,袁启年等.连续波DF化学激光的转动非平衡现象[J].中国激光, 1985, 13 (4):216-221.
    [168] Dickerson R A, Zajac L J, Hurlock S C. Chemical laser advanced nozzle development [R]. ADA027630, 1976.
    [169] Varma A K, Fishburne E S, Beddini R A. Modeling of turbulent mixing and reactions in chemical lasers [R]. ADA039010, 1977.
    [170] Rapagnani N L, Lankford D W. Time-dependent nozzle and base flow/cavity model of CW chemical laser flow fields [R]. AIAA 81-1135, 1981.
    [171] Aleksandrov B P, Stepanov A A. Comparison of well-known kinetic models by the CW HF and DF chemical lasers numerical simulation [C]. International Conference on Lasers, Applications and Technologies 2007: High-power Lasers and Applications. 2007.
    [172] William S K, Harold M. Numerical study of a diffusion type chemical laser [R]. AIAA 72-146, 1972.
    [173] Bullock D L, Wagner R J, Lipkis R S. New unstable resonator program [R]. TRW Company Report 00173-2-006447, 1973.
    [174] Quan V, Persselin S F, Yang T T. Computation of reacting flowfield with radiation interaction in chemical lasers [R]. AIAA 82-0402, 1982.
    [175] Bugglin R C, Shamroth S, Lampson A I. Three-dimensional (3-D) Navier-Stokes analysis of the mixing and power extraction in a supersonic chemical oxygen iodine laser (COIL) with transverse I2 injection [R]. AIAA 94-2435, 1994.
    [176] Lampson A I, Plummer D N, Erkkila J. Chemical oxygen laser (COIL) beam quality predictions using 3-D Navier-Stokes (MINT) and wave optics (OCELOT) codes [R]. AIAA 98-2991, 1998.
    [177] Yang T T. Computation of reacting flowfield with radiation interaction in chemical lasers [R]. AIAA 97-2384, 1997.
    [178]许晓军.气动光学的工程研究[D].长沙:国防科学技术大学(硕士学位论文), 2000.
    [179]贾淑芹.超声速氧碘化学激光器数值仿真及优化的研究[D].大连:大连海事大学(硕士学位论文), 2009.
    [180]贾淑芹,怀英,金玉奇.超声速化学氧碘激光器的流场与光场耦合仿真[J].激光与光电子学进展, 2009, 9:5963.
    [181] Arunajatesan S, Shipman J D. Hybrid RANS-LES simulations of cavity flow fields with control [R]. AIAA 2002-1130, 2002.
    [182] Arunajatesan S, Sinha N. Unified unsteady RANS-LES simulations of cavity flowfields [R]. AIAA 2001-0516, 2001.
    [183] Larcheveque L, Sagaut P, Le T. Large eddy simulation of flows in weapon bays [R]. AIAA 2003-778, 2003.
    [184] Gloerfelt X. Large eddy simulation of a high reynolds number flow over a cavity including radiated noise [R]. AIAA 2004-2863, 2004.
    [185] Smagorinsky J. General circulation experiments with the primitive equations I: The basic experiment [J]. Monthly Weather review, 1963, 91 (3):99-164.
    [186] Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds number [J]. Journal of Fluid Mechanics, 1970, 41:4-52.
    [187] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model [J]. Physics of Fluids, 1991, A3 (7):1760-1765.
    [188] Kim W W, Menon S. A new dynamic one-equation subgrid-scale model for large-eddy simulation [R]. AIAA 95-0356, 1995.
    [189] Erlebacher G, Hussaini M Y, Speziale C G, et al. Toward the large eddy simulation of compressible turbulent flows [J]. Journal of Fluid Mechanics, 1992, 238 (5):155-185.
    [190] Blin L, A H, L V. Large eddy simulation of compressible turbulent flows [R]. AIAA 99-0787, 1999.
    [191] Speziale C G. Turbulence modeling for time dependent RANS and VLES: A review [J]. AIAA Journal, 1998, 36 (2):173-184.
    [192] Spalart P R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES [C]. 1st Air Force Office of Scientific Research International Conference on DNS/LES, 1997.
