用户名: 密码: 验证码:
车辆姿态多传感器检测系统与信息融合算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
田间农业机器人是国际上提高农业自动化水平的有效手段之一,它可以满足未来农业生产中的高产、安全、高效率、环保、农艺高精度的要求。田间车辆的自动导航技术是一个首先需要解决的基础问题,本文研究的主要内容是基于GPS/DR导航原理和3G通讯的导航系统开发,同时对导航过程中的多传感器数据融合算法中的关键问题,如作业车辆的状态估计、作业车辆的路线跟踪、作业车辆的导航信息事后评估等问题进行了讨论,具体内容如下:
     ①利用GPS导航与航位推算法相结合,实现了低成本田间作业车辆导航定位系统的开发,所使用到的传感器包括GPS模块,电子罗盘、光纤陀螺仪等惯性传感器,利用Labview这一图形化编程工具,进行了上位机程序编写,程序主要完成系统的串口配置,车辆姿态信息提取等功能,并利用Labview与Matlab(?)昆合编程的功能,实现了对多传感器采集到的数据在线分析的功能。导航系统所使用的GPS信号为差分GPS信号,差分信号数据选择3G网络作为通信链路,传递给移动站,用来实现对移动站采集到的GPS数据进行修正。
     ②在MATLAB中的Simulink环境下,实现了田间作业机械的动力学模型开发,其中包括:前轮侧向力计算单元,后轮侧向力计算单元、稳态转向半径计算单元、横摆角稳态增益响应单元、车辆不足转向参数计算单元等六个单元,对相应单元输入功能参数以及作业车辆的机械参数,可以方便的计算车辆的横摆角以及车辆的质心运行轨迹。
     ③多传感器数据融合方面,采用基于迭代的方法来得到在最小均方误差意义下系统状态的最优估计的Kalman滤波方法,实现作业车辆行驶姿态的最优估计,同时在GPS/DR导航系统中,由于引入了惯性传感器,系统的状态方程为非线性方程,因此利用扩展Kalman滤波,先对状态方程进行线性化处理之后,再进行滤波操作,试验结果证明可行。
     ④GPS/DR导航属于多传感器共同完成测量任务的情况,如果采用集中式滤波的方法,就会造成子系统的故障会影响全局的情况.本课题采用了分布式滤波的方式,设计联邦Kalman滤波器,提高了系统的容错性,同时又解决了集中式Kalman滤波的计算量大的缺陷。
     ⑤导航过程中,一旦GPS子系统失效,系统将迅速切换成DR导航系统继续完成测量任务,而DR系统存在着误差累计的缺点。针对这一问题,结合测量结果,利用最有平滑理论,对采集到的数据进行最优平滑,取得了很好的效果,并进一步验证了,平滑算法在车辆导航中有很好的表现,是一种行之有效的事后处理方法。
     ⑥车辆自主驾驶过程中,为了避免车辆行走过程中挂伤作物,同时也为了避免作业过程中产生衔接行的遗漏,减少作业能耗、降低成本,经常会按照预定路线行走。在按照预定路线行走时,针对融合信息的不确定性,构建了自动导航系统的模糊控制器,可以对作业车辆进行直线跟踪和曲线跟踪。同时考虑到在直线行走跟踪和曲线行走跟踪时,横向位置偏差和航向偏差对系统输出的影响不同,设计了参数自调整的模糊控制器,试验结果证明,较一般的模糊控制器而言,具有超调量小、反应灵敏的特点。
Agricultural robot is one of the most effective methods to increase agricultural automation level in the world. It can meet the future agriculture of good harvest, safety, high efficiency, environmental protection, agronomic's high precision requirements. Automatic vehicle navigation technology is the basic problem. A navigation system is built based on GPS/DR and 3G technology. Key problems of sensor data fusion in navigation process, such as state estimation of agricultural vehicles, route tracking of agricultural vehicles, later evaluation of navigation information, was discussed as below:
     ①Using global positioning system technology, combined with DR technology, a navigation system of low cost equipped on agricultural vehicles was developed. The sensors used in the system are GPS, Inertial navigation sensors such as electronic compass, fiber optic gyro. The software was developed with Labview. The software is used to configure serial port, extract vehicle attitude information and so on. Differential GPS Signal was used in the system to observe vehicle attitude, which was transmitted through the 3G network. The DGPS signal is used to correct the GPS data the mobile station collected.
