用户名: 密码: 验证码:
基于精细化数值模拟的悬索桥施工阶段结构力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来对悬索桥的分析计算越来越精细化,甚至细致的分析了索鞍顶推导致的主缆与索鞍的切点变化。但这种精细化分析主要是针对成桥后的结构所进行的。处于施工阶段,特别是吊装加劲梁阶段的结构由于其自身特点而使得分析更加复杂,此时结构的力学性能和抗震性能就更需要细致的分析研究了。本文运用精细化有限元技术分析了施工阶段悬索桥主要部件——主塔、主缆——的结构力学性能,以及施工阶段悬索桥的抗震性能。
     本文所指精细化有限元分析主要体现在采用了高精度的单元以模拟结构的主要部件:
     首先采用了计算精度与三维实体单元相仿而计算效率高得多的纤维单元模型来模拟主塔。与此同时,为更好地解决复杂受力状态下剪切变形不可忽略问题的弹塑性分析,本文以传统纤维模型理论为基础,提出了一种通过泊松比考虑剪切变形影响的纤维模型,解决了纤维模型模拟长宽比很小构件时位移计算结果与实验结果相差较大的问题。与实验结果对比表明,对于长宽比很小的构件,考虑剪切变形纤维模型的位移结果比纯弯曲纤维模型结果精确15%~25%,所得滞回环更加符合剪切形构件滞回环的形状特征。
     由于主缆在成缆后其真实形状是曲线的,故采用了能充分考虑空间各种内力变形耦合效应的空间曲梁单元模拟主缆。在学习前人工作的过程中,发现现有曲梁理论在大位移、大转角情况下的几何方程存在缺陷,也没有能真正考虑空间各种内力的耦合效应。因此,研究曲杆大位移、大转角、大曲率情况下的分析理论不仅具有理论意义,也可用于悬索桥的精细化分析,具有工程实际意义。为弥补现有曲梁理论的缺陷,借助随动曲线坐标描述和张量分析等数学工具,系统地推导了大位移、大转角、大曲率情况下任意空间曲梁的几何方程、空间双向弯、扭耦合的平衡微分方程、非线性虚功方程和本构方程。将直梁单元位移分量插值的思想改进为位移矢量插值用以建立曲梁单元的位移场,分别建立了适用于任意曲线形式的全拉格朗日(TL)和修正拉格朗日(UL)增量格式空间曲梁有限元列式。算例对比结果表明,曲梁单元的精度明显的高于分段直梁单元。一般情况下,仅用直梁单元数量五分之一的曲梁单元就可以达到相同的计算精度。给出了曲梁单元一致质量矩阵的形成方法,并对静力凝聚法进行了改进而提出了广义静力凝聚方法。
     由于采用的是自研究的高精度单元,故无法使用现有的商用软件进行分析。因研究工作的需要,需要自主研发一套特色鲜明的具有自主知识产权的分析软件。在上述理论准备基础上,作为第一阶段工作开发了MockCool软件。考虑剪切变形纤维模型分析功能、几何非线性空间曲梁单元分析功能、拆卸单元(约束)内力自动转换加载功能、改进的大质量法处理边界等功能是MockCool独有的特点。通过和MIDAS计算结果以及文献结果(实验结果)的对比,验证了MockCool计算结果的正确性和合理性。
     在上述理论准备和软件研发的基础上,针对悬索桥施工阶段的特点,应用自开发的软件进行了大量计算分析,有针对性的研究了施工阶段悬索桥的两大部件——主缆和主塔——的结构力学性能:
     大跨度悬索桥成桥后主缆的弯曲刚度确系很小而可以忽略。然而在进行加劲梁吊装时,主缆的弯曲刚度对此时的结构分析有没有影响?有多大影响?至今无人能够回答。为了定量回答悬索桥主缆弯曲刚度的影响大小,在数值分析时考虑了悬索桥主缆的弯曲刚度,针对不同跨度情况的主缆进行了弯曲应力的参数分析,结果表明:在施工吊装加劲梁阶段,大跨度桥梁的主缆弯曲次应力最大达到了主应力的15%;随着主缆截面直径与跨度之比(截跨比)的增大弯曲次应力将迅速增大,当截跨比大于1/400时,弯曲次应力大于主应力的30%。由此可见:对大跨度悬索桥进行成桥后分析,忽略弯曲次应力是合理的;但是处于施工阶段的桥梁,特别是小跨度悬索桥弯曲次应力是不可忽视的;应用自开发的曲梁单元分析结果比通用直梁单元分析结果模型大,分析精度更高,更适合分析小跨度悬索桥模型。
     针对主塔,采取与成桥后考虑主缆等构件影响的成桥主塔作对比的手段,分析了施工时未挂主缆的施工主塔的力学性能,进行了弹性和大位移弹塑性分析。定性地研究了悬索桥主塔的失稳和破坏的形态,定量的分析了主塔的安全储备。结果表明,就所论的计算模型而言,虽然二者的弹性失稳问题均属于第二类极值型稳定问题,但是由于边界条件的不同,不仅弹性失稳模态不同,弹塑性极限承载力的差别也很大,施工主塔分析结果将高估主塔成桥后真实工作时的轴向压力承载能力。
     同样是采用与成桥结构对比的手段,分析了从空缆到成桥各阶段悬索桥的抗震性能:
     由于采用的是与成桥对比的手段,故首先需要对成桥结构进行抗震性能研究。
     针对不同的物理量,对几何非线性影响、地面输入地震动方向、人工地震动记录功率谱模型等因素对悬索桥单点激励地震反应时程分析结果的影响进行了逐一的分析。结果表明:进行单点激励分析时几何非线性的影响不大;多维分析的结果和单维分析的结果的差别较大,分析应采用三维地震动分析;Kanai-Tajimi模型生成的地震动激励较其它模型更适合进行大跨悬索桥地震反应时程分析。在此基础上对江阴大桥模型进行了多点激励弹塑性动力增量时程分析。结果表明在遭遇设计设防烈度7度的罕遇地震时,主塔基本处于正常工作状态。就数值分析结果而言,当遭遇9度以上的罕遇地震时,主塔将有可能进入危险状态。说明大桥拥有较大的安全冗余度。
     对处于施工阶段(吊装加劲梁)的江阴大桥,进行了随着施工进展的阶段抗震性能研究。结果表明:处于施工阶段的结构的自振周期比成桥状态的自振周期大,而且随着施工的进展同一阶数的振型形状排序会发生变化;时程分析发现,当输入激励不大时(小于400 gal),施工阶段的结构响应小于成桥结构响应。此情况下,设计只要能保证成桥状态的结构安全,则施工阶段结构也是安全的;当输入激励较大时,由于施工阶段极强的几何非线性,引起了主缆加劲梁系统较大的荡漾,使得施工阶段结构的响应远大于成桥状态响应。建议在施工阶段采取一些临时的连接以限制加劲梁荡漾位移以预防不测。
Suspension bridge analysis and computation have become increasingly refined in recent years, with even intensive analysis to examine on the changes of tangent point between the main cable and cable saddle resulted from cable saddle pushing. Such refined analysis, however, is mostly done on structures after completion. Structures under construction, especially in the process of hoisting and mounting stiffened girders, add to the complexity of analysis due to their unique characteristics. In this case, it is all the more necessary to conduct intensive analysis of the mechanical properties and seismic properties of the structures. With the use of refined finite element technology, the dissertation dissects the structural mechanical properties of main tower and main cable as the major components of suspension bridge as well as the seismic properties of suspension bridge at construction stage.
     The refined finite element analysis referred to in the dissertation lies largely in the adoption of high-precision elements to simulate the main components of the structure.
