用户名: 密码: 验证码:
地震作用下边坡工程动力响应与永久位移分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为岩土工程和地球环境工程中的重要课题之一,地震作用下边坡的稳定性问题事实上涉及两个层面,即具体边坡工程的地震稳定性分析和区域性的边坡地震稳定性评估,每个层面的研究都有许多问题需要突破。特殊的地理地质条件和地震构造活动决定了边坡地震稳定性问题在我国特别突出,当前,我国的公路、铁路、水利等基础设施建设正处于高速发展期,这就对具体边坡工程的抗震设计和区域性滑坡风险评价提出了更高的要求,现有的理论和实践尚不能很好地满足这一需求;汶川地震在造成大量崩塌、滑坡等同震地质灾害的同时,也极大地改变了震区的山地灾害成灾环境,使得龙门山地区原本脆弱的地质环境变得更为恶劣,因此,震后次生山地灾害成灾环境演变程度的评估已经成为灾后重建所面临的亟待解决的关键科学问题。
     围绕国家基本建设和汶川地震灾区规划重建的国家需求,基于汶川地震边坡震害调查、大型振动台模型试验、数值模拟和理论分析等技术手段,论文较为系统地研究了地震作用下边坡的动力特性和动力响应规律、永久位移的分析计算、基于位移控制的抗震设计方法、区域性边坡永久位移的预测以及汶川震区山地灾害成灾环境演化规律等科学问题,涉及到边坡地震稳定性分析微观和宏观两个层面的若干问题。主要工作及研究结论如下:
     了解地震作用下边坡的动力响应规律及其影响因素有助于揭示边坡的动力失稳机制,进而指导抗震设计。利用单面坡和自由场,单面坡、凹形坡和凸形坡两组振动台模型对比试验,结合数值分析,研究了地震作用下边坡的加速度和动土压力响应规律,以及地震动参数、边坡形态对动力响应的影响。结果表明,边坡对输入地震波存在垂直放大和临空面放大作用;随着输入地震动幅值的增加,坡面加速度峰值放大系数呈现明显的递减趋势,表现出“量级饱和”特性;单面坡、凹形坡、凸形坡的振动台模型对比试验表明,就加速度动力响应而言,边坡坡形中总体上以单面坡最为有利,凹坡存在变坡点以上加速度急剧放大效应;边坡的永久位移随输入地震波振幅、持时的增加显著增大,随输入地震波卓越频率的增大而减小;输入地震波经过模型土介质传播后,其频谱特性会发生明显的改变,边坡土体对输入波的低频部分存在放大作用,对高频部分存在滤波作用,在模型自振频率附近,其频谱成分的变化幅度较之其它频段显著增加。
     边坡的动力特性是边坡体的固有动力学特性,深入研究地震作用下边坡动力特性的变化规律,有助于我们从坡体内在因素的角度认识边坡动力损伤过程,了解其动力破坏失稳的机制。介绍了传统的模态分析和传递函数理论,探讨了边坡动力特性参数的识别技术,建议利用绝对传递函数的虚部进行动力特性参数的识别。利用单面坡和加筋土单面坡两组振动台模型对比试验,研究了边坡动力特性的变化规律及其影响因素。随着振次的增加,模型边坡的自振频率逐渐降低,阻尼比逐渐增大。随着输入地震动幅值的加大,模型边坡自振频率降幅显著增加,阻尼比增幅也有随振幅加大而增加的趋势。当边坡的自振频率与输入地震波卓越频率相近时,自振频率的降幅增大。加筋土边坡模型的动力特性变化规律及其影响因素与纯土质边坡类似,但加筋可显著提高模型边坡的自振频率,使其远离地震波的卓越频率,从而减小地震作用效应。在相同的加载制度作用后,加筋土边坡模型的自振频率降幅远小于土质边坡模型。
     汶川震区边坡支护结构的震害调查发现,预应力锚索加固边坡表现出优良的抗震性能,为研究其抗震机理以便指导工程设计,开展了锚杆加固边坡的振动台模型试验。结果表明,地震作用下,锚杆加固模型的加速度放大系数明显小于不加锚杆模型,尤其在中震和大震情况下更为显著;大震工况下,边坡越高,锚杆加固对边坡加速度放大效应的抑制作用越明显:设置锚杆后整个坡体的自振频率有所提高,能对地震激励的共振有所避开,有利于减小地震作用效应;在相同加载制度作用下,锚杆加固边坡模型的自振频率降幅远小于土质边坡模型;随着输入地震波幅值的增加,锚杆轴力显著增加,并且幅值越大,轴力增幅越大,输入地震波的频率对锚杆受力影响不大,地震波的类型对锚杆的受力影响明显。
     随着对边坡动力稳定问题研究的深入,用单一抗震安全系数评价动力稳定性的不足已经得到普遍的认识。边坡的永久位移量化了边坡的受损程度,为坡体稳定性判识提供了一种可靠的依据。利用能量守恒原理,分析了地震作用下边坡的能量反应过程,提出了一种基于能量原理的边坡永久位移计算方法。研究发现,当滑动面倾角较小,且地震加速度较大或坡体自身稳定性较差时,反向位移不容忽略,否则算得的永久位移偏于保守;不考虑竖向加速度的临界加速度为一常数acd,考虑竖向加速度后成为一个随时间变化的临界加速度时程acd(t),利用acd代替acd(t)计算永久位移可能产生较大的误差;地震对滑坡主要产生触发作用,而由重力势能降主导边坡发生的永久位移量;设置支护措施后,可显著提高边坡的正向临界加速度,亦即提高边坡的抗震性能。基于位移控制的边坡工程抗震设计方法可提高抗震加固措施设计的经济性,较之拟静力法更为科学。通过锚索加固边坡永久位移的分析,探讨了基于位移控制的边坡工程抗震设计方法。