     ②Using the Simulink in the MATLAB, the dynamic model of field work machinery was developed. It includes:the front wheel side force calculation unit, the back wheel side force calculation unit, steady turning radius calculation unit, yaw angles gain steady-state response unit, Insufficient steering parameters calculation unit and so on. When function parameters and structure parameters is given to the calculation model, vehicle's yaw angles and centroid running trajectory can be calculated quickly.
     ③Refers to multi sensor data fusion, using the Kalman filtering method based on iteration which has the minimum mean square error(MMSE), The attitude's optimal estimation of the agricultural vehicles can be obtained. Considering the state equation of the system is nonlinear equation, extended kalman filtering (EKF) method is used to solve this defect. The test result shows that the method is feasible.
     ④The navigation system's work depends on different sensors, when using centralized filter method to deal with the signals sensors get, the damage of the subsystem can cause paralysis of the whole system. Distributed filter method is used here. A federal kalman filtering system is designed here, using this method, the system's fault tolerance is improved. At the same time, the amount of calculation of the system is reduced.
     ⑤In the process of navigation of the vehicles, when GPS fails to get the signal, inertial navigation can be used instead of GPS navigation system. Inertial navigation system's error will accumulate over time. We use the optimal smooth theory to smooth the data get from sensors, the test results shows that this method is useful.
     ⑥In the case of autonomous vehicles, special route is given to the vehicle to avoid scratching crops, reduce energy consumption, reduce cost of production A fuzzy controller is designed for linear tracking and curve tracking. To deduce system overshoot, the fuzzy controller's parameters can be adjusted. The test results shows that using this method, the system overshoot is deduced.
引文
1辛志遐,2010.我国农业机械化现状及其展望.吉林农业科技学院学报19(1)26-28.
    2王桂兰,罗平.2010.我国农业机械化与农村可持续发展研究.湖南农机37(6)11-12
    3沈明霞,姬长英.2000农作物边缘提取方法研究.农业机械学报,.31(6):45-47
    4沈明霞,姬长英.2000基于纹理频谱的农田景物区域检测..8(3):43-47
    5沈明霞,姬长英,张瑞合.基于小波变换的农田景物边缘检测.农业机械学报,2001,32(2):27-30
    6沈明霞,姬长英,张瑞合.2001基于农田景物边缘的农业机器人自定位方法农业机械学报,,32(6):49-51
    7周俊,姬长英.2003农业机器人视觉导航中多分辨率路径识别.农业机械学报..34(6):120-123
    8周俊,姬长英.2003基于知识的视觉导航农业机器人行走路径识别.农业工程学报.,19(6):101-105
    9周俊,刘成良,姬长英.2005农用轮式移动机器人相对位姿的求解方法.中国图像图形学报..10(3):310-314
    10.施树明.2005基于模糊逻辑的车辆侧偏角估计方法.汽车工程.27(4):426-430
    11.周建军.2009.基于模糊控制的农用车辆路线跟踪.40(4):151-156.
    12.张建军等.2010.车辆状态感知中的自适应二次融合.合肥工业大学学报.33(3):337-340
    13.杨志强等,2008车道保持系统的车辆状态预测模型.农业机械学报.39(10):25-29
    14.汪明磊等,2009,基于分层传感器信息融合的智能车辆导航.农业机械学报.40(11):165-170
    15.王惠青,王庆,2008,车载航位推算系统中传感器参数的在线标定.测控技术.27(12):21-23
    16.高嵩等,2009.基于扩展卡尔曼滤波的机动目标航迹跟踪.火力与指挥控制.34(9):14-17.