     First of all, the main power is simulated by fiber element model, which has similar computational precision but higher computational efficiency compared to 3D solid modeling. Furthermore, to better deal with the elastic-plastic analysis of appreciable issues with shear effects under complicated stress state, the dissertation builds on traditional fiber modeling theory and puts forward a fiber model that considers the effects of shearing deformation through Poisson ratio, and thus addresses the problem of significance difference between computational and experimental results of displacement of components with small length-width ratio. Comparison with experimental results finds that for such components, computational results of the fiber model which considers shearing deformation are 15% to 25% more precise than those of pure bending fiber model, and that the hysteresis loops obtained are more consistent with the shear-type components form features.
     Given the fact that main cables are curved after cabling is completed, spatial curved beam elements are used to simulate the main cables as the former fully considers the coupling effects of various types of internal forces and deformation. During study of previous works, it is found that the existing curved beam theories have drawbacks with geometrical equations under the circumstances of large displacement and big angles of rotation, and fail to actually take into account the coupling effects of various spatial internal forces. Therefore, studying the analytical theory under the circumstances of large displacement, big angles of rotation, and great curvature of curved bars will be not only of theoretical significance but also of practical engineering significance as it can be applied to the refined analysis of suspended bridges. In order to make up for the drawbacks of existing curved beam theories, with the use of mathematical tools including co-moving curvilinear coordinate representation and tensor analysis, the geometric equations, spatial two-directional bend-rotation coupled equilibrium differential equation, nonlinear virtual work equation and constitutive equation of arbitrary spatial beams under the circumstances of large displacement, big angles of rotation, and great curvature are systematically derived. The idea of straight beam element displacement component interpolation is improved to displacement vector interpolation to establish displacement field that applies to any curve types of Total Lagrangian (TL) and Updated Lagrangian (UL) incremental finite element formulations for spatial curved beams. Comparison of calculation results indicates that the precision with curved beam elements is noticeably higher than that with segmented straight beam elements. Typically, it takes only one fifth as many curved beam elements to achieve the same level of calculation precision as it takes straight beam elements. Method of forming the consistent mass matrix for curved beam elements is given. In addition, static condensation method is improved and the generalized static condensation.
     Existing commercial software cannot be applied to conduct analysis due to use of highly precise elements from independent research. The authors’research necessitates a set of purpose-built and proprietary analytical software. Building on the foregoing theoretical preparation, software MockCool is developed as the first phase of work. MockCool is featured with its capabilities of fiber model analysis considering shear deformation, analysis of spatial curved beam elements with large deformation, automatic conversion between and loading of disassembled elements and (restraint) internal forces, and dealing with boundaries with improved large mass method, etc. Comparison of computational results with MIDAS and literature results (experimental results), the accuracy and rationality of MockCool’s computational results are verified.