     国家基本建设中对待规模大、分布广的地震滑坡灾害问题,行之有效的方法就是在土地利用的规划阶段就考虑地震滑坡这一灾害问题。位移预测模型可以方便地用作区域性地震滑坡风险评价和震后滑坡灾势评估。利用汶川地震强震动记录,提出了适用于四川及其邻近省份等西部山区的边坡永久位移预测模型。发现基于强震动记录回归得到的永久位移测模型具有区域相关性,有必要在积累我国强震动记录资料的基础上,建立适用于各区域的位移预测模型。虽然Arias强度从物理意义上较PGA更能反映地震动特性,但计算复杂,并且以其作为回归参数的模型预测精度未见提高,建议采用以临界加速度比为参数的位移预测模型。
     汶川地震极大地改变了震区的山地灾害成灾环境,使得龙门山地区原本脆弱的地质环境变得更为恶劣,在地震发生后相当长一段时间内崩塌、滑坡等山地灾害都可能非常活跃。基于位移预测模型的理论框架,建立了强震区坡体损伤位移计算模型,定义了临界残余强度位移量和临界破坏位移量,作为衡量坡体损伤严重程度的判据。建立了基于地震坡体位移原理的一种山地灾害成灾环境演变分类体系:Ⅷ度及以下烈度的Ⅰ类区域为次生山地灾害环境轻度损伤区,地震发生时局部地区发生崩塌滑坡,震后以浅表层次生山地灾害为主,地质环境5年内基本可以恢复;地震烈度Ⅸ度及Ⅹ度弱的Ⅱ类区域为次生山地灾害环境严重损害区,地震时相当程度上诱发崩塌滑坡,震后次生山地灾害也会相当活跃,地质环境恢复期在5-10年左右;Ⅹ度强及以上烈度的Ⅲ类区域为次生灾害环境极度脆弱区,地震时大量触发崩塌滑坡,震后极易发生大规模次生灾害,地质环境恢复期在10年以上。Ⅹ度强及以上高烈度区山地灾害成灾环境已发生剧变,岩土体损伤严重,极易形成崩塌滑坡,是震后山地灾害防治的重点区域,灾后重建工作宜缓行。
As one of important subjects in geotechnical engineering and earth environmental engineering, the problem of slope stability under earthquake actually involves two aspects, namely, the seismic stability analysis of specific slopes and seismic landslide hazard evaluation on regional slopes, and there are many issues need to be researched for each aspect. The problem of seismic slope stability in our country is particularly serious because of the special geological conditions and seismotectonic conditions. Currently, our country's infrastructure construction such as highway, railway and water conservancy, etc. is in a period of rapid development, which puts forward higher request to anti-seismic design of specific slopes and landslide risk assessment of regional slopes, yet the existing theories and practice can not meet this requirement. Wenchuan earthquake not only caused numerous landslides, but also greatly changed the geological disasters environment, which made the fragile geological environment of Longmen Mountains even worse. Therefore, evaluating the degree of geological disasters environment evolution has become a key scientific problem need to be solved urgently in reconstruction after earthquake.