    [193] Lenormand E. Subgrid-scale models for large-eddy simulations of compressible wall bounded flows [J]. AIAA Journal, 2000, 38 (8):1340-1350.
    [194] Fan T C, Tian M, Edwards J R. Validation of a hybrid RANS/LES simulationmethod for simulating cavity flameholder configurations [R]. AIAA 2001-2929, 2001.
    [195] Georgiadis N J, Alexander J I D, Reshotko E. Hybrid RANS/LES simulations of supersonic turbulent mixing [J]. AIAA Journal, 2003, 41 (2):218-229.
    [196] Tajiri K, Menon S. LES of combustion dynamics in a pulse combustor [R]. AIAA 2001-0194, 2001.
    [197] Pope S B. PDF methods for turbulent reacting flows [J]. Progress in Energy and Combustion Science, 1985, 11:119-192.
    [198]Mcmurtry P A. A linear subgrid model for turbulent mixing and reacting flows [J]. Proceedings of the Combustion, 1992, 24:271-278.
    [199] Williams F A. Progress in knowledge of flamelet structure and extinction [J]. Progress in Energy and Combustion Science, 2000, 26:657-682.
    [200] Bilger R W. Conditional moment closure for turbulent reacting flow [J]. Physics of Fluids, 1993, A5 (2):436-473.
    [201] Klimenko A Y. Multicomponent diffusion of various scalars in turbulent flow [J]. Fluid Dynamics, 1990, 25 (3):327-334.
    [202]童景山.流体的热物理性质[M].北京:中国石化出版社,1996.
    [203] Rohsenow W M.传热学手册[M].北京:科学出版社,1985.
    [204] Levine I N.物理化学[M].北京:北京大学出版社, 1987.
    [205]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社, 2005.
    [206]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D].长沙:国防科学技术大学(博士学位论文), 2008.
    [207] Menter F R. Two equation eddy viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32 (8):15-89.
    [208] Yoshizawa A, Horiuti K. Statistically derived subgrid scale kinetic energy model for large-eddy simulation of turbulent flows [J]. Journal of the Physical Society of Japan, 1985, 54:2834-2839.
    [209]吴子牛.计算流体力学基本原理[M].北京:科学出版社, 2001.
    [210]侯中喜,易仕和,李桦.高精度高分辨率WENO格式分析与改进[J].国防科技大学学报, 2003, 25 (1):12-15.
    [211] Jameson A. Time depended calculations using multigrid with applications to unsteady flows past airfoils and wings [R]. AIAA 91-1596, 1991.
    [212]宋文萍,杨永,乔志德.用双时间推进法求解非定常N-S方程的有关问题讨论[J].西北工业大学学报, 2000, 18 (3):433-437.
    [213]赵海洋,刘伟,任兵.双时间隐式方法求解非定常绕流的相关问题[J].国防科技大学学报, 2005, 27 (3):25-29.
    [214]彭小勇,潘沙,范晓樯等.基于预处理法非定常低速流动的数值模拟[J].数值计算与计算机应用, 2007, 28 (2):107-115.
    [215]肖中云.旋翼流场数值模拟方法研究[D].绵阳:中国空气动力研究与发展中心(博士学位论文), 2007.
    [216]袁先旭.非定常流动数值模拟及飞行器动态特性分析研究[D].绵阳:中国空气动力研究与发展中心(博士学位论文), 2002.
    [217]陈军,武小松.固体火箭发动机工作过程数值模拟[M].北京:高等教育出版社, 2006.
    [218] Norris J W, Edwards J R. Large-eddy simulation of high-speed turbulent diffusionflames with detailed chemistry [R]. AIAA 97-0370, 1997.
    [219]潘沙,李桦,范晓樯.预处理方法在化学非平衡流场数值模拟中的应用[J].空气动力学报, 2006, 24 (3):380-384.
    [220]张黎,刘军,王刚.氧碘化学激光器中的化学非平衡流动数值模拟[J].西北工业大学学报, 2005, 23 (3):369-373.
    [221]刘君,张涵信,高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报, 2000, 22 (5):19-23.
    [222]孙明波,梁剑寒,王振国.非平衡流动解耦方法及其计算激波诱导燃烧的应用验证[J].航空动力学报, 2008, 23 (11):2055-2061.