     Based on the foregoing theoretical preparation and software development, using the independently developed software, a great quantity of computation and analysis are done specific to the characteristics of suspension bridge under construction, and the structural mechanical properties of main cable and main tower, the two major components of a suspension bridge under construction.
     The bending stiffness of main cable after cabling is completed for long-span suspension bridge is indeed negligible. However, during hoisting of stiffened girders, does the bending stiffness of the main cable have any effect on the structural analysis at this point of time? How much effect? No one has been able to answer these questions as of now. In order to give a quantitative answer as to how much effect there is of the bending stiffness of a suspension bridge’s main cable, numerical analysis takes the bending stiffness into consideration and analyzes bending stress parameters of main cable with different spans. Results are as follows: During hositing of stiffened girders, the secondary bending stress of the main cable of long-span suspension bridge peaks at 15% of the primary stress. The secondary bending stress is going to grow rapidly with the increased ratio of diameter of main cable section to the span (section-to-span ratio). When the section-to-span ratio exceeds 1:400, the secondary bending stress becomes greater than 30% of the primary stress. This shows that it is reasonable to ignore the secondary bending stress after completion of long-span suspension bridge, but the secondary bending stress of bridges under construction, especially that of a short-span suspension bridge, cannot be ignored. Compared to analysis using straight beam element, analysis using the independently developed curved beam element results in larger model and greater precision, and is more suitable for analysis of short-span suspension bridge model.
     As for main tower, mechanical properties of main tower under construction with the main cable not yet attached are analyzed by comparing with main tower after completion, where the effects of main cable and other members are considered after completion of the bridge. Elasticity and elastic-plastic analyses are done. The instability and failure modes of main tower of suspension bridge are examined in a qualitative way. Quantitative analysis is done to address the margin of safety for the main tower. Results suggest that for the computational models discussed here, although both the main tower under construction and the main tower after completion have the same type of instability issue, which is elastic instability, they have different boundary conditions. Hence, they have different modes of elastic instability and significantly different elastic-plastic ultimate bearing capacities. Analytical results of the main tower under construction are to overestimate the axial compression load capacity under real working condition after completion of the main tower.
     Seismic properties of suspension bridge at different stages from unloaded cable to completed bridge are examined by comparing again with the structure after completion.
     Because of the comparison with completed bridge, it is first necessary to study the seismic properties of the completed structure.
     Specific to different physical quantities, the paper examines various factors one by one, including geometrical non-linearity, direction of seismic ground motion input, and artificial ground motion recording power spectrum, to see how they affect the analysis results of response time history of bridge to earthquake under single-point excitation. Results indicate the following: (a) during the single-point excitation analysis, geometrical non-linearity does not have much effect; (b) there are significant differences between the results of multi-dimension and single-dimension analysis and the 3D seismic motion analysis should be used; and (c) Relative to other models, Kanai-Taijimi model generates seismic motion excitation that is more suitable for analysis of earthquake response time history of long-span suspension bridge. Based on these findings, multi-point elastic-plastic and incremental dynamic analysis of time history are done with the model of Jianyin Bridge. Results of the analysis suggest that the main tower will basically remain its normal working condition in rare cases of an earthquake at seismic fortification level 7. According to the results of numerical analysis, in the rare cases of an earthquake above level 9, the main tower may become at risk. This means that the Bridge has a considerable margin of safety.
     Seismic properties of Jiangyin Bridge under construction (with stiffened girders being hoisted) are examined while the construction is under way. Results of such analysis indicate the following: (a) natural vibration period of the structure under construction is longer than that of the completed bridge, and the vibration mode sequencing of the same order would change as the construction moves on; (b) time-history analysis finds that the response of structure under construction is smaller than that of completed structure when the excitation input is modest (<400 gal). Under such circumstances, as long as the design can guarantee the safety of completed structure, the structure during construction stage would be safe too. When the excitation input is greater, the geometrical non-linearity during construction would cause the main cable’s stiffened girder system sway noticeably, and thus make the response of the structure under construction way greater than that of completed bridge. Some provisional connections are recommended during construction to restrain the swaying displacement of stiffened girders against risks.
引文
1陈仁福.大跨悬索桥抗震研究与设计方法[C].第二届结构振动学术会议论文集,四川,1992:72-78.
    2小西一朗著,戴振藩译.钢桥5[M].北京:人民铁道出版社,1981:21-30.
    3 Franciosi C, Franciosi V. Suspension Bridges Analysis Using Lagrangian Approach [J]. Computer & Structures, 1987, 26(3): 90-96.
    4华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997:157-161.
    5 Arzoumenidis S G, Bieniek M P. Finite Element Analysis of Suspension Bridges [J]. Computer & Structures, 1985, 21(6): 320-325.
    6 Kwasniewski L, Li H Y, Wekezer J, et al. Finite Element Analysis of Vehicle-Bridge Interaction [J]. Finite Elements in Analysis and Design, 2006, 42(11): 950-959.
    7 Wang H, Li A Q, Li J. Progressive Finite Element Model Calibration of a Long-Span Suspension Bridge Based on Ambient Vibration and Static Measurements [J]. Engineering Structures, 2010, 32(9): 2546-2556.