     To meet the national requirement of capital construction and post-disaster reconstruction in Wenchuan earthquake-stricken areas, several scientific problems, including dynamic response laws of slope, permanent displacement calculation, displacement-based anti-seismic design method, permanent displacement prediction for regional slopes and geological disasters environment evolution laws in Wenchun seismic area have been researched systematically in this dissertation, concerning issues related to slope stability analysis on micro and macro level. The research approaches include earthquake disaster investigations, large-scale shaking table model test, numerical simulation and theoretical analysis, etc. Major work and findings are as follow:
     Understanding of the dynamic response laws of slope under earthquake and their influencing factor is helpful to explore the seismic failure mechanism of slope, and thus to guide aseismatic design. Based on two groups of shaking table contrast tests on single-side slope and free field, single-side slope, concave slope and convex slope, combined with numerical simulation, the dynamic response laws of acceleration and earth pressure, as well as the influence of ground motion parameters and slope shape on the responses under earthquake were analyzed. Results show that the slope has vertical and surface amplification effect to input seism waves, the amplified coefficients of PGA along slope surface decrease with the increasing earthquake amplitudes, i.e. shows a characteristic of "magnitude saturation". Contrast test on slope shape shows that single-side slope is the best shape on acceleration dynamic response, and concave slope's acceleration extremely increases above shape-changed point. The permanent displacement of slope evidently increases with the increasing earthquake amplitudes and duration while decrease with the increasing frequency. Input seismic waves'spectrum properties will be changed obviously after propagation through the model soil, the soil in slope has amplification effect to input seism waves at high frequency and filtering effect at low frequency, the changing amplitude has a significantly increase around the natural frequencies of the model slope compared to other frequency bands.
     As the inherent characteristics of slope, deeply understanding the dynamic characteristics' variation laws and influencing factors under earthquake helps to understand the dynamic damage process and failure mechanism from the view of internal factors of slope. Based on the traditional modal analysis and transfer function theory, identification technique on slope dynamic characteristics was discussed, the imaginary part of absolute transfer function was suggested to utilize on identifying the dynamic properties of slope. Dynamic characteristics variation laws of slope and its influencing factors were researched base on two groups of shaking table contrast test between single-sided slope and reinforced slope. Results show that the natural frequencies of model slope decrease with the increasing vibration number, and the decrease range expands with the increasing earthquake amplitudes, while the damping ratios increase with their increasing, the reduce rate of natural frequencies increase when the predominant excitation frequencies of input seismic waves approach to the natural frequencies of the model slope. Dynamic characteristics variation laws of reinforced slope and their influencing factors are similar to pure soil slope, yet reinforced materials can remarkably enhance the natural frequency of the model slope, make it away from the predominant frequency of seismic wave, and consequently reduce the effects of earthquake. Meanwhile, the reduce rate of natural frequencies of reinforced slope is far less then that of soil slope after the same load law.
     Wenchuan earthquake damage investigation on slope reinforcement structure shows prestressed anchor cable reinforced slopes have excellent seismic performance. In order to reveal their aseismic mechanism thus to guide design, a shaking table model test of prestressed anchor cable reinforced slope was carried out. Results show that the acceleration amplification factor of reinforced slope model is obviously less than the model without anchor, especial on the moderate earthquake case and the strong earthquake case. The restraining effect on acceleration amplification by anchor cable reinforcement increases with the increasing height of slope under strong earthquake condition. Anchor cable increases the natural frequencies of slope, as a result to avoid meeting the resonance frequency, tends to reduce the seismic effect, and the reduce rate of natural frequencies of anchor cable reinforced slope is far less then that of soil slope after the same load law. The axial force of anchor cable increase with the increasing earthquake amplitudes, the frequency of seismic waves has less effect on the cable axial force, while the type of input seismic wave has remarkable effect on it.
     With the farther research on slope dynamic stability, the dynamic stability evaluation method using single seismic safety coefficient has been found insufficient. The permanent displacement can characterize the damage degree of slopes quantificationally, thus provides an effective criterion on slope stability evaluation. According to the principle of energy conservation, the energy response process during earthquake was analyzed; a permanent displacement calculation formula of the slope with energy method was presented. Result shows that the reverse displacement can not be neglected when the slope has a small angle of sliding surface and weak stability, while the earthquake is strong, otherwise the result may be rather conservative. The critical acceleration is a constant, acd, regardless of vertical acceleration, yet it will become an acceleration time history, acd(t), vary with time when take the vertical acceleration into account, and there may be a considerable difference on permanent displacement calculation with acd instead of acd(t). Earthquake plays an important role on triggering landslides, and the permanent displacement is mainly determined by gravitational potential energy. Reinforcement can significantly increases positive critical acceleration, i.e. improve the aseismatic performance of slope. An anti-seismic design method based on displacement controlling may improve the efficiency of aseismatic reinforcement, and it is more scientific compared to the pseudo-static method. With the illustration of anchor cable reinforced slope, the anti-seismic design method based on displacement controlling had been discussed.
     A more effective way to deal with large scale and wide distribution seismic landslides in state's basic construction is to consider this problem during the construction sites selecting stage, displacement predictive models provide a convenient tool for regional seismic landsides risk and landsides disaster evaluation after earthquake. Based on a large number of strong-motion records from Wenchun earthquake, a regression model predict permanent displacement suiting to Sichun and adjacent provinces was put forward. Result shows that the models developed based on strong-motion records have zone dependence, and it is necessary to establish displacement predictive models for various regions by accumulating strong-motion record data. Despite the Arias strength can describe earthquake characteristics better than PGA in physical sense, it is complicated to calculate and the model in terms of Arias fails to improve prediction accuracy, the regression model in terms of PAG is recommended to adopt as displacement predictive model.