    [223]王晓栋,乐嘉陵,宋文艳.带支板的冲压燃烧室的燃烧性能研究[J].空气动力学学报, 2004, 22 (3):274-278.
    [224]刘君,张涵信,高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报, 2000, 22 (5):1-9.
    [225]郑忠华.双模态冲压发动机燃烧室流场的大规模并行计算及试验验证[D].长沙:国防科学技术大学(博士学位论文), 2004.
    [226] Ben-Yakar A, Mungal M G, Hanson R K. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows [J]. Physics of Fluids, 2006, 18 (2):026101.
    [227] Teets R E. Accurate convolutions of coherent anti-stokes raman spectra [J]. Optics Letters, 1984, 9:226-228.
    [228]赵玉新,易仕和,田立丰等.基于纳米粒子的平面激光散射技术[C].第十三届全国激波与激波管会议, 2008.
    [229]易仕和,赵玉新,田立丰等. NPLS技术在超声速湍流流动显示中的应用[C].第一届近代实验空气动力学会议, 2007.
    [230]赵玉新.超声速混合层时空结构的实验研究[D].长沙:国防科学技术大学(博士学位论文), 2008.
    [231]吴颖川.计算光学流动显示技术的研究与应用[D].绵阳:中国空气动力研究与发展中心(博士学位论文), 2003.
    [232] Havener G. Computational flow imaging: Fundamentals and history [R]. AIAA 94-2615, 1994.
    [233]曹裕华,方德润,杨祖清.数值计算数据的流动显示模拟[J].流体力学实验与测量, 1997, 11 (4):66-70.
    [234]胡宗民,孙英英,吴宝根等. COIL亚声速段横向喷流混合流场数值分析[J].强激光与粒子束, 2005, 17 (4):481-484.
    [235] Glawe D D, Samim Y M. Dispersion of solid particles in compressible mixing layers [J]. Journal of Propulsion and Power, 1993, 4 (9):83-89.
    [236] Woodmansee M A, Dutton J C. Treating temperature-sensitivity effects of pressure-sensitive paint measurements [J]. Experiments in Fluids, 1998, 24:163174.
    [237] Cardenas C, Suntz R, Denev J A, et al. Two-dimensional estimation of reynolds-fluxes and -stresses in a jet-in-crossflow arrangement by simultaneous 2D-LIF and PIV [J]. Applied Physics B, 2007, 88:581-591.
    [238] Wang G L, Lu X Y. Effects of the jet-to-crossflow momentum ratio on a sonic jet into a supersonic crossflow [J]. Theoretical & Applied Mechanics Letters, 2011, (1):012005.
    [239] Driscoll R J, Moon L F. Pressure recovery in chemical lasers [J]. AIAA Journal, 1977, 15:665-673.
    [240] Duncan W A, Patterson S P, Graves B R, et al. Overtone research, advanced chemical laser module design [C]. Proc of SPIE, 1994, 2119:46-57.
    [241]雷静,赖林,王振国.高超声速低温喷管副喷管参数化设计[J].强激光与粒子束, 2007, 19 (11):1766-1770.
    [242] Cohen L S, Coulter L J, Egan W J. Penetration and mixing of multiple gas jets subjected to a cross flow [J]. AIAA Journal, 1971, 9 (4):718-724.
    [243] Rajasekaran A, Babu V. Numerical simulation of three dimensional reacting flow in a model supersonic combustor [J]. Journal of Propulsion and Power, 2006, 22 (4):820-828.
    [244]吕俊明,胡宗民,姜宗林.亚声速段横向射流对COIL性能影响的数值研究[J].计算物理, 2008, 25 (4):414-420.
    [245] Mao M, Riggins D W, McClinton C R. Numerical simulation of transverse fuel injection [R]. NASP CR 1089, 1990.
    [246] Miller J A, Kee R J. Chemical kinetics and combustion modeling [J]. Annual Review in Physical Chemistry, 1990, 41:345-387.
    [247] Griffiths J F. Reduced kinetic models and their application to practical combustion systems [J]. Progress in Energy and Combustion Science, 1995, 21 (1):25-107.
