随机波浪载荷激励下海洋平台振动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国近海油气资源的开采,工程设施的建设急需一套实时检测/监测、预警和控制等技术安全保障措施,海洋平台的振动控制技术研究正是适于这种需要提出的。近年来,岸上结构振动控制技术得到迅速发展,但对海上结构而言,这一方面的研究成果甚少。本文针对某海洋平台的振动治理工程,以平台振动控制为主线,进行海洋平台振动控制等相关技术研究,主要包括以下几个方面内容:
     海洋平台结构系统参数辨识 包括模态参数辨识和物理参数辨识;研究利用环境激励技术对平台动力参数进行辨识,数值模拟表明对低阶模态参数辨识有较高精度。建立剪切型结构模型物理参数识别递推公式,阐明了利用完整结构模态信息和非完整信息进行辨识的差异,指出引起误差的原因。
     结构振动控制模型 结构振动控制需要精确的系统数学模型,同时控制的实时性要求系统的模型阶数不能过高。采用动力减缩技术,得到适于振动控制研究的平台减缩模态,在随机环境载荷激励下,减缩模型与有限元模型两者位移响应具有较好一致性。
     平台振动测试数据分析 分析海洋平台测量数据,得到平台基频的漂移性及其量值,结合数值分析结果阐明引起过度振动的原因,为平台振动治理提供依据。
     平台振动粘弹性阻尼控制 根据CII平台所处海域环境条件,采用粘弹性阻尼振动控制技术,对阻尼器在实际平台上的安装位置、振动控制效果等作了评价。对所设计的粘弹性阻尼器,平台顶层甲板位移均方根差下降32.3%,加速度均方根差下降38.9%。
     基于TMD的变刚度主动振动控制技术 建立基于TMD变刚度半主动振动控制实施技术路线、控制策略等,设计VSTMD控制系统,考虑了保证VSTMD装置长期有效、可靠工作的作动器校正措施;采用一次强风暴波面实测数据模拟长期非平稳波浪载荷,评价所设计的VSTMD装置对海洋平台振动控制的有效性。在一次风暴潮过程中,安装VSTMD后,平台上甲板位移均方根差最多下降50%,平均下降30.2%。
With the exploitation of ocean oil and gas resources, the offshore construction has necessitated measures for safety insurance, including real-time detecting/monitoring, precautioning, controlling, etc. The research of offshore platform vibration control is developed to meet this need. In recent years, vibration control for shore structures has developed rapidly in contrast with little achievement for offshore structures whose environment's uncertainty has made it difficult to do research. Aiming at the vibration control of a certain offshore platform, the paper engages in offshore platform vibration control, researching the relative skills such as offshore platform structure parameter identification and vibration control and so on. It includes:
    Offshore platform structure system identification includes modal parameter identification and physical parameter identification. The study identifies the dynamic parameters of an offshore platform under environment excitation. Numerical simulation shows that the parameter identification of low modes is quite precise. The recursive equation for structural physical parameter identification of shearing system is developed. It explains the difference between the identification using complete structure modal parameter and the one using incomplete data and accounts for the reason of error when using incomplete data.
    Exact numerical system modal is needed to control structure vibration. For the purpose of control vibration on real time, dynamic condensation method is adopted to reduce the finite element model of a certain platform. The displacement responses of the two models under the environmental loadings agree with each other well. The vibration level of the platform was tested on spot. The excursion of the base frequency and its value is obtained by analyzing the tested data. Combined with the
    
    
    numerical results, the causes of over-vibration of the platform are detected. The results can serve as the base for further offshore platform vibration control. According to the ocean environment, vibration control method using viscoelastic dampers is used to optimize the position of the dampers on actual platform and evaluate their control effectiveness. It can reduce displacement and acceleration response standard deviation of the top of platform by 32.3 % and 38.9 % respectively, compared with those of without dampers.
    The paper establishs the route and strategy of semi-active vibration controller based on a variable stiffness tuned mass damper (VSTMD) and considers the work of an actuator that is employed to ensure the long operational life span and reliability of the VSTMD. Adopting a set of the tested irregular wave data to simulate the long nonstationary loadings on the platform, the effectiveness of the VSTMD is appraised combining with the practical situation. The platform displacement standard deviation of the top of platform even can be reduced by 50% and by 30.2 % averagely compared with that of without VSTMD.