     Wenchuan earthquake dramatically changed the mountain disaster environment, made the weak geological environment of Longmen Mountains even worse. Mountain hazards such as fallings, landslides and other mountain hazards may be extremely active for quite a long period of time after earthquake. A displacement calculation model on slope damage was established, displacements of critical residual strength and critical failure were defined to judge the damage degree of slope. A classifying system for environment evolution of mountain disaster based on seismic permanent displacement was established, its main contents are as follow:Regions of class I where seismic intensity isⅧand below are the slightly damaged zone of secondary mountain disaster environment, there were fallings and landslides in partial region in earthquake, and shallow or surface secondary mountain disasters may occur mainly after earthquake, geological environment in these areas can be repaired basically in 5 years; Regions of classⅡwhere seismic intensity is IX and weak X are the severely damaged zone of secondary mountain disaster environment, there occurred many fallings and landslides in earthquake, and secondary mountain disasters may be active after earthquake, geological environment in these areas require 5-10 years to recover; Regions of class III where seismic intensity is strong X and above are extremely worse in secondary mountain disaster environment, there triggered quite a lot fallings and landslides in earthquake, large-scale secondary mountain disasters may be easily take place after earthquake, geological environment in these areas need 10 more years to recover. Regions class III are the key zones of mountain disasters preventing, in which rock and soil material has been damaged severely, secondary mountain disasters environment has been changed acutely, and the post-disaster reconstruction should be suspended in these regions.
引文
[1]许强,裴向军,黄润秋.汶川地震大型滑坡研究[M].北京:科学出版社,2009.
    [2]张咸恭,王思敬,张悼元.中国工程地质学[M].北京:科学出版社,2000.
    [3]姜彤.边坡在地震力作用下的加卸载响应规律与非线性稳定分析[D].北京:中国地震局地质研究所博士学位论文,2004.
    [4]丁彦慧,王余庆,孙进忠.地震崩滑与地震参数的关系及其在边坡震害预测中的应用[J].地球物理学报,1999,42(增刊):101-107.
    [5]崔鹏,韦方强,陈晓清,等.汶川地震次生山地灾害及其减灾对策[J].科技赈灾,2008,23(4):317-323.
    [6]徐素宁,李文鹏.5·12汶川地震典型地质灾害影像研究[M].北京:地质出版社,2009.
    [7]黄润秋,唐川,李勇,等.汶川地震地质灾害研究[M].北京:科学出版社,2009.
    [8]门玉明,彭建兵,李寻昌,等.层状结构岩质边坡动力稳定性试验研究[J].世界地震工程,2004,20(4):131-136.
    [9]邓天岗,龙德雄,冯元保.1786年四川康定地震[J].中国地震,1986,2(3):88-89.
    [10]国家地震局,兰州地震研究所,宁夏自治区地震队.1920年海源大地震[M].北京:地震出版社,1980.
    [11]四川地震局.1933年叠溪地震[M].成都:四川科学技术出版社,1983.
    [12]蒋良潍.土质边坡大型振动台模型实验理论与技术研究[D].西南交通大学博士后科研工作报告,2009.
    [13]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,25(1):164-171.
    [14]李树德.地震滑坡研究[J].北京大学学报(自然科学版),1999,35(6):24-25.
    [15]刘红帅,薄景山,刘德东.岩上边坡地震稳定性评价方法研究进展[J].防灾科技学院学报,2007,9(3):20-27.
    [16]刘红帅.岩质边坡地震稳定性分析方法研究[D].中国地震局工程力学研究所博士学位论文,2006.
    [17]K. Keefer D. Statistical analysis of an earthquake-induce landslide distribution-the 1989 Loma Prieta[J]. California event, Engineering Geology,2000,58(3-4):231-249.
    [18]K. Keefer D. Landslides caused by earthquake.Bulletin of Geological Society of America[J]. Bulletin of Geological Society of America,1989,95:406-421.
    [19]E. Rodriguez C., J. Bommer J., J. Chandler R. Earthquake-induced landslides:1980-1997[J]. Soil Dynamics and Earthquake Engineering,1999,18:325-346.
    [20]Lveda Sergio A. Sepu, A William Murphy, C Randall W. Jibson, et al. Seismically induced rock slope failures resulting from topographic amplification of strong ground motions:The case of Pacoima Canyon, California[J]. Engineering Geology,2005,80(3-4):336-348.
    [21]Ling Hoe I., Leshchinskyb Dov, Chouc Nelson N. S. Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes during the Ji-Ji earthquake of Taiwan[J]. Soil Dynamics and Earthquake Engineering,2001,21(4):297-313.
    [22]辛鸿博,王余庆.岩土边坡崩滑及其初判准则[J].岩土工程学报,1999,21(5):591-594.
    [23]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报,1997,6(1):25-30.