    17.郑水波等,2005.最小二乘支持向量机在汽车动态系统辨识中的应用.39(3):392-395
    18.杨艳娟等,2004.RTS平滑算法在捷联惯性导航系统初始对准精度事后评估中的应用.38(10):1744-1747
    19.肖龙远,曾超.2008.基于自适应Kalman滤波算法的联邦滤波器.火力与指挥控制.33(12):88-94
    20.张永林,钟毅芳.2004.车辆路面不平度输入的随机激励时域模型.35(2):9-12
    21.高越等.2005基于自适应Kalman滤波的汽车横摆角速度软测量方法.26(1):24-27
    22.高振海等.2004.基于车辆动力学和Kalman滤波的汽车状态软测量.16(1).22-24
    23.齐志权等.2003.基于汽车ABS/ASR/ACC集成化系统的ABS参考车速确定方法的研究.25(6),617-620
    24.刘国福等.2004汽车防抱死制动系统车速估计方法初步研究.汽车工程.26(6):723-728
    25.陆丹.2005.基于卡尔曼滤波的汽车行驶姿态的研究[D].江苏大学
    26.乔涛.2006.汽车状态的非线性估计及软测量[D].吉林大学
    27.张方明.2006田间路径识别算法和基于立体视觉的车辆自动导航方法研究.浙江大学博士论文
    28.冯雷.2004基于GPS技术和传感技术的农用车辆自动导航系统的研究.浙江大学博士论文
    29.管欣,李谦.2002.车辆转向系统动力学模型的车载辨识算法.中国机械工程13(13):1095-1097
    30.王吉红等.2002.基于汽车控制总线(CAN-BUS)的路面纵向坡度估计方法.山东大学学报.35:50-54
    31.刘青等.1998.轮胎非稳态侧偏理论模型的参数辨识.农业机械学报.29(2):55-60
    32.郑水波等.2005.最小二乘支持向量机在汽车动态系统辨识中的应用.上海交通大学学报.39(3):392-396
    33.胡振文,孙玉梅,邢献芳.2009.车辆定位与导航.第一版.北京.中国铁道出版社.1240
    34.喻凡,林逸.2010.汽车系统动力学.第一版.北京.机械工业出版社.218-225
    35.秦永元.2010.惯性导航.第一版.北京.科学出版社.45-60
    36.康耀红.2006.数据融合理论与应用.第二版.西安.西安电子科技大学出版社.1-10
    37.何友等.2007.多传感器信息融合及应用.第一版.电子工业出版社.1-10
    38.付梦印等.2010Kalman滤波理论及其在导航系统中的应用.北京.科学出版社.123-130
    39.明平顺等.2005.基于3G技术的智能车辆导航与无线互连系统.武汉理工大学学报.27(11)66-68
    40.程培嵩等.2008.GPS车辆导航系统中坐标转换的改进数学模型.矿山测量.2008(6):31-36
    41.张国良等.2004.基于全局估计的联邦卡尔曼滤波信息同步方法.航天控制.22(5).4244
    42.朱虹等.2008.基于联邦卡尔曼滤波器的车载GPS/DR信息融合.计算机工程与设计.29(20)5357-5359
    43.籍颖等.2010.农业机械导航系统综合评价方法.农业机械学报.41(12):160-164
    44.WATANABE K等,2001 Absolute speed measurement of automobile from noisy acceleration and erroneous wheel speed information. SAEpaper920644
    45.DAISS A等,1995.Estimation of vehicle speed fuzzy-estimation in comparison with kalman-filtering.Proceeding of the 4thIEEE conference on control application Albany:3086-3090
    46.Searcy S W, Reid J F, Detecting crop rows using the Hough Transform, Proceedings of ASAE Annual meeting, St.Joseph,1986,82-86
    47.Reid J F, Searcy S W, Vision-based guidance of an agricultural tractor.IEEE control systems.1987.7(12):39-43
    48.Noguchi N, Terao H.1997, Path planning of an agricultural mobile robot neural work and genetic algorithm. Computer Electron, Agric, vol 18:187-204
    49.ZhngTianzuo.2004.The stauts and Prospect of agricultural mechanization in China. CIGR international conference, Beijing.
