用户名: 密码: 验证码:
骨结构有限元建模分析与生物力学实验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
髋臼骨折多为高能量撞击伤所致的不稳定型骨关节损伤,其中髋臼横断骨折比较常见,普遍采取切开复位内固定的治疗方法。内固定治疗即利用固定器械对骨折部位进行解剖三维复位,使骨折部位更快生长愈合。近年来,国内外学者已经对髋臼骨折进行了相关问题的研究。骨盆髋臼生物力学实验方法和有限元建模分析的方法相结合,被众多学者用以研究骨盆力学性能的相关问题和骨盆骨折内固定方法的改进研究。
     本文对髋臼横断骨折不同内固定方法的差异进行了较深入的研究,综合使用了有限元分析、生物力学实验研究等方法,对术前和术后有效有限元模型的建立、材料属性和边界条件的设定、肌肉力的模拟加载、不同内固定方法的差异性分析比较等关键技术问题进行研究。主要完成了以下工作:
     首先,通过对现有相关文献的研究以及根据临床要求,基于骨盆各种生理参数,设计完成了骨盆专用夹具和肌肉力学性能模拟装置。此装置适用各种尺寸的标本,能够严格保证骨盆的站立位姿态,对骨盆结构和骨质没有损伤,保证正常骨盆力学传导路径又不会给骨盆增加多余载荷。
     第二,根据医生经验提出的固定方法和对患者切开暴露损伤的程度的不同,利用该夹具,对三组不同内固定方式做了生物力学实验,分析了三组不同内固定方式下的力学性能参数并对其稳定性进行了比较。
     第三,基于病人数据和尸体骨数据扫描的QCT图像,通过分割、修补、平滑等操作,建立了骨盆三维模型。再进行髋臼模拟横断手术、添加与真实尺寸相符的钢板与螺钉模型、空间位置坐标匹配转化等操作,生成术后髋臼横断骨折模型。
     第四,即采用QCT方法,根据CT值的不同,计算得到不同的骨密度,再根据骨密度与材料属性之间的关系,得到256级骨骼材料属性,并通过坐标转换赋给骨盆模型。并模拟步态初始阶段20块肌肉力的作用,对肌肉力的大小、方向、附着点及有效加载进行分析验证,设置螺钉预紧力、设定单元类型、设置螺钉和钢板材料属性、设定固定约束和施加载荷等边界条件。
     最后,利用所建立的有限元模型,进行不同内固定方法比较,包括后柱长钢板模型与后柱短钢板模型;后柱长钢板模型、后柱长钢板模型+前柱螺钉、后柱长钢板模型+后柱螺钉;双柱螺钉模型与完好骨盆模型;后柱单钢板模型与前后柱双钢板模型等。分析了在站立位和坐位两种情况下不同内固定方法的差异,为临床医生提供参考。
     本文得到的结论如下:
     第一,骨盆夹具完全满足实验要求,严格保证了实验姿态,适合任意大小尺寸的标本,对骨质没有任何损伤。通过分析生物力学实验数据得到以下的结论:后柱长钢板固定优于后柱短钢板固定,且短钢板固定不稳定;双柱螺钉固定稳定性优于双柱钢板,但双柱的三种方式应变值比较没有发现统计学差异;前柱螺钉后柱钢板固定方式优于后柱钢板固定。
     第二,通过有限元建模分析,利用模型整体最大位移、整体最大等效应力等效应变、骨盆上最大等效应力等效应变、髋臼窝处最大等效应力等效应变等指标的分析,得到以下结论:将钢板延长至坐骨结节处能提供更大的稳定性,与大部分临床医生的传统治疗观念相同。后柱长钢板+后柱螺钉>后柱长钢板>后柱长钢板+前柱螺钉,此研究说明了在髋臼横断内固定手术中,内固定物使用越多治疗效果不但不一定好,反而会降低骨盆的稳定性。双柱螺钉的稳定性<完好骨盆,后柱单钢板的稳定性<前后柱双钢板,肌肉力的存在,会使整个骨盆每个应力应变显著增大。
Acetabular fracture is a kind of serious bone and joint injury caused by high-energyviolence, and transverse acetabular fracture is the common kind among them. Fixationdevices that use a fixed three-dimensional anatomy of the fracture sites were reset, so thatfaster growth of the healing fracture site. In recent years, scholars of the acetabular fracturehad been more in-depth research carried out. Biomechanical acetabulum pelvis is widely usedby many scholars to study issues related to the mechanical properties of the pelvis.