    [24]于彦慧,王余庆,孙进忠,等.地震崩滑预测方法及其工程应用研究[J].工程地质学报,2000,8(4):475-480.
    [25]王余庆,辛鸿博,高艳平,等.预测岩土边坡地震崩滑的综合指标法研究[J].岩土工程学报,2001,23(3):311-314.
    [26]姚清林.中国西北黄土地区地震崩滑的分布与宏观影响因素[J].气象与减灾研究,2007,30(1):41-47.
    [27]才树华,王兰民,袁中夏.陕甘宁晋地区黄土地震滑坡致灾距的初步研究关[J].西北地震学报,1998,20(4):75-82.
    [28]庄建琦,崔鹏,葛永刚,等.5.12汶川地震崩塌滑坡分布特征及影响因子评价[J].地质科技情报,2009,28(3):16-21.
    [29]殷跃平.汶川八级地震滑坡特征分析[J].工程地质学报,2009,17(1):29-38.
    [30]张鹏,陈新民,王旭东.近断层地震动与汶川地震灾区滑坡破坏特征分析[J].南京工业大学学报(自然科学版),2009,31(1):49-55.
    [31]谢洪,王士革,孔纪名.“5·12”汶川地震次生山地灾害的分布与特点[J].山地学报,2008,26(5):396-401.
    [32]乔建平,蒲晓虹,王萌,等.大地震诱发滑坡的分布特点及危险性区划研究[J].灾害学,2009,24(2):25-29.
    [33]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报,2009,28(6):1239-1249.
    [34]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
    [35]黄润秋,李为乐.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报,2009,17(1):19-28.
    [36]许强,黄润秋.5.12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报,2008,16(6):721-729.
    [37]许强,李为乐.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报,2010,18(6):818-826.
    [38]王建,姚令侃.土工格栅加筋路堤抗震优化设计方法研究[J].四川大学学报(工程科学版).2010,42(5):99-104.
    [39]王建,姚令侃,蒋良潍.地震作用下土体变形模式与机理[J].西南交通大学学报,2010,45(2):196-202.
    [40]Jian Wang, Lingkan Yao, Arshad. Analysis of Earthquake-Triggered Failure Mechanisms of Slopes and Sliding Surface[J]. Journal of mountain science,2010,7(3):282-290.
    [41]蒋良潍,姚令侃,胡志旭,等.地震扰动下边坡的浅表动力效应与锚固控制机理试验研究[J].四川大学学报(工程科学版),2010,42(5):164-174.
    [42]姚令侃,陈强.“5·12”汶川地震对线路工程抗震技术提出的新课题[J].四川大学学报(工程科学版),2009,41(3):43-50.
    [43]姚令侃,冯俊德,杨明.汶川地震路基震害分析及对抗震规范改进的启示[J].西南交通大学学报,2009,44(3):301-311.
    [44]王思敬,张菊明.岩体结构稳定性的块体力学分析[J].地质科学,1980,(1):19-33.
    [45]王思敬,张菊明.边坡岩体滑动稳定的动力学分析[J].地质科学,1982,(2):162-182.
    [46]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学,1992,(2):177-182.
    [47]张菊明,王思敬.层状边坡岩体滑动稳定的三维动力学分析[J].工程地质学报,1994,2(3):1-12.
    [48]张咸恭,王思敬,张倬元,等.中国工程地质学[M].北京:科学出版社,2000.
    [49]张平,吴德伦.动荷载下边坡滑动的试验研究[J].重庆建筑大学学报,1997,19(2):80-86.
    [50]孔宪京,邓学晶.城市垃圾填埋场地震变形机理的振动台模型试验研究[J].土木工程学报,2008,41(5):65-74.
    [51]冯文凯,许强,黄润秋.斜坡震裂变形力学机制初探[J].岩石力学与工程学报,2009,28(增1):3124-3130.
    [52]许强,陈建君,冯文凯,等.斜坡地震响应的物理模拟试验研究[J].四川大学学报(工程科学版),2009,43(3):262-266.
    [53]陈新民,沈建,魏平,等.下蜀土边坡地震稳定性的大型振动台试验研究(II)[J].防灾减灾工程学报,2010,30(6):584-587.
    [54]Meei-Ling Lin Kuo-Lung Wang. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology,2006,86(2-3):118-133.
    [55]El-Emama Magdi M., Bathurstb Richard J. Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls[J]. Geotextiles and Geomembranes,2007,25(1):33-49.
    [56]Hong Yung-Shan, Chen Rong-Her, Wu Cho-Sen, et al. Shaking table tests and stability analysis of steep nailed slopes[J]. Canadian Geotechnical Journal,2005,42(5):1264-1279.
    [57]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624-632.
    [58]徐光兴,姚令侃,李朝红,等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报,2008,30(6):918-923.
    [59]任自铭.地震作用下斜坡动力响应及稳定性研究[D].成都:西南交通大学硕士学位论文,2007.