引文
[1] Yao ET.. Concept of Structural Control, Struct. Div., ASCE, 1972, 98(ST7): 1567~1574
    [2] Housner G. W., Bergnan L. A., Caughey T. K., et al. Structural Control: past, present, and Future [J]. Journal of Engineering Mechanics/September, 1997(2):897~958
    [3] Laura M., Janson and ShirLey J,Dyke. Semiactive Control Strategies for MR Dampers: Comparactive Study [J]. Journal of Engineering Mechanics, 2000(8):798~802
    [4] 阎维明,伺福林,谭平.土木工程结构振动控制的研究进展.世界地震工程,1997,13(2):8~17
    [5] Song T. T. An overview of active and hybrid structural control research in the U.S, [J] The Struct. Dyn. Design of Tall Buildings. 1993,2(2): 192209
    [6] Soong T.T., Hanson R.D. State of the art of active structural control research in the U.S.. China/Japan Trilateral/Workshop on structural control, Shanghai, China, October 1992.
    [7] 刘季.中国结构控制研究状况.哈尔滨建筑大学学报.1993,26(4):96~101
    [8] 蔡国平,孙峰,王超.建筑结构被动控制发展动态.力学与实践,2000,22(2):6~12
    [9] 顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社.1997
    [10] Lin C.C,Hu C.M..被动调谐质量阻尼器的振动控制效果.世界地震工程,1995(1):59~65
    [11] 张敏政.工程抗震的新领域.结构振动控制.地震工程研究论文集.北京:地震工业出版社.1992
    [12] Lee H. H. and Wu R. J. Vibration mitigation of structures in the marine environment [J]. Ocean Engineering. 1996,23:741~758
    [13] Villaverde R. Seismic control of structures with damped resonant appendages, Proe., First World Conf. on Struct. Control. 1994, 1(1), WP4:113~122
    [14] Palazzo B., and Petti L.. Seismic response control in base isolated systems using tuned mass damper, Proc. Of First Conf. on Struet. Control, 1994, 29~38
    [15] Mira A., and Kaneko M.. Vibration control of tall buildings [J]. World Conf. on Struct. Control, 1994, TA2:31~42
    [16] Hsien Hua Lee. Stochastic Analysis for Offshore Structures with Added Mechanical Dampers [J]. Ocean Engng. 1997,24(9):817Z~834
    [17] 陆建辉,彭临慧,李华军.海洋石油平台TMD振动控制及参数优化,青岛海洋大学学报1999,29(4):733~788
    [18] Koshimura K., Tatsumi M., and Hata K.. Vibration control of the main towers of the Akashi Kaikyo Bridge, Proc. of First World Conf, on Struct. Control. 1994, Vol.2. TP3:98~106
    [19] Li Huajun, Sau-Lon. James HU and Tomotsuka TAKAYAMA. The Optimal Design of TMD for Offshore Structures, China Ocean Engineering, 1999, 13(21): 33~144
    [20] Welt F., and Modi V.J.. Vibration damping through liquid sloshing: part Ⅰ-a nonlinear analysis, Proc. Of Diagnostics. Vehicle Dyn. and Spec. Topics, ASME. Des. Engrg, 1989, 18(5): 149~156
    [21] Kareem A. The next generation of tuned liquid dampers, Proc. of First World Conf. on Struct. Control, 1994, FP5:19~28
    [22] Wakahara T., Ohyama T., and Fjujii K.. Suppression of winded-induced vibration of a tall building using tuned liquid damper, Proc. of Syrup. on Serviceability of Build, 1989
    [23] Chaiseri P., Fujino Y., Pacheco B. M. and Sun L. M.. Interaction of tuned liquid damper and
    
    structure: theory, experimental verification and application [J]. Struct. Engrg/Earthquake Engrg., 1989, 6(2): 273~282
    [24] Yeh H., Reed D.A. Yu J., and Gardarsson S.. Performance of tuned liquid dampers under large amplitude excitation, Proc. of Second Int. Workshop on Struct. Control, 1996, 432~443
    [25] 翟桐,张敏政.调谐液体减振器的减振作用分析.地震工程与工程振动.1994(4):102~110
    [26] 李桂青,熊火青.结构鞭梢效应的控制与分析.地震工程与工程振动,1987(12)