     Supported by National Young Scientists Fund, the differences between different internalfixations for transverse acetabular fracture are studied, with methods of the biomechanicsexperiment and the finite element analysis, including the construction of finite element modelbefore and after the operation, research on the materials anisotropy of pelvis bones, boundaryconditions, pelvic muscle forces, the analysis of different fixations and so on.
     Firstly, Based on various physiological parameters of the pelvis, designed the pelvisspecial fixtures and the mechanical properties muscle simulator. This device is suitable forvarious sizes of specimens, can strictly guarantee the pelvis standing posture, no damage tothe pelvic structure and to the bone and can ensure the normal mechanical pathways pelviswithout increasing the excess load. Muscle simulator simulation to achieve the mechanicalproperties of muscles, by increasing the device make the experimental conditions more closerto the true physiological state of the pelvis.
     Secondly, Using the jig we designed, we did biomechanical experiments according tothe requirements of the doctors and patients extent of exposed injury and make three differentgroups in different fixation modes. The mechanical properties and stability were compared.The three groups were: posterior column long plate and posterior column short plate; posterior column plate and posterior column long plate and anterior column lag screw;double-column screw and double columns plate. Meanwhile, compare the three kinds oftwo-column fixed methods.
     Thirdly, the three-dimensional finite element pelvic model is constructed based on thedates of a patient and two cadavers through some processes, such as segmentations, repairs,smoothing and so on. Then after operating on the pelvic, adding the models of plates andscrews with true size, transforming the place position coordinate, the model after operation isgenerated.
     Forthly, With the QCT method, the mechanics parameter with256grades can becalculated according to the bone density. Simulate20muscle forces at the beginning of paces,analysis and validate the size, direction, position, and loading in effect of every muscle, andset the tighten force between the pelvis and screws, element types, material properties ofscrews and plates, fix supports, loads and so on.
     Finally, compare the stabilities of different fixations with finite element models,including four groups, A: long single posterior column plate, short single posterior columnplate, B: long single posterior column plate, long single posterior column plate and anteriorcolumn lag screw, long single posterior column plate and posterior column lag screw, C:anterior column lag screw and posterior column lag screw, good pelvis model, D: long singleposterior column plate, anterior column plate and posterior column plate. The differencesbetween different fixations are analyzed under the situation of standing and sitting, providingreferences for clinicians.
     The Conclusions are as follow:
     Firstly, By the verification experiment confirmed that the fixture does not impact themechanical transmission on the pelvis. Pelvic jig can fully meet the test requirements.Posterior column long plate is better than posterior column short plate which the short platewith a unstable fracture line displacement over3mm; posterior column long plate and anteriorcolumn lag screw is better than the posterior column plate alone; double-column screw isbetter than double columns plate. But no significant difference were founded among the double column fixation methods; anterior column screw plate fixation was superior to theposterior column of the posterior column plate.
     Secondly, The mechanical indexes we interested in are as follows, the maximaldisplacement, the maximum equivalent stress and the maximum stress around the fractureline. Through the compare of these indexes, we found the biomechanical propertiesdifferences of the two groups of fixation methods. The first group is including the posteriorcolumn long plate(NPL) and the posterior column short plate(NPS) fixations. The secondgroup is composed of the following three double-column fixation methods, thedouble-column lag screws(SSG), the anterior column lag screw and posterior plate(SPG)fixation and the double-column plates(PPG) methods. All these analyses are during thedouble-leg stand position. conclusion:NPL is much better than NPS. SSG is better than SPG,while SPG is better than PPG.