    8 Ayman S, Spoth S T, John C. An Optimal Finite Element Solution for a Suspension Bridge Critical Connection Structures [C]//ASCE. Structural Engineering and Public Safety Proceedings of the 2006 Structures Congress. ASCE, 2006: 809-829.
    9 Francis E G. The Manhattan Bridge: A Clash of Titans [J]. J. Profl. Issues in Engrg. Educ. and Pract., 2008, 134(3): 263-278.
    10 Francis E G. Poughkeepsie Bridge: Its Birth, Abandonment, and Rebirth [J]. J. Bridge Engrg., 2009, 14(6): 518-528.
    11 James A O. Computer Modeling of the Seventh Century Maya Suspension Bridge at Yaxchilan [C]//ASCE. Proceedings of the 2005 ASCE International Conference on Computing in Civil Engineering. ASCE, 2005: 357-386.
    12王慧东.悬索桥施工控制分析与恒载初内力分析的解析迭代法[J].桥梁建设,1994, 24(1):64-69.
    13唐茂林,强士中,沈锐利.悬索桥成桥主缆线形计算的分段悬链线法[J].铁道学报,2003,25(1):87-91.
    14张志国,邹振祝,赵玉成.确定悬索桥主缆成桥线形的参数方程法[J].计算力学学报,2005,22(3):305-309.
    15陈小兵,丁建民.悬索桥安装曲线的解析解[J].长安大学学报,2002,22(6):38-31.
    16肖海波,俞亚南,高庆丰.自锚式悬索桥主缆成桥线形分析[J].浙江大学学报,2004,38(11):1470-1473.
    17 Maru S, Asfaw M, Nagpal A K. Consistent Procedure for Creep and Shrinkage Effects in RC Frames [J]. Journal of Structure Engineering, 2001, (7): 726-732.
    18 Maru S, Asfaw M, Sharma R K, Nagpal A K. Effect of Creep and Shrinkage on RC Frames with High Beam stiffness [J]. Journal of Structure Engineering, 2003, (4): 536-643.
    19 Antonio R M. Numerical Simulation of the Segmental Construction of Three Dimensional Concrete Frames [J]. Journal of Structure Engineering, 2000, (22): 585-596.
    20邱文亮,张哲,黄文才.混凝土自锚式吊桥非线性有限元分析[J].大连理工大学学报,2004,44(2):262-266.
    21 Cruz P J, Mari A R, Roca P. Nonlinear time-dependent analysis of segmentally constructured structures [J]. Journal of Structural Engineering, 1998, (3): 278-287.
    22唐茂林,沈锐利,强士中.大跨度悬索桥非线性静动力分析与软件开发[J].桥梁建设,2000,(1):9-12.
    23肖汝诚,项海帆.大跨径悬索桥结构分析理论及其专用程序系统的研究[J].中国公路学报,1998,I l(4):42-50.
    24吕建鸣. 32位Windows环境下桥梁有限元结构分析软件开发[J].公路,1997,9:37-42.
    25向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001:11-13.
    26张新军,王刚.悬索桥施工理想初态及成桥状态计算方法研究[J].上海铁道大学学报,1999,20(6):43-48.
    27李小珍,胡大琳.大跨度悬索桥施工状态的计算机仿真分析[J].中国公路学报,1998,I1(4):43-48.
    28潘永仁,范立础.大跨度悬索桥加劲梁架设过程的倒拆分析方法[J].同济大学学报,2001,29(5):510-514.
    29 Zeris C A, Mahin S A. Analysis of Reinforced Concrete Beam-Columns under Uniaxial Excitation [J]. Journal of Struct. Engrg., ASCE, 1988, 114(4): 804-820.
    30 Zeris C A, Mahin S A. Behavior of Reinforced Concrete Structures Subjected to Biaxial Excitation [J]. Journal of Struct. Engrg., ASCE, 1991, 117(9): 2657-2673.
    31 Taucer F F, Spacone E, Filippou F C. A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures [R]// Earthquake Engineering Research Center, University of California, Berkeley, C A. EERC Report 91/17. California: University of California, Berkeley, C A, 1991: 90-99.
    32 Spacone E, Ciampi V, Filippou F C. Mixed Formulation of Nonlinear Beam Finite Element [J]. Comput. Struct., 1996,58(1): 71-83.
    33陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展[J].世界地震工程,2002,18(1):91-97.
    34 Tae-Hyung L, Khalid M M. Probabilistic Fiber Element Modeling of Reinforced Concrete Structures [J]. Computers and Structures, 2004, 82: 2285-2299.
    35聂利英,李建中,范立础.弹塑性纤维梁柱单元及其单元参数分析[J].工程力学,2004,21(3):15-20.
    36陈滔,黄宗明.基于有限单元柔度法的材料与几何双重非线性空间梁柱单元[J].计算力学学报,2006,23(5):524-528.
    37陈滔,黄宗明.基于有限单元柔度法的钢筋混凝土空间框架非弹性地震反应分析[J].建筑结构学报,2004,25(2):79-84.
    38 Jayaraman H B, Knudson W C. A Curved Element for the Analysis of Cable Structures [J]. Computers and Structures, 1981, (14): 325-333.