    50.Searcy S.W., Reid, J.F.1986,Detecting crop rows using the Hough Transform. Proceedings of the ASAE Annual meeting, St. Joseph, MI. paper 86-3042,
    51.Shin B.-S., Kim S.-H., Park J.-U.. Autonomous Agricultural Vehicle Using Overhead Guide. Proceedings of Automation Technology for Off-Road Equipment, July 26-27, Chicago, Illinois, USA,2002.Pp.261-269
    52.Slaughter D.C., Chen P.1999, Curley R.G. Vision Guided Precision Cultivation. Precision Agriculture,.1,199-216
    53.Matsuo Yosuke, Yamamoto Satoshi, Yukumoto Osamu.2002.Development of Tilling Robot and Operation Software. Proceedings of the Automation Technology for Off-Road Equipment, July 26-27 Chicago, Illinois, USA, Pp.184-189
    54.Matsuo Y., Hamada Y., et.al.2004. Auto-steering rice transplanter for straight traveling. Proceedings of the ATOE, Japan,:292-297
    55.Olsen, H.J.1995.Determination of row position in small-grain crops by analysis of video images. Computers and Electronics in Agriculture Volume:12,Issue:2, March,.pp.147-162
    56. Tillett N.D, Hague T.1999. Computer-Vision-based Hoe Guidance for Cereals an Initial Trial. Agric. Engng. Res. (74):225-236
    57.Pilarski T., Happold M., Pangels H., Ollis M., Fitzpatrick K., Stentz A.1999,The Demeter System for Automated Harvesting. Proceedings of the 8th International Topical Meeting on Robotics and Remote Systems, April.
    58.Reid John F., Zhang Qin, Noguchi Noboru, Dickson Monte. Agricultural automatic guidance research in North America. Computers and Electronics in Agriculture.2000.Vol.25:155-167
    59.Keicher R., Seufert H. Automatic guidance for agricultural vehicles in Europe. Computers and Electronics in Agriculture.2000. Vol.25:169-194
    60.Debain C., Chateau T., Berducat M., Martinet P., Bonton P. A guidance-assistance system for agricultural vehicles. Computers and Electronics in Agriculture.2000. vol.25:29-51
    61. Hague T., Marchant J.A., Tillett N.D. Ground based sensing systems for autonomous agricultural vehicles. Computers and Electronics in Agriculture.2000. Vol.25:11-28
    62.Kondo N.,K.C.Ting. Robotics for bioproduction systems. ASAE publication, MI,USA.1998
    63.Noguchi N., Terao H., Path planning of an agricultural mobile robot by neural network and genetic algorithm. Comput. Electron. Agric.1997.Vol.18:187-204.
    64.Torii Toru. Research in autonomous agriculture vehicles in Japan. Computers and Electronics in Agriculture.2000. Vol.25:133-153
    65.Ollis Mark, Stentz Anthony. First result in vision-based crop line tracking. Proceedings of the IEEE Conrerence on Robotics and Automation(ICRA'96), Minneapolis, MN.1996.pp.951-956.