    [27] Kelly et al. Mechanisms of energy absorption in special devices for use in earthquake resistant structure [J]. Bull N. Z. Nat. Soc. for Earthquake Engrg.. 1972(5): 63~88
    [28] 蔡国平,孙峰,王超.建筑结构被动控制发展动态.力学与实践,2000,22(2):6~12
    [29] Lee C. J. and Tsai C. S. Analytical model of viscoelastic dampers for seismic mitigation of structures [J]. Computers and Structures. 1994,50: 111~121
    [30] K Kasai, J. A. Munahi, Lai and B. F. Masison. Viscoelastic damper hysteretic model: theory, experiment and application [J]. Proceedings of ATC-17-1 on Seimic Isolation, Engergy Dissipation and Active Control. 1993,2(2):521~532
    [31] Kitami E., Ninomiya K., Katayama M., and Unoki K., Response Characteristics of Tension Leg Platform with Mechanical Damping System in Waves, Offshore Technology Conference, 1982, Paper No.4393
    [32] 赵鸿铁,徐赵东,张兴虎.耗能减震控制的研究、应用与发展.西安建筑科技大学学报.2001,33(1):1~6
    [33] 李桂青,霍达,邹祖军.结构控制理论及其应用.武汉工业大学出版社.1991
    [34] Abdel-Ronman M. and Leipholz H.H.E.. Structural Control by Pole Assignment Method, ASCE. Journal of Engineering Mechanics. 1978(104): 75~1157
    [35] 周福霖,工程结构减震控制.北京:地震出版社.1997
    [36] 武田寿一.建筑隔震、防振与控振.北京:中国建筑工业出版社,1997
    [37] 李敏霞,刘季.主动结构振动控制算法综述.世界地震工程.1998,14(4):61~69
    [38] K. W. H. and Sivan R.. Linear Optimal Control Systems. Wiley, New York. 1972
    [39] Kimura H.. Pole Assignment by Gain Output Feedback, IEEE Transactions on Automatic Control. 1975, AC-20, 16~509
    [40] Meirovitch L. and Oz H.. Active Control of Structures by Modal Synthesis. In Leipholz H.H.E(ed). Structural Control North Holland, Amsterdam. 1980, 21~505
    [41] Riley M.A., Subramaniam R. et a l. Hybrid Control of Sliding Base Isolated Structure Proc. of ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, San Francisco, California, 1993, Vol.2:799~810
    [42] Yang Y.K. et al. A Seismic Hybrid Control of Nonlinear and Hysteretic Structures. J of Eng. Mech., 1992, 118(7)
    [43] Kobori T. et al, Shaking Table Experimental of Multi-Story Seismic Response Controlled Structures with Active Variable Stiffness(AVS) System, Proc. 8th Japan Earthquake Eng. Syrup, Tokyo, 1990
    [44] Kobori T.. Dynamics Loading Test of Real Seal Scale Frame with Active Variable Stiffness Device, Journal of Structural Engineering, 1991, 37B: 317~328
    [45] Kobori T. et al. Seismic Response Controlled Structure with Active Variable Stiffness System, Earthquake Engineering and Structure Dynamics, 1993(22): 925~941
    [46] Richter P.J. et al, the EDR-energy Dissipating Restraint, a New Device for Mitigating
    
    Seismic Effects, Proc. Structure Engineering, Association of California. 1990
    [47] Hrovat D. et al Semi-active Versus Passive or Active Tuned Mass Dampers for Structural Control, Journal of Engineering Mechanics, 1993, 691~705
    [48] Yang J.N. et al, Hybrid Control of Seismic-excited Bridge Structures, Earthquake Engineering and Structural Dynamics, 1995(24): 1437~1451
    [49] K. W. H. and Sivan R.. Linear Optimal Control Systems. Wiley, New York. 1972.
    [50] Qureshi S. M., Tsutsumi H. Hybrid Control of Sliding Structure. Proc. of the Tenth World Conference on Earthquake Engineering. Madrid, Spain. 1992, Vol.4,
    [51] Riley M.A., Subramaniam R. et al. Hybrid Control of Sliding Base Isolated Structure Proc. of ATC-17-1 Seminar on Seismic Isol ation, Passive Energy Dissipation, and Active Control, San Francisco, California, 1993, Vol.2:799~810.