    39陈常松,陈政清,颜东煌.悬索桥主缆初始位形的悬链线方程精细迭代分析法[J].工程力学,2006,23(8):62-68.
    40陈常松,陈政清,颜东煌.带刚臂的两节点精确悬链线索元的非线性分析[J].工程力学,2007,24(5):29-34.
    41聂建国,陈必磊,肖建春.悬链线索单元算法的改进[J].力学与实践,2003,(25):28-32.
    42杨孟刚,陈政清.基于UL列式的两节点悬链线索元非线性有限元分析[J].土木工程学报,2003,36(8):63-68.
    43杨孟刚,胡建华,陈政清.基于UL列式的悬索桥施工过程模拟分析[J].湖南科技大学学报,2004,19(3):58-62.
    44刘北辰.工程计算力学理论与应用[M].北京:机械工业出版社,1994:62-70.
    45武建华,苏文章.四节点索单元的悬索结构非线性有限元分析[J].重庆建筑大学学报,2005,27(6):55-58.
    46 Tang J M, Shen Z Y, Qian R J. A Nonlinear Finite Element Method with Five-Node Curved Element for Analysis of Cable Structures [J]. Proceeding of IASS International Symposium, 1995, 2: 929-935.
    47胡松,何艳丽,王肇民.大跨度索结构的非线性有限元分析[J].工程力学,2000,17(2):36-43.
    48杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    49 Rosen A, Rand O. Numerical Model of the Nonlinear Behavior of Curved Rods [J]. Compt Struct, 1986, 22(5): 785-799.
    50 Bauchau O A, Hong C H. Nonlinear Composite Beam Theory [J]. Journal of Applied Mechanics, 1988, 55(match): 156-163.
    51 Pai P F, Nayfeh A H. A Fully Nonlinear Theory of Curved and Twisted Composite Rotor Blades Accounting for Warpings and Three-Dimensional Stress Effects [J]. Int J Solids Structures, 1994, 31(9): 1309-1340.
    52陈大鹏,周文伟.空间弹性曲杆在三维变形中的曲率—位移关系[J].西南交通大学学报,1997,32(2):123-129.
    53周文伟,曾庆元,贺国京.空间曲梁单位应变—位移关系[J].长沙铁道学院学报,1997,15(4):1-7.
    54 Yang Y B, Kuo S R. Effect of Curvature on Stability of Curved Beams [J]. J. Engrg. Struct. Div., 1987, 113: 1185-1202.
    55 Zhu Z H, Meguid S A. Analysis of Three-Dimensional Locking-FreeCurved Beam Element [J]. Int. J. Comput. Eng. Sci., 2004, 5(3): 535-556.
    56 Kapania R K, Li J. A Formulation and Implementation of Geometrically Exact Curved Beam Elements Incorporating Finite Strains and Finite Rotations [J]. Computational Mechanics, 2003, 30(5): 444-459.
    57 Gimena F N, Gonzaga P, Gimena L. Structural Matrices of a Curved-Beam Element [J]. Structural Engineering and Mechanics, 2009, 33(3): 307-323.
    58 Castellani A. Safety Margins of Suspension Bridges under Seismic Conditions [J]. ASCE, 1987, 113(ST7): 87-64.
    59 Okamoto S. Introduction to Earthquake Engineering [M]. Tokyo: University of Tokyo Press, 1973: 871-898.
    60 Joseph M V, Saeed S. The New Tacoma Narrows Suspension Bridge: Construction Support and Engineering [C]//Metropolis & Beyond. Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium. Metropolis & Beyond, 2005: 570-598.
    61 Plaut R H. Snap Loads and Torsional Oscillations of the Original Tacoma Narrows Bridge [J]. Journal of Sound and Vibration, 2008, 309(3-5): 613-636.
    62日本土木学会.地震反应分析与实例[M].北京:地震出版社,1983:101-109.
    63西山启伸,小寺重朗.桥梁抗震计算[M].北京:人民交通出版社,1983:220-280.
    64 Castellani A, Felotti P. Lateral Vibration of Suspension Bridges [J]. ASCE, 1986, 112(ST9): 658-687.
    65 Van Der W F. Natural Oscillations of Suspension Bridges [J]. ASCE, 1982, 108(ST8): 741-789.
    66 Herzog M. Vereinfachte Beurteilung der Aerodynamischen Stabilitat von HangeBrucken [J]. bauingenieur, 1982, 57: 87-100.
    67 Abdel Ghaffar A M, Scanlan R H. Ambient Vibration Studies of Golden Gate Bridge:Ⅰ.Suspended Structure,Ⅱ.Tower-Pier Structure [J]. ASCE, 1985, 111(EM4): 187-201.
    68 Dumanoglu A A, Severn R T. Asynchronous Seismic Analysis of Modern Suspension Bridges, PartⅠ: Free Vibration [R]//Department of Civil Engineering, Univ. of Bristol, U K. Bristol , U K: Research Report, 1985: 457-490.
    69张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报,2002,15(1):74-78.
    70郑凯锋,夏招广,佘川.宜昌长江公路大桥悬索桥动力试验和计算研究[J].中国铁道科学,2002,23(5):101-107.