    66.Bell Thomas. Automatic tractor guidance using carrier-phase differential GPS. Computers and Electronics in Agriculture.2000. Vol.25:53-66
    67.Reid J.F., Searcy S.W. Vision-based guidance of an agricultural tractor. IEEE Control Systems. 1987.7(12):39-43
    68. Benson. Vision based guidance of an agricultural combine. Ph. D thesis, University of Illinois.2001
    69.Francisco Rovira-Mas.Applications of stereoscopic vision to agriculture. Ph.D thesis, University of Illinois.2003
    70. Kise M., Zhang Q., Francisco R.M.A stereovision-based crop row detector for tractor automated guidance. Biosystems Engineering.2005.90(4):357-367
    71. Guo L.S., Zhang Q. Han S. Safety Detection System with Ultrasonic Sensors for Agricultural Machine. Proceeding of ASAE Annual International Meeting, Sacramento, California, USA. 2001, Paper Numben:01-3135
    72.Guo L.S., Zhang Q.A Low-Cost Integrated Positioning System of GPS and Inertial Sensors for Autonomous Agricultural Vehicles. Proceeding of ASAE Annual Meeting,2003, Paper Number:033112
    73.Noguchi N, Reid JF, Will J, Benson ER, Stombaugh TS. Vehicle automation system based on multi-sensor integration. Proceeding of ASAE Annual International Meeting, Orlando, Florida, USA,12-16 July,10pp.; 1998. ASAE Paper no.983111
    74.Zhang Q., Reid J.F., Noguchi N. Agricultural Vehicle Navigation Using Multiple Guidance Sensors.1999. UILU-ENG-99-7013
    75. Will Jeffrey Dale. Sensor fusion for field robot localication. Ph. D thesis, University of Illinois at Urbana-Champaign.2001
    76. Stombaugh T.S., Benson E.R., Hummel J.W. Guidance control of agricultural vehicles at high field speeds. Transaction of ASAE,1999. Vol 42(2):537-544
    77. Zhang Q., Wu D., Reid J.F., Benson E.R. Model recognition and validation for an off-road vehicle electrohydraulic steering controller.2002. Mechatronics Vol.12:845-858
    78.Pinto F.A.C., Reid J.F., Zhang Q., Noguchi N. Vehicle Guidance Parameter Determination From Crop Row Images using Principal Component Analysis. J. agric. Engng Res. 2000.750257-264
    79. Benson-ER; Stombaugh-TS; Noguchi-N; Will-JD; Reid-JF. An evaluation of a geomagnetic direction sensor for vehicle guidance in precision agriculture applications. Proceeding of ASAE Annual International Meeting, Orlando, Florida, USA,1998. Paper no.983203
    80.Zhang Q. A generic fuzzy electrohydraulic steering controller for off-road vehicles. Proc. Instn.2003. Engrs Vol.217 Part D:J.Automobile Engineering:791-799
    81. Anthony Stentz, Chuck Thorpe. An Architecture for Autonomous Vehicle Navigation.1985
    82. Stentz A. Robotic Technologies for Outdoor Industrial Vehicles. Proceedings of SPIE AeroSense2001.2001
    83.Bevly DM, Rekow A, Parkinson B. Incorporation INS with carrier-phase differential GPS for automatic steering control of a farm tractor. Selected proceedings. Off-Highway and Powerplant Congress, Indianapolis, Indiana, USA,1999. Agricultural machinery, tires, tracks, and traction. 1999.148-160.
    84. Hague T., N,D. Tillett. Navigation and control of an autonomous horticulture robot. Mechatronics,1996. Vol.6,No.2,pp.165-180
    85. Marchant J.A. Track of row structure in three crops using image analysis. Computer and electronics in agriculture.1996.(15):161-179
    86.Pla F., J.M.Sanchiz, J.A.Marchant, R.Brivot, Building Perspective models to guide a row crop navigation vehicle, image and vision computing,1997.(15):465-473
    87.Sanchiz J.M., J.A.Marchant, F.Plal and T.Hague. Real-Time Visual Sensing for Task Planning in a Field Navigation Vehicle, Real-Time Imaging,1998.(4):55-65
    88. Hague T., N.D. Tillett. A bandpass filter-based approach to crop row location and tracking. Mechatronics.2001.(11):1-12