    [60]吴伟.路堤工程在地震作用下的动力响应特性研究[D].成都:西南交通大学硕士学位论文,2010.
    [61]杨明.桩土相互作用机理及抗滑加固技术[D].成都:西南交通大学博士学位论文,2008.
    [62]威格尔,罗伯特.地震工程学[M].中国地震局工程力学研究所,译.北京:科学出版社,1978.
    [63]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989.
    [64]程国伟,赵雪胜,李玲.基于拟静力法的加筋边坡地震稳定性分析[J].长江大学学报(自然科学版),2009,6(4):295-297.
    [65]刘杰,李建林,张玉灯,等.基于拟静力法的大岗山坝肩边坡地震工况稳定性分析[J].岩石力学与工程学报,2009,28(8):1562.
    [66]范庆来,栾茂田,李湛.上石坝拟静力抗震稳定性分析与坝坡地震滑移量估算[J].岩土力学,2007,28(2):224-231.
    [67]吕擎峰,殷宗泽,王叔华,等.拟静力法边坡稳定分析的改进[J].岩土力学,2005,26(增刊):35-38.
    [68]张永兴,陈林,陈建功.地震作用下边坡稳定性分析的坐标转换法[J].山地学报,2010,28(2):129-134.
    [69]李维光,张继春.地震作用下顺层岩质边坡稳定性的拟静力分析[J].山地学报,2007,25(2):184-189.
    [70]L Siad. Seismic stability analysis of fractured rock slopes by yield design theory [J]. Soil Dynamics and Earthquake Engineering,2003,23(3):203-212.
    [71]Nouria H., Fakhera A., Jonesb C. J. F. P. Development of Horizontal Slice Method for seismic stability analysis of reinforced slopes and walls[J]. Geotextiles and Geomembranes, 2006,24(3):175-187.
    [72]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学 与工程学报,2003,22(10):1581-1585.
    [73]Newmark N. M. Effects of earthquakes on dams and embankments[J]. Geotechnique, 1965,15(2):139-160.
    [74]Franklin A. G., Chang F. K. Earthquake resistance of earth and rock-fill dams[M]. Vicksburg:Army Corps of Engineers Water ways Experiment Station,1977.
    [75]You Liangzhi, Michalowski Radoslaw L. Displacement charts for slopes subjected to seismic loads[J]. Computers and Geotechnics,1999,25(1):44-55.
    [76]Crespellani T., Facciorusso J., Madiai C., 等. Influence of uncorrected accelerogram processing techniques on Newmark's rigid block displacement evaluation[J]. Soil Dynamics and Earthquake Engineering,2003,23(6):415-424.
    [77]陈云敏,高登,朱斌,等.垃圾填埋场沿衬垫界面的地震稳定性及永久位移分析[J].中国科学E辑,2008,38(1):79-94.
    [78]祁生文.考虑结构面退化的岩质边坡地震永久位移研究[J].岩土工程学报,2007,29(3):452-457.
    [79]李忠生.黄土斜坡地震动时程分析[J].西北地震学报,2004,26(2).
    [80]李忠生.地震动作用下滑坡稳定性分析[J].水文地质工程地质,2004,(2):4-8.
    [81]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,25(1):164-171.
    [82]W. Clough R., K. Chopra A. Earthquake stress analysis in earth dams[J]. Journal of Engineering Mechanics, Asce,1966.92(EM2).
    [83]龚晓南主编.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [84]Aziziana A., Popescu R. Three-dimensional seismic analysis of submarine slopes[J]. Soil Dynamics and Earthquake Engineering,2006,26(9):870-887.
    [85]郑颖人,叶海林,肖强,等.基于全动力分析法的地震边坡与隧道稳定性分析[J].防灾减灾工程学报,2010,30(增刊):279-285.
    [86]王来贵,娜赵,李天斌.强震诱发单一弱面斜坡塌滑有限元模拟[J].岩石力学与工程学报,2009,28(增1):3163-3167.
    [87]周桂云,李同春.基于静动力有限元的边坡抗震稳定分析方法[J].岩土力学,2010,31(7):2303-2308.
    [88]梁力,王伟,李明.某露天矿岩质高边坡地震动力响应及稳定性分析[J].金属矿山,2008,(81:21-25.
    [89]谭儒蛟,李明生,徐鹏逍,等.地震作用下边坡岩体动力稳定性数值模拟[J].岩石力学与工程学报,2009,28(增刊):3986-3992.
    [90]崔芳鹏,胡瑞林,殷跃平,等.纵横波时差耦合作用的斜坡崩滑效应离散元分析[J].岩 石力学与工程学报,2010,29(2):319-327.
    [91]肖克强,李海波,刘亚群,等.地震荷载作用下顺层岩体边坡变形特征分析[J].岩土力学,2007,28(8):1557-1564.