    71 Huang M H, David P T, Nimal J P. Vibration Characteristics of Shallow Suspension Bridge With Pre-Tensioned Cables [J]. Engineering Structures, 2005, 27(8): 1220-1233.
    72 Hassan M, Hamid R R. Development of a Numerical Model for Bridge-Vehicle Interaction and Human Response to Traffic-Induced Vibration [J]. Engineering Structures, 2008, 30(12): 3808-3819.
    73 Yang Y B, Davis F M. Probabilistic Free Vibration and Flutter Analyses of Suspension Bridges [J]. Engineering Structures, 2005, 27(10): 1509-1518.
    74 Francesco P, Fabio G, Franco B. Comparison of Time Domain Techniques for the Evaluation of the Response and the Stability in Long Span Suspension Bridges [J]. Computers & Structures, 2007, 85(11-14): 1032-1048.
    75 Plaut R H, Davis F M. Sudden Lateral Asymmetry and Torsional Oscillations of Section Models of Suspension Bridges [J]. Journal of Sound and Vibration, 2007, 307(3-5): 894-905.
    76 Zhou D, Ji T J. Dynamic Characteristics of a Generalised Suspension System [J]. International Journal of Mechanical Sciences, 2008, 50(1): 30-42.
    77 Meo M, Zumpano G, Meng X L, Emily Cosser et al. Measurements of Dynamic Properties of a Medium Span Suspension Bridge by Using the Wavelet Transforms [J]. Mechanical Systems and Signal Processing, 2006, 20(5): 1112-1133.
    78 Joel P C, He X F, Moaveni B, et al. Dynamic Testing of Alfred Zampa Memorial Bridge [J]. J. Struct. Engrg., 2008, 134(6): 1006-1015.
    79 Gentile C, Gallino N. Ambient Vibration Testing and Structural Evaluation of an Historic Suspension Footbridge [J]. Advances in Engineering Software, 2008, 39(4): 356-366.
    80 Nourdine O, Abdelouahab R, Bernard L. Vibro-Acoustic Modelling of a Railway Bridge Crossed by a Train [J]. Applied Acoustics, 2006, 67(5): 461-475.
    81 Liu M F, Chang T P, Zeng D Y. The Interactive Vibration Behavior in a Suspension Bridge System under Moving Vehicle Loads and Vertical Seismic Excitations [J]. Applied Mathematical Modelling, 2010, 35(1): 398-411.
    82 Enrique J L, JoséT. Linear Vertical Vibrations of Suspension Bridges: A Review of Continuum Models and Some New Results [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(9): 769-781.
    83 Yau J D, Yang Y B. Vibration of a Suspension Bridge Installed with a Water Pipeline and Subjected to Moving Trains [J]. Engineering Structures, 2008, 30(3): 632-642.
    84 Josef M. Nonlinear Models of Suspension Bridges [J]. Journal of Mathematical Analysis and Applications, 2006, 321(2): 828-850.
    85 Josef M. Generalized Nonlinear Models of Suspension Bridges [J]. Journal of Mathematical Analysis and Applications, 2006, 324(2): 1288-1296.
    86 Zhong C K, Ma Q Z, Sun C Y. Existence of Strong Solutions and Global Attractors for the Suspension Bridge Equations [J]. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67(2): 442-454.
    87 Abdel Ghaffar A M, Rood J D. Simplified Earthquake Analysis of Suspension Bridge Towers [J]. ASCE, 1982, 108(EM2): 58-90.
    88严国敏.日本本州四国联络桥情报资料[M].北京:铁道部大桥局设计院,1985: 442-454.
    89 Abdel Ghaffar A M, Rubin L I. Vertical Seismic Behaviour of Bridges [J]. Earthquake Engineering & Structural Dynamics, 1983, 11: 71-89.
    90 Abdel Ghaffar A M, Rubin L I. Lateral Earthquake Response of Suspension Bridges [J]. ASCE, 1983, 109(ST3): 98-115.
    91 Abdel Ghaffar A M, Stringfellow R G. Response of Suspension Bridges To Travelling Earthquake Excitations: PartⅠ. Vertical Response, PartⅡ. Lateral Response [J]. SDEE, 1984, 3(2): 70-89.
    92 Dumanoglu A A, Severn R T. Seismic Response of Modern Suspension Bridges to Asynchronous Longitudinal and Lateral Ground Motion [J]. ICE, Part 2, 1989, 87: 40-65.
    93 Dumanoglu A A, Severn R T. Seismic Response of Modern Suspension Bridges to Asynchronous Vertical Ground Motion [J]. ICE, Part 2, 1987, 83: 14-53.
    94刘文华.大跨复杂结构在多点地震动激励作用下的非线性反应分析[D].北京交通大学博士学位论文. 2007:62-80.
    95 Zhu Z Y, Iftekhar A, Amir M. Fiber Element Modeling for Seismic Performance of Bridge Columns Made of Concrete-Filled FRP Tubes [J]. Engineering Structures, 2006, 28: 2023-2035.
    96 Tae-Hyung L, Khalid M M. Probabilistic Fiber Element Modeling of Reinforced Concrete Structures [J]. Computers and Structures, 2004, 82: 2285-2299.