    89.Tillett N.D., T.Hague, S.J. Miles. Inter-row vision guidance for mechanical weed control in sugar beet. Computers and Electronics in Agriculture,2002.(33):163-177
    90.S(?)gaard, H.T., Olsen, H.J. Crop row detection for cereal grain. IN:Stafford, J.V(Ed.), Precision Agriculture'99. Sheffield Academic Press,1999. pp.181-190
    91. Astrand B., Baerveldt A.J. An agricultural mobile robot with vision-based perception for mechanical weed control. Autonomous robots,2002.Vol.13:21-35
    92.S(?)gaard, H.T., Olsen, H.J.Determination of crop rows by image analysis without segmentation, Computers and Electronics in Agriculture.2003. Vol.38:141-158
    93. Chateau T., M. Berducat, P.Bonton. An original correlation and data fusion based approach to detect a reap limit into a gray level image. Proceeding of IEEE/RSJ international conference on intelligent robots and systems,1997.(3):1258-1263
    94. Chateau T, Debain C, Collange F, Trassoudaine L, AlizonJ. Automatic guidance of agricultural vehicles using a laser sensor. Computers and Electronics in Agriculture.2000.Vol.28:3,243-257
    95.Tsubota Ryo, Ryo Tsubota, Akira Mizushima, Noboru Noguchi, John F. Reid. Automatic Guidance with a Laser Scanner for a Robot Tractor in an Orchard Field. Proceeding of CIGR, Beijing,2004
    96. Kise M., Noboru Noguchi, Kazunobu Ishi, Hideo Terao. Vehicle Guidance system using DGPS and Geomagnetic Direction Sensor. J. of JASM 2000.62(6):145-153
    97.Mizushima Akira, Noboru Noguchi, Kazunobu Ishi, Hideo Terao. Correction of GPS Postion by vehicle identification for Agricultural Vehicle Guidance, J.of JSAM,2000.62(4):146-153
    98. Mizushima Akira., Noboru Noguchi, Kazunobu Ishii, Hideo Terao. Automatic Navigation of the Agricultural Vehicle by the Geomagnetic Direction Sensor and Gyroscope. Proceedings of the Automation Technology for Off-Road Equipment, Chicage, Illinois, USA,2002.Pp.204-211
    99. Kise-M; Noguchi-N; Ishii-K; Terao-H Field mobile robot navigated by RTK-GPS and FOG(Part 1) estimation of absolute heading angle by sensor-fusion with RTK-GPS and FOG Journal-of-the-Japanese-Society-of-Agricultural-Machinery.2001,63:5,74-79
    100. Keiichi Inoue, Kannji Ootsuka, Mistsuho Sugimoto, Noriyuki Murakami, Wen Li, Sensor fusion Techniques for Automatic Guidance by the Method of Kalman Filter Using DGPS and Gyrocompass(part1).J.of JSAM,1999.61(4):103-113
    101. Simon Blackmore, Hans Werner griepentrog, Henning Nielsen, Michael. Norremark, Jesper resing-jeppersen. Development of a deterministic autonomous tractor. Proceeding of CIGR, Beijing,2004
    102.Toda, M., Kitani, O., Okamoto, T., Torii, T. Navigation method for a mobile robot via sonar-based crop row mapping and fuzzy logic control. J.Agric. Eng. Res.,1999.(72):299-309
    103.Iida, M.,Umeda, M., Suguri, M. Automated Follow-up Vehicle System for Agriculture. Proceeding of ASAE annual meeting,1998. Paper 983112, pp.1-9
    104. Iida M., T.F.Burks. Ultrasonic Sensor Development for Automatic Steering Control of Orchard Tractor. Proceedings of the Automation Technology for OFF-Road Equipment, Chicago, Illinois, USA,2002. Pp.221-229
    105.Nishiwaki Kentaro, Tatsushi Togashi, Koichi Amaha. Vision-Based Speed and Yaw Angle Measurement System. Proceedings of the Automation Technology for Off-Road Equipment, Chicago, Illinois, USA,2002.Pp.212-220
    106.Torisu R, Hai Shen, Takeda J, Ashraf MA, Hai S. Automatic Tractor guidance on sloped terrain (Part 1)-formulation of NN vehicle model and design of control law for contour line travel. Journal-of-the-Japanese-Society-of-Agricultural-Machinery,2002.(64):6,88-95