    [248] Law C K, Sung C J, Wang H. Development of comprehensive detailed and reduced reaction mechanism for combustion modeling [R]. AIAA 2002-0331, 2002.
    [249]费德洛夫.连续波氟化氢和氟化氘化学激光器[M].俄罗斯波罗的海国立工程技术大学, 1994.
    [250]刘文广.环柱型高能连续波HF化学激光器研究[D].长沙:国防科学技术大学(博士学位论文), 2004.
    [251]靳冬欢.连续波HF化学激光器环柱型增益发生器研究[D].长沙:国防科学技术大学(博士学位论文), 2011.
    [252]华卫红. CW HF化学激光器的数值模拟[D].长沙:国防科学技术大学(硕士学位论文), 1994.
    [253] Wilson L E, Hook D L. Deuterium fluoride CW chemical lasers [R]. AIAA 76-0344, 1976.
    [254] Frank P M. Introduction to system sensitivity theory [M]. New York: Academic Press,1978.
    [255] Turányi T. Applications of sensitivity analysis to combustion chemistry [J]. Reliability Engineering and System Safety, 1997, 57 (1):41-48.
    [256] Turányi T. Sensitivity analysis of complex kinetic systems: tools and applications [J]. Journal of Mathematical Chemistry, 1990, 5 (3):203-248.
    [257]董刚,刘宏伟,陈义良.通用甲烷层流预混火焰的半详细化学动力学机理[J].燃烧科学与技术, 2002, 8 (1):44-48.
    [258]钱炜祺.用灵敏度法简化化学反应动力模型[J].空气动力学报, 2004, 22 (1):88-92.
    [259]林志勇.高静温超声速预混气爆震起爆与发展过程机理研究[D].长沙:国防科学技术大学(博士学位论文), 2008.
    [260] Chen J Y. A general procedure for constructing reduced reaction mechanisms with given independent relations [J]. Combustion Science and Technology, 1988,57:89-94.
    [261] Hishida M, Azami N, Iwamoto K, et al. Flow and optical fields in a supersonic flow chemical oxygen-iodine laser [R]. AIAA 97-2391, 1997.
    [262] Suzuki M, Matsueda H, Masuda W. Numerical simulation of Q-switched supersonic flow chemical oxygen-iodine laser by solving time-dependent paraxial wave equation [J]. JSME International Journal, 2006, 49 (4):1212-1219.
    [263] Hishida M, Kominato K, Masuda W. Numerical simulation of Q-switched operation in a supersonic chemical oxygen-iodine laser [R]. AIAA 99-3425, 1999.
    [264]Rigrod W W. Saturation effects in high gain lasers [J]. Journal of Applied Physics, 1965, 36 (8):2487-2490.
    [265]王乃彦.新兴的强激光[M].原子能出版社, 1992.
    [266] Reggins D W, McClinton C R. A computational investigation of flow losses in a supersonic combustor [R]. AIAA 90-2093, 1990.
    [267] Banica M C, Scheuermann T, Chun J, et al. Numerical study of supersonic combustion processes in central strut injection [J]. Journal of Propulsion and Power, 2010, 26 (4):869-874.
    [268]王骐,李琦,尚铁梁.激光推进原理与发展状况[J].激光与红外, 2003, 33 (1):37.
    [269] Kerber R L, Cohen N, Emanuel G. A kinetic model and computer simulation for a pulsed DF-CO2 chemical transfer laser [J]. IEEE Journal of Quantum Electronics, 1973, QE-9 (1):94-112.
    [270] Kulakov L V, Nikitin A I, Oraevskii A N. Determination of the rate constant of the vibrational energy transfer between the DF and CO2 molecules based on the time characteristics of the emission from a DF+CO2 chemical laser [J]. Sov. J. Quant. Electron, 1975, 4 (8):974-978.
    [271] Kerber R L. A simple model of a line selected, long chain, pulsed DF-CO2 chemical transfer laser [R]. SAMSO-TR-73- 298, 1973.
    [272]王云萍.燃烧驱动气动CO2激光器小信号增益的研究[D].长沙:国防科学技术大学(硕士学位论文), 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700