    97周勇,张峰,李术才等.基于纤维模型的钢管混凝土拱非线性失稳分析[J].山东大学学报,2007,37(6):106-110.
    98张素梅,刘界鹏,王玉银等.双向压弯方钢管高强混凝土构件滞回性能试验与分析[J].建筑结构学报,2005,26(3):9-18.
    99姜洪斌.配筋混凝土砌块砌体高层结构抗震性能研究[D].哈尔滨工业大学博士学位论文. 2000:15-42.
    100杜兴亮.钢筋钢纤维混凝土剪力墙受剪及抗震性能试验研究[D].郑州大学硕士学位论文. 2007:14-60.
    101施楚贤.砌体结构[M].北京:中国建筑工业出版社,2003:34-36.
    102朱伯龙,吴明舜,张琨联.在周期荷载作用下钢筋混凝土构件滞回曲线考虑裂面接触效应的研究[J].同济大学学报,1980,(1):63-75.
    103项莉莉.配筋砌块砌体一字型剪力墙滞回性能数值仿真分析[D].哈尔滨工业大学硕士学位论文. 2010:12-84.
    104黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003:10-60.
    105 Surana K S. Geometrically Nonlinear Formulation for the Curved Shell Elements [J]. Inter. J. Numer. Meth. Eng., 1983, 19: 581-615.
    106 Bathe K L, Ramm E, Wilson E L. Finite Element Formulations for Large Deformation Dynamic Analysis [J]. Int. J. Num., Meth., Engng., 1975, 9: 353-386.
    107 Bathe K J. Static and Dynamic Geometric and Material Nonlinear Analysis [M]. P B 231113, 1974: 20-247.
    108 Clough R W, Penzien J. Dynamics of Structures [M]. 2nd Ed. Berkeley: Computers & Structures Inc, 1995: 20-400.
    109 Yang Y B, Lin S P, Leu L J. Solution Strategy and Rigid Element for Nonlinear Analysis of Elastically Structures Based on Updated Lagrangian Formulation [J]. Engineering Structures, 2007, 29(6): 1189-1200.
    110 The L H, Clarke M J. Corotational and Lagrangian Formulations for Elastic Three-Dimensional Beam Finite Elements [J]. Journal of Constructional Steel Research, 1998, 48(2-3): 123-144.
    111 Williams F W. An Approach to the Non-linear Behavior of the Members of a Rigid Jointed Plane Framework with Finite Deflections [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17(4): 451-469.
    112曾森,王焕定,崔雪娜.底部框架砌块砌体结构计算方案及其验证[J].工程力学,2008,25(SI):76-81.
    113周世宗.江阴长江公路大桥工程技术总结[M].北京:中国科学技术出版社,2005:10-300.
    114 Hsu G Y, Shu S L,Yang J. Application of Suspension Bridges Stiffened by Prestressed Concrete Slabs in China [J]. J. Bridge Engrg., 2007, 12(2): 256-260.
    115沈锐利.悬索桥主缆系统设计及架设计算方法研究[J].土木工程学报,1996,29(2):3-9.
    116唐建民,沈祖炎.悬索结构非线性分析的滑移索单元法[J].计算力学学报,1999,16(2):143-149.
    117潘永仁,杜国华,范立础.悬索桥恒载结构几何形状及内力的精细计算[J].中国公路学报,2000,13(4):33-36.
    118范立础,潘永仁,杜国华.大跨度悬索桥结构架设参数精细算法研究[J].土木工程学报,1999,32(6):20-25.
    119罗喜恒.悬索桥缆索系统的数值分析法[J].同济大学学报,2004,32(4):441-446.
    120罗喜恒,肖汝诚,项海帆.悬索桥施工过程精细化分析研究[J].土木工程学报,2005,38(10):76-80.
    121 Ho-Kyung K, Myeong-Jae L, Sung-Pil C. Non-Linear Shape-Finding Analysis of a Self-Anchored Suspension Bridge [J]. Engineering Structures 2002, 24(6):1547-1559.
    122 Karoumi R. Some Modeling Aspects in the Nonlinear Finite ElementAnalysis Of Cable Supported Bridges [J]. Computers and Structures, 1999, 71: 397-412.
    123吉林,冯兆祥.江阴大桥动静载试验与分析[J].华东公路,2001,(1):36-39.
    124胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994,22(4):433-438.
    125张宇峰,张传刚,承宇等.基于GPS技术的江阴长江公路大桥动力特性分析[J].公路,2010,(2):5-7.
    126孙永涛.大跨悬索桥在多点激励作用下的地震反应分析[D].哈尔滨工业大学硕士学位论文. 2009:10-90.
    127 Christen R, Bergamini A, Motavalli M. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges [J]. NDT & E International, 2009, 42(1): 22-27.
    128 Yuwei S, George D, Raimondo B. Random Field-Based Approach for Strength Evaluation of Suspension Bridge Cables [J]. J. Struct. Engrg., 2007, 133(12): 1690-1699.
    129 Roger Q H, Debra L M, Peter M J. Newport/Pell Bridge Main Cable Investigation and Anchorage Dehumidification [C]//Don't Mess with Structural Engineers. Expanding Our Role Proceedings of the 2009 Structures Congress. Structures Congress, 2009: 157-186.