引文
[1]张云峰.骨盆骨折的临床诊治进展[J].中华现代外科学杂志.2004,8(7):47
    [2] S.M.Atchison, D.P.Mukherjee, R.N.Kruse, etc. Internal fixation of transverse acetabular fractures[J].IEEE Xplore
    [3] A.Schopfer, D.DiAngelo, T.Hearn, J. Powell, and M. Tile. Biomechanical comparison of methods offixation of isolated osteotomies of the posterior acetabular column[J]. International Orthopaedics(SICOT).1994,18:96-101
    [4] SA Olson, BK Bay, MW Chapman, NA Sharkey. Biomechanical consequences of fracture and repairof the posterior wall of the acetabulum[J]. The J Bone Joint Surg Am.1995,77:1184-1192
    [5] M.Dalstra, R.Huiskes.Load transfer across the pelvic bone[J]. J.Biomechanics.1995,28(6):715-724
    [6] Pedersen DB, Brand RA, Davy DT.Pelvic muscle and acetabular contact forces duringgait[J].J.Biomechanics.1997,30(9):959-965
    [7]王庆贤,张英泽,潘进社等.髋臼横断骨折不同内固定方法的生物力学研究及临床意义[J].中国创伤骨科杂志.2005,3-7(3):259-262
    [8]王庆贤,张英泽,潘进社等.髋臼横断骨折前路及后路钢板内固定的生物力学研究[J].骨与关节损伤杂志.2001,7-10(4):292-293
    [9]王庆贤,张英泽,潘进社等.髋臼横断骨折不同内固定方法对臼顶负重面积的影响[J].中国骨伤.2005-02,18(2):81-84
    [10]王庆贤,张英泽,潘进社等.髋臼横断骨折不同内固定方法对臼顶负重区的应力分布[J].中国创伤杂志.2004-12,20(12):743-746
    [11]肌肉骨骼系统基础生物力学第三版,原著Margareta Nordin,Victor H.Frankel,主译邝适存,郭霞北京:人民卫生出版社,2008.11
    [12]韩长伶,邢志书,寇成芳.髋臼横断骨折内固定生物力学实验标本及夹具制备方法[J].河北医药.2004-8,26(8):659
    [13] Sawaguchi T, Brown TD, Rubash HE, et al.Stability of acetabular fractures after internal fixation[J].Acta Orthop Scand.1984,55:601-603
    [14] Nachshon Shazar, Robert J B, Vincent PN, et al. Biomechanical evaluation of transverse acetabularfracture[J]. Fixation Clin Orthop.1998,352:215-222
    [15]宋朝晖,张英泽.髋臼后壁骨折对髋臼与股骨头之间应力的影响[J].中华创伤杂志.2002,18(2):79-81
    [16]徐德鑫.复杂髋臼骨折内固定的生物力学研究[D]吉林大学硕士学位论文2009.
    [17]严军,郑祖根,董启榕等.分叉钢板置入治疗髋臼后壁骨折的生物力学分析.中国组织工程研究与临床康复[J].2008-04,12(17):3229-3232
    [18]柏树令.系统解剖学[M].第6版.北京:人民卫生出版社,2004-9
    [19]胡侦明,罗先正.髋关节的生物力学[J].中华骨科杂志.2006-7,26(7):498-500
    [20] Krebs et al, D.E. Krebs, C.E. Robbins, L. Lavine, R.W. Mann.Hip biomechanics during gait[J].Journal of Orthopedic Sports and Physical Therapy.1998,28(1):51–59
    [21] von Eisenhart et al,R. M. Streinlecher, M. Muller-Gerbl and F. Eckstein.Quantitative determination ofjoint incongruity and pressure distribution during simulated gait and cartilage thickness in the humanhip joint[J]. Journal of Orthopedic Research.1999,17:532-539
    [22]徐青镭,倪卫明,万年宇.人体髋关节周围肌肉三位生物力学模型的建立与应用[J].伤残医学杂志.2003,11(3):13-14
    [23]卢志远,刘永灿,王天胜等.在静力作用下人体两侧股骨与骨盆模型应力分布实验研究[J].中国生物医学工程学报.1996-6,15(2):181-185
    [24] Thomas D. Brown, Daniel T. Shaw. In vivo contact stress distributions in the natural human hip[J]. JBiomechaniocs.1983,16:373-384.
    [25]刘建国,徐莘香.应力遮当效应与骨关节综合征[J].中华骨科杂志,1994,14(6):374—378.