    [52] 刘季,李敏霞.变刚度半主动结构振动控制,第一届全国结构控制会议论文集,1998
    [53] 刘季,李敏霞.变刚度半主动结构振动控制的实验研究,地震工程与工程振动,1998(18),4:90~95
    [54] 周福霖等.主动变刚度/阻尼系统的变结构控制,工程力学增刊.1998,61~66
    [55] Yang J.N. et al. Control of Seismic-excited Buildings Using Active Variable Stiffness Systems. Engineering Structures, 1996, 18(8): 589~596
    [56] Xin-Yuan, Q., Experimental Study on Behavior of an Open Bottom Floating Platform in Wave, Wind and Current. Offshore and Polar Engineering Conference(Osaka April 1994), Vol.3:334~337
    [57] Yoshida K., Suzuki H., Narn D., Hineno M., and Ishida S. Active Control of Coupled Dynamic Response of TLP Hull and Tendon. Proceedings, 4th International Offshore and Polar Engineering Conference. ISOPE. Part. 1 (4). 1994, Vol. 1 : 98~104
    [58] Suhardjo J., Spencer Jr. B.F., Sain M.K., and Tomasula D., Nonlinear Control of a Tension Leg Platform, Innovative Large Span Structures, N.K., Srivastanva Canadian Society for Civil Engineers. Toronto, Canada. 1992, Vol. 1:464~474
    [59] Reinhorn A.M., Soong T.T., and Manolis G.D. Disaster Prevention of Deep water offshore Structures by Means of Active Control procedure, Proceedings. Fifth International OMAE Conference. ASME Tokyo, Japan, 1986, 39~44
    [60] Prucz and Soong T.T., On Reliability and Active Control of Tension Leg Platforms, In Chen W.F., and Lewis A.D.M. (eds). Recent Advances in Engineering Mechanics and Their Impact on Civil Engineering Practice 2. 1983, 6~903
    [61] Yanrning Lin, Faranarz Gordaninejad Etc. Semi-active control of a two-span bridge using field-controllable magneto-theological dampers [J]. SPIE, 2000,39(3):778~786
    [62] Feng M. Q., Matin Q. F. and Masanobu S. Friction-controllable sliding isolation system [J]. J. Engng. Mech., ASCE. 1993,119(9):1845~1864
    [63] Abe M. Rule-based control algorithm for active tuned mass dampers [J]. J. Engng. Mech., ASCE. 1996,122(8):705~713
    [64] Jinkoo Kim and Sunghyuk Bang. Optimum distribution of added viscoelastic dampers for mitigation of torsional responses of plan-wise asymmetric structures [J]. Engineering Structures. 2002,24:1257~1269
    [65] 瞿伟廉等,U型水箱对高层建筑和高耸结构的风振控制的实验研究,建筑结构学报,1993(5)
    [66] 李宏男,阎石.中国结构控制的研究与应用,地震工程与工程振动,1999(19):107~112
    
    
    [67] Yoshida K., Suzuki H., Nam D., Hineno M., and Ishida S. Active Control of Coupled Dynamic Response of TLP Hull and Tendon. Proceedings, 4th International Offshore and Polar Engineering Conference. ISOPE. Part. 1 (4). 1994, Vol. 1 : 98~104
    [68] Suhardjo J., Spencer Jr. B.F., Sain M.K., and Tomasula D., Nonlinear Control of a Tension Leg Platform, Innovative Large Span Structures, N.K., Srivastanva Canadian Society for Civil Engineers. Toronto, Canada. 1992, Vol. 1 : 464~474
    [69] Reinhorn A.M., Soong T.T., and Manolis G.D. Disaster Prevention of Deep water offshore Structures by Means of Active Control procedure, Proceedings. Fifth International OMAE Conference. ASME Tokyo, Japan, 1986, 39~44
    [70] Prucz and Soong T.T., On Reliability and Active Control of Tension Leg Platforms, In Chen W.F., and Lewis A.D.M. (eds). Recent Advances in Engineering Mechanics and Their Impact on Civil Engineering Practice 2. 1983
    [71] Li H.J., Wang S.Q., Yang Y.C., Wang Y.. Vibration Characteristics of An Offshore Platform and Its Vibration Control. China Ocean Engineering. 2002, 16(4):469~482
    [72] Ji C.Y., Li H.J., Wang S.Q.. Dynamic Analysis of Offshore Platform with Excessive Vibration under Wave Loading. Proceeding of 22nd International Conference on Offshore Mechanics and Artic Engineering.2003
    [73] Li H.J. and Hu S.L, TMD Design for Optimally Minimizing Fatigue Damper. Journal of Engineering Mechanics, 2002, 128(6): 703~707
    [74] Huang, W.P., Jiang, J.T., and Yang, Y.C.. Investigation on the Cause of Excessive Vibration of a Jacket Type Offshore Platforms. The proceeding of the Asian and Pacific Coastal Engineering Conference, APCEC, Da Lian, China, 200118~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700