    130 Stephen S B, James C E, Jolson R S. The Rotator Crescent and Rotator Cable: An Anatomic Description of the Shoulder's“Suspension Bridge”[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2010, 26(2): 256-257.
    131 Konstantakopoulos T G, Michaltsos G T. A Mathematical Model for a Combined Cable System Of Bridges [J]. Engineering Structures, 2010, 32(9): 2717-2728.
    132 Xu Y L, Liu T T, Zhang W S. Buffeting-Induced Fatigue Damage Assessment of a Long Suspension Bridge [J]. International Journal of Fatigue, 2009, 31(3): 575-586.
    133 Li C X, Tang X S, Xiang G B. Fatigue Crack Growth of Cable Steel Wires in a Suspension Bridge: Multiscaling and Mesoscopic Fracture Mechanics [J]. Theoretical and Applied Fracture Mechanics, 2010, 53(2): 113-126.
    134 Mahmoud K M. Fracture Strength for A High Strength Steel Bridge Cable Wire with a Surface Crack [J]. Theoretical and Applied Fracture Mechanics, 2007, 48(2): 152-160.
    135 Betti R, West A C, Vermaas G, et al. Corrosion and Embrittlement in High-Strength Wires of Suspension Bridge Cables [J]. J. Bridge Engrg., 2005, 10(2): 151-162.
    136 Elachachi S M, Breysse D, Yotte S, et al. A Probabilistic Multi-Scale Time Dependent Model for Corroded Structural Suspension Cables [J]. Probabilistic Engineering Mechanics, 2006, 21(3): 235-245.
    137 Ho-Kyung K, Myeong-Jae L, Sung-Pil C. Determination of Hanger Installation Procedure for a Self-Anchored Suspension Bridge [J]. Engineering Structures, 2006, 28(7): 959-976.
    138 Tan Y G, Zhao X, Zhang Z. Construction Control of a Self-Anchored Suspension Bridge with Space Reticulate Cable [C]//Don't Mess with Structural Engineers. Expanding Our Role, Proceedings of the 2009 Structures Congress. Structures Congress, 2009: 597-630.
    139 Matson D D. Lions' Gate Suspension Bridge: Design of the Suspended Structure Replacement [C]//Metropolis & Beyond. Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium. Metropolis & Beyond, 2005: 201-267.
    140 Charles E E. Walker Rehabilitation of the Beveridge Suspension Bridge [C]//Don't Mess with Structural Engineers. Expanding Our Role, Proceedings of the 2009 Structures Congress. Structures Congress, 2009: 121-141.
    141 Juozapaitis A, Vainiunas P, Kaklauskas G. A New Steel Structural System of a Suspension Pedestrian Bridge [J]. Journal of Constructional Steel Research, 2006, 62(12):1257-1263.
    142赵伟封,梁智涛.跨径1400 m悬索桥方案设计及关键技术问题研究[J].中国公路学报,1999,12(增刊):62-65.
    143姜冲虎,贺胜军.能量法求解自锚式悬索桥桥塔的稳定性[J].公路与汽运,2008,125(2):133-135.
    144许世展,高传明,贺拴海,等.悬索桥主塔纵向稳定的实用计算[J].长安大学学报(自然科学版),2005,25(1):41-43.
    145华新,郑修典,周彦锋等.泰州长江大桥三塔悬索桥钢中塔设计[J].公路,2009,(7):68-74.
    146陈策,冯兆祥,钟建驰.三塔悬索桥钢中塔弹塑性稳定性分析[J].公路,2009,(7):63-67.
    147彭益华.大跨悬索桥连接构造与地震响应关系研究及主塔push-over分析[D].湖南大学硕士学位论文.2007:10-68.
    148何畅,何中富.具有初始缺陷的高桥墩非线性稳定分析[J].重庆交通学院学报,2003,22(9):4-17.
    149郭红涛.山区梁式桥抗震性能分析及桥墩push-over分析[D].湖南大学硕士学位论文.2008:9-71.
    150崔高航.桥梁结构PUSH-OVER方法研究[D].中国地震局工程力学研究所工学硕士学位论文.2003:8-87.
    151王维.推倒分析在桥梁抗震性能评价中的应用[D].西南交通大学硕士学位论文.2007:11-72.
    152宗德玲.基于push-over分析的桥梁抗震能力评估方法研究[D].南京工业大学硕士学位论文.2004:9-72.
    153 Col C. McDaniel and Frieder Seible Influence of Inelastic Tower Links on Cable-Supported Bridge Response [J]. J. Bridge Engrg., 2005, 10(3): 272-280.
    154 Nurdan M A. Earthquake Performance Assessment and Retrofit Investigations of Two Suspension Bridges in Istanbul [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(8): 702-710.
    155 Erdoan H, Gülal E. The Application of Time Series Analysis to Describe the Dynamic Movements of Suspension Bridges [J]. Nonlinear Analysis: Real World Applications, 2009, 10(2): 910-927.
    156 Oliveira C S, Hao H, Penzien J. Ground Motion Modeling for Multiple-Input Structural Analysis [J]. Structural Safety, 1991, (10): 79-93.
    157刘晶波,杜修力,欧进萍.结构动力学[M].北京:机械工业出版社,2005:18-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700