    [26] ThomasKA, VrahasMS. Wetal Noble [J].ClinOrthoP.1997,340:244-256
    [27] http://www.b2b99.com/hyzs/jx/5446.htm
    [28]刘沂.骨盆与髋臼骨折[M].上海科学技术出版社:2004年8月
    [29]李力更,陈杰,贺宝珍等.髋臼骨折不同内固定生物力学研究及临床应用[J].中国骨与关节杂志.2005,8-20(8):508-509
    [30]郑琦,毕大卫,徐荣明等.髋臼前后柱拉力螺钉结合重建钢板固定治疗髋臼横断骨折[J].浙江临床医院.2007-9,19(9):1173-1174
    [31]沈振明,张伟中.双柱拉力螺钉固定治疗横断髋臼骨折[J].骨与关节损伤杂志.2003-12,18(12):809-810
    [32]严军,郑祖根,董启榕.髋关节活动与髋臼各部位受力的关系.中国组织工程研究与临床康复[J].2007-10,11(41):8379-8381
    [33] Nachshon Shazar,Robert J.Brumback. Biomechanical evaluation of transverse acetabular fracturefixation[J].Clinical orthopaedics and related research.1998,352:215-222
    [34]徐青镭,倪卫明,万年宇.人体髋关节周围肌肉三位生物力学模型的建立与应用[J].伤残医学杂志.2003,11(3):13-14
    [35]裕朴,葛宝丰,胥少汀.实用骨科学[M].北京:人民军医出版社出版,1995.
    [36] Matta JM.Operative treatment of acetabular fractures through the ilionguinal, Clin orthopapproach[J]..1994,305:10.
    [37] Letournel E.A, cetabulum fractures:classification and management.Clin Orthop1980;151:8143
    [38] Nachsh Shazar,Rober J,Brumback,et al.Biomechanical evaluation of transverse acetabular fracturefixation.Clin Orthop,1998;352:215~222
    [39] Sawaguchi T, Brown TD, Rubash HE, et al.Stability of acetabular fractures after internal fixation.Acta Orthop Scand.1984;55:601-603
    [40]孙俊英.移位髋臼横形骨折的诊断和治疗.中华骨科杂志.1996;16(9):540-543
    [41] Shazar N, Brumback RJ, Novak VP, et al. Biomechanical evaluation of transverse acetabularfracture fixation. Clin Orthop,1998.352-355
    [42]汪金平等,股骨生物力学特性的有限元分析[J].中华创伤骨科杂志.2005;7[10]:931-934
    [43]刘安庆,张银光,王春生等.人股骨生物力学特征的三维有限元分析.西安医科大学学报.2001;22(3):242-244
    [44]崔红新,程方荣,王健智.有限元法及其在生物力学中的应用[J].中医正骨.2005;17[1]:53-55
    [45]杨展宗等.退行性关节炎与骨质疏松性股骨颈骨小梁的有限元分析[J].中华创伤骨科杂志.2005;7(10):913-917
    [46]吴小涛,戴克戎,裘世静.老年与青年股骨头内松质骨结构三维图象重建及力学性能测试研究[J].江苏医药杂志.2002;28[8]:569-571
    [47]许瑞杰,李涤尘,孙明林,股骨颈骨折内固定方式的有限元分析[J].医用生物力学,2004;19[12]:88-92
    [48] M.Dalstra, R.Huiskes. Load transfer across the pelvic bone. J.Biomechanics.1995;28(6).715-724
    [49] Garcia JM,Doblare M,Seral B,et al. Three-demensional finite element analysis of several internal andextemal pelvis fixtion. J Biomech Eng.2000;122:516-538
    [50] Ferguson SJ, Bryant JT, Ganz T, et al. The acetabular labrum sea: a poroelastic finite elem entm odel[J]. ClinicalB iom echanics,2000;15(6):463-468.
    [51] HUNG Juipin, CHEN Jianhorng, CH IANG Hsiulu, et al.Computer smi ulation on fatigue behavior ofcem entedhip prostheses: a physiological m odel [J]. ComputerM ethods and Program s in B iomedicine,2004;76(2):103-113.
    [52] Teoh SH, Chan W H, Thampuran R. An elasto-plastic finite elem entm odel forpolyethylene wear intotalhip arthroplasty [J]. Journal of B iom echanics,2002;35(3):323-330.