    [92]Bouckovalas George D., Papadimitriou Achilleas G. Numerical evaluation of slope topography effects on seismic ground motion[J]. Soil Dynamics and Earthquake Engineering,2005,25(7-10):547-558.
    [93]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1):42-46.
    [94]张友锋,袁海平.FLAC3D在地震边坡稳定性分析中的应用[J].江西理工大学学报,2008,29(5):23.
    [95]言志信,张森,张学东,等.地震边坡失稳机理及稳定性分析[J].工程地质学报,2010,18(6):844-870.
    [96]付宏渊,吕东滨,刘建华.震区岩质边坡地震稳定性影响因素敏感性分析[J].交通科学与工程,2010,26(14-19).
    [97]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报,2008,28(8).
    [98]黄润秋,巨能攀,向喜琼.我国区域地质灾害评价的现状及问题[J].地质通报,2004,23(11):1078-1082.
    [99]吴树仁,汪华斌.滑坡灾害风险评价的关键理论与技术方法[J].地质通报,2008,27(11):1764-1770.
    [100]Milesa S. B., Ho C. L. Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation[J]. Soil Dynamics and Earthquake Engineering, 1999,18(4):305-323.
    [101]Jibson R. W., Harp E. L., Michael J. M. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology,2000,58:271-289.
    [102]Carroa M, De Amicisb M., Luzic L., et al. The application of predictive modeling techniques to landslides induced by earthquakes:the case study of the 26 September 1997 Umbria-Marche earthquake (Italy)[J]. Engineering Geology,2003.69(1-2):139-159.
    [103]Marzoratia S., Luzia L., De Amicisb M. Rock falls induced by earthquakes:a statistical approach[J]. Soil Dynamics and Earthquake Engineering,2002,22:565-577.
    [104]石菊松,石玲,吴树仁.利用GIS技术开展滑坡制图的技术方法与流程[J].地质通报,2008,27(11):1810-1821.
    [105]陈晓利,叶洪.利用GIS进行地震滑坡分析[J].山西地震,2003,(2):17-19.
    [106]王启亮,孟朝霞.地震滑坡风险分析研究[J].中国地质灾害与防治学报,2010,21(3): 14-16.
    [107]Ambraseys N. N., Menu J. M. Earthquake-induced ground displacements[J]. Earthquake Engineering and Structural Dynamics,1988,16:985-1006.
    [108]Yegian M. K., Marciano E. A., AndGhahraman V. G. Earthquake-induced permanent deformations:Probabilistic approach[J]. Journal of Geotechnique Engineering, 1991,117:35-50.
    [109]Ambraseys N. N., Srbulov M Attenuation of earthquake-induced displacements[J]. Earthquake Engineering and Structural Dynamics,1994,25(3):467-487.
    [110]Watson-Lamprey J., Abrahamson N. Selection of ground motion time series andl imit sonscaling[J]. Soil Dynamics and Earthquake Engineering,2006,26(5):477-482.
    [111]Bray J. D., Travasarou T. Simplified procedure for estimating earthquake-induced deviatoric slope displacements[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(4):381-392.
    [112]Rathje E. M., Bray J. D. Nonlinear coupled seismic sliding analysis of earth structures [J]. Journal of Geotechnical and Geoenvironmental Engineering,2000.126(11):1002-1014.
    [113]Jibson R. W., Keefer D. K. Analysis of the seismic origin of landslides:examples from the New Madrid seismic zone[J]. Geological Society of America Bulletin,1993,105:521-536.
    [114]Jibson R. W. Regression models for estimating coseismic landslide displacement[J]. Engineering Geology,2007,91:209-218.
    [115]Romeo Roberto. Seismically induced landslide displacements:a predictive mode[J]. Engineering Geology,2000,58:337-351.
    [116]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005.
    [117]翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究[J].烟台大学学报(自然科学与工程技术版),1996,,(4):67-71.
    [118]Lin Meei-Ling, Wang Kuo-Lung. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology,2006,86:118-133.
    [119]于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型实验[J].清华大学学报(自然科学版),2007,47(6):789-792.
    [120]王存玉,王思敬.边坡模型振动实验研究.岩体工程地质力学问题(七)[M].北京:科学出版社,1987.
    [121]汤书明.上石坝抗震模型实验述评[J].河海科技进展,1992,12(1):47-55.
    [122]倪汉根,金崇磐.大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994.
    [123]吕西林,陈跃庆,陈波,等.结构-地基动力相互作用体系振动台模型试验研究[J].地震 工程与工程振动,2000,20(4):20-29.
    [124]凌贤长,郭明珠,王东升,等.液化场地桩基桥梁震害响应大型振动台模型试验研究[J].岩土力学,2006,27(1):7-10.
    [125]李海波,马行东,李俊如,等.地震荷载作用下地下岩体洞室位移特征的影响因素分析[J].岩土工程学报,2006,28(3):358-362.