    107.Zhu Zhong-xiang, Zhong-xiang Zhu, Ryo Torisu,Jun-ichi Takeda, Jun Chen. Autonomous Guidance of Tractor along Arbitrary Rectilinear Path on Sloped Terrain. Proceeding of CIGR, Beijin,2004
    108.Anderson B D O, Moore J B.1979. Optimal filtering. London:Prentice Hall
    109.Astrom K J.1962. Some problems of optimal comtrol in inertial guidance. Technical Report RJ-299
    110.Bar-Shalom Y, Li X R.1993. Estimation and Tracking Principles, Techniques and Software. MA:Artech House
    111.Battin R E.1964. Astronautical Guidance. New York:McGraw-Hill
    112.Benveniste A, Nikoukhah R, Willsky A S.1990. Multiscale system theory//Proceeding of the 29th IEEE Conference on Decision and Control,4:2484-2487
    113.Bierman G J.1976. Measurement updating using the U-D factorization. Automatica, 12:375-382
    114.Bierman G J.1974. On the application of discrete square-root information filtering. International Journal of Control,20(3):465-477
    115.Bierman G J.1977. Factorization Methods for Discrete Sequential Estimation. New York:Academic Press
    116.Bizwas K K, Mahatanabis A K.1973. Suboptimal algorithms for nonlinear smoothing. IEEE Transactions on Aerospace and Electronic Systems,9(4):529-534
    117.Bruder S, et al.1993. A multi-sensor tracking and identification algorithm using the square-root information filter//Proceedings of the 32nd Conference on Decision and Control, 940-941
    118.Bucy R S, Joseph P D.1968. Filtering for Stochastic Professes with Applications to Guidance. New York:John Wiley &Sons
    119.Bucy R S, Renne K D.1971. Digital synthesis of nonlinear filters. Automatica,7(3):287-289
    120.Carlson N A.1968. Fast triangular factorization of square root filter. AIAA Journal, 6(6):1165-1166
    121.Carlson N A.1990. Federated square filtering for decentralized parallel processes. IEEE Transactions on Aerospace and Electronic Systems,26(3):517-525
    122.Chou K C,Willsky A S, Benveniste A, et al.1989. Recursive and iterative estimation algorithms for multiresolution stochastic processes//Proceedings of the 28th IEEE Conference on Decision and Control,2:1184-1189
    123.Chui C K, Chen G. 1987. Kalman Filtering with Real-time Applications. New York:Springer-Verlag
    124.Chui C K, Chen G.1991. Kalman Filterring with Real-Time Applications.2nd ed. New York:Springer-Verlag
    125.Dan S.2006. Optimal State Estimation-Kalman, H∞ and Nonlinear Approaches. New York: John Wiley&Sons
    126.Denaro R P, Loomis P V W.1989. GPS navigation processing and Kalman filtering. Advisory Group for Aerospace Research and Development,161(11):1-9
    127.Deok J L.2005. Nonlinear Bayesian filtering with applications to estimation and navigation. Texas:Texas A&X University
    128.Deok J L, Kyle T A.2004. Adaptive sigma point filtering for state and parameter estimation. AIAA,5101:1-20
    129.Dmitryev S P.1997. Nonlinear filtering method application in INS. IEEE Transactions on AES,33(1):260-271
    130.Dmitryev S P.1997. Nonlinear filtering method application in INS. IEEE Transactions on AES,33(1):260-271
    131.Djuric P M,Joon H C.2002. An MCMC sampling approach to estimation of nonstationary hidden Markov models. IEEE Transactions on Signal Processing,50(5):1113-1123
    132.Dolph van der M, Eric A W, Simon I J.2004. Sigma-point Kalman filters for nonlinear estimation and sensor fusion applications to integrated navigation. AIAA Guidance,51(20): 1-30
    133PAUL,VENHOVENSI,NAAB K.1999Vehicle dynamics estimation using kalman filters.32(2):171-184
    134BEVLY D,GERDES J,WILSON C.American Control conference.2000The use of GPS based velocity measurements for improved vehicle state estimation:2538-2542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700