    [53] GodestAC, Beaugonin M, Haug E,et al. Smi ulation of aknee joint replacem ent during a gait cycleusing explicitfinite elem ent analysis [J]. Journal of B iom echanics,2002;35(2):267-275.
    [54] Pena E, Calvo B, M artinez M A,et al. Finite elem ent analysis of the effect ofm eniscal tears and meniscectom ies on human knee biom echanics[J]. ClinicalB iom echanics,2005;20(5):498-507.
    [55]苏佳灿,张春才等.骨盆及髋臼三维有限元模型单元选择及构建生物力学意义.中国临床康复.2004;8(26).9-15
    [56]苏永松,许忠信,李浩宇.髋关节表面重构和计算机可视化.计算机工程.2003;29(22).29-33
    [57]汪光晔,张春才,许硕贵等.标准步态下骨盆三维有限元模型构建及其生物力学意义.第四军医大学学报.2007;28(4).379-382
    [58] DIETER CHRISTIAN WIRTZ, NORBERT SSHILERS, THOMAS PANDORF, et al. Criticalevaluation of known bone material properties to realize anisotropic FE-simulation of the proximalFemur. Journal of Biomedics,2000;33(1).325-330
    [59] Sawaguchi T, Brown TD, Rubash HE, et al. Stability of acetabular fractures after internal fixation.Acta Orthop Scand.1984;55:601-605
    [60] Simonian PT, Routt ML, Jr, Harrington RM, er al. The acetabular type fracture: Abiomechaicalevaluation of internal fixation [J]. Clin Orthop,1995;314:234-240.
    [61]韩长伶,邢志书,寇成芳.髋臼横断骨折内固定生物力学实验标本及夹具制作方法.河北医药.2004.8;26(8):659-662
    [62]杨洪武,曾逸文,王刚锐等.髋周肌肉对髋臼骨折的影响.中华创伤杂志.2006.9;22(9):694-697
    [63]单大卯,伍勰,髂腰肌对髋关节功能的实验性研究.西安体育学院学报.2006;23(1):67-70
    [64]苏佳灿等,骨盆及髋臼三维有限元模型材料属性设定及其生物力学意义,中国临床康复,2005;9(2):71-73
    [65] Carte DR, Hayes WC. The compressive behaviour of bone as a two-phase porous structure [J]. BoneJoint Surg.1977;59:954-962
    [66]贾军宏,刘忠厚.QCT与pQCT在骨质疏松诊断中的临床应用.中国骨质疏松杂志,2003;9:172-176.
    [67]罗承刚,龚宪生.近端股骨的非均匀及各向异性有限元模拟[J].重庆大学学报(自然科学版),2004;27(2):20-24.
    [68]胡侦明,罗先正.髋关节的生物力学[J].中华骨科杂志,2006;26(7):498-500.
    [69] Genant HK, Cann CE. Quantitative bone mineral analysis using dual energy computed tomography.Invest. Radtol.1977;12:545-548
    [70]徐均超等,正常人群的骨密度定量CT测量.中华放射学杂志,1993,25(6):325-329
    [71] M. Dalstra, R.Huiskes. Load transfer across the pelvic bone, J Biomechanics1995;28(6):715-724,
    [72]王田苗,裴葆青等.股骨颈骨折手术空心钉内固定的生物力学综合分析.北京生物医学工程,2006;25(6):561-564
    [73] A.T.M. Phillips, P. Pankaj, C.R. Howie. Finite element modeling of the pelvis: inclusion of muscularand ligamentous boundary conditions [J]. Medical Engineering&Physics2007;29(7):739-748
    [74]郭光文,王序等,人体解剖彩色图谱,人民卫生出版社,2002
    [75]原林,高梁斌等.骨盆的解剖和生物力学[J].中国创伤骨科杂志,2001;3(2):144-145
    [76] Eiichi Genda, Norimasa Iwasaki, Guoan Li, Bruce A. et al.Normal hip joint contact pressuredistribution in single-leg standing--effect of gender and anatomic parameters [J]. Journal ofBiomechanics,2001;34(7):895-905
    [77]毛宪尧主编.髋关节外科学[M].北京:人民卫生出版1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700