    [126]刘春玲,祁生文,童立强,等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733.
    [127]陈占军,朱传云,周小恒.爆破荷载作用下岩石边坡动态响应的FLAC3D模拟研究[J].爆破,2005,22(4):8-13.
    [128]夏祥,李俊如,李海波,等.爆破荷载作用下岩体振动特征的数值模拟[J].岩土力学,2005,26(1):50-56.
    [129]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [130]王济,胡晓MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [131]崔江余,杜修力.河谷自由场地震动经验传递函数研究[J].水利学报,2001,(10):58-61.
    [132]林鹏,卓家寿.岩质高边坡开挖爆破动力特性的传递函数研究[J].河海大学学报,1997,25(6):122-125.
    [133]Al-Homoud A. S., Tahtamoni. W. Comparison between predictions using different simplified Newmarks'block-on-plane models and field values of earthquake induced displacements[J]. Soil Dynamics and Earthquake Engineering,2000,19(2):73-90.
    [134]周云,周福霖.耗能减震体系的能量设计方法[J].世界地震工程,1997,13(4):7-13.
    [135]梁军,文彦.结构抗震设计能量法的瞬时输入能量研究[J].广西大学学报(自然科学版),2007,32(增):308-310.
    [136]钟铁毅,杨风利,夏禾.基于能量法的铅芯橡胶支座隔震桥梁设计方法[J].中国铁道科学,2009,30(2):43-48.
    [137]程光煜,叶列平.弹塑性SDOF系统的地震输入能量谱[J].工程力学,2008,25(2):28-39.
    [138]Decanini Luis D., Mollaioli Fabrizio. An energy-based methodology for the assessment of seismic demand[J]. Soil Dynamics and Earthquake Engineering,2001,21(2):113-137.
    [139]王根龙,伍法权,祁生文,等.加锚岩质边坡稳定性评价的极限分析上限法研究[J].岩石力学与工程学报,2007,26(12):2556-2563.
    [140]王根龙,伍法权,李巨文.岩质边坡稳定塑性极限分析方法——斜分条法[J].岩土工程学报,2007,29(12).
    [141]胡卫东,张国祥.非线性破坏准则下的边坡稳定塑性极限分析[J].岩土力学,2007, 28(9):1909-1913.
    [142]赵炼恒,李亮,杨峰,等.加筋土坡动态稳定性拟静力分析[J].加筋土坡动态稳定性拟静力分析,2009,28(9).
    [143]Kokusho T., Ishizawa T. Energy approach for earthquake induced slope failure evaluation[J]. Soil Dynamics and Earthquake Engineering,2006,26(2):221-230.
    [144]Kokusho T., Ishizawa T. K.Nishida. Travel distance of failed slopes during 2004 Chuetsu earthquake and its evaluation in terms of energy[J]. Soil Dynamics and Earthquake Engineering,2009,29(7):1159-1169.
    [145]徐光兴,姚令侃,李朝红.地震作用下土质边坡永久位移分析的能量方法[J].四川大学学报(工程科学版),2010,42(5):285-291.
    [146]雷建成,高孟潭,俞言祥.四川及邻区地震动衰减关系[J].地震学报,2007,29(5):500-511.
    [147]I. Makdisi F., B. Seed H. Simplified procedure for estimating dam embankment earthquake induced deformations[J]. Journal of Geotechnique Engineering, ASCE, 1978,104GT7:849-867.
    [148]Chopra A. K. Earthquake response of earth dams[J]. Journal of the Soil Mechanics and Foundation Engineering Division,1967,93(SM2):65-81.
    [149]李红军,迟世春,钟红,等.考虑时程竖向加速度的Newmark滑块位移法[J].岩土力学,2007,28(11):2386-2390.
    [150]Sarma S. K. Seismic stability of earth dams and embankments [J]. Geotechnique, 1975,1975(25):743-761.
    [151]周朝晖.2008年四川汶川8.0级地震强震动台网观测记录[J].四川地震,2008,(4):25-29.
    [152]王秀英,聂高众,王登伟.汶川地震诱发滑坡与地震动峰值加速度对应关系研究[J].岩石力学与工程学报,2010,29(1):82.
    [153]Wieczorek G. F., Wilson R. C., Harp E. L. Map Showing Slope Stability During Earthquakes in San Mateo County, California. [Z]. U.S Geological Survey Miscellaneous Investigation Maps I-1257-E,1985.
    [154]Wilson R. C., Keefer D. K. Predicting areal limits of earthquake-induced landsliding. In: Ziony, J.I. (Ed.), Evaluating Earthquake Hazardsin LosAngele Region—AnEarth Science Perspective[J]. U.S. Geological Survey Professional Paper,1985,1360.
    [155]何思明,吴永.新型耗能减震滚石棚洞作用机制研究[J].岩石力学与工程学报,2010,29(5):926-932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700