用户名: 密码: 验证码:
祁连山木里天然气水合物钻孔沉积构造特征及与水合物分布关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物作为21世纪的一种新兴潜在替代能源已备受关注。以往国际上对冻土区天然气水合物的勘察中,关注点多在储层中的水合物赋存状况、储层岩心的粒度、孔隙度、渗透率及多年冻土层厚度与水合物成藏间的关系等方面。近年来,随着研究的深入,科学家们已认识到构造和沉积对水合物分布控制的重要性,但研究程度仍十分薄弱。
     本文利用我国首个陆域天然气水合物钻区,通过5个水合物钻孔地层较为系统和详细的描述,结合岩心粒度、矿物、元素分析以及断层破碎带、冻土层属性等的综合分析,对水合物沉积、构造控制特征展开研究,得到以下几点主要成果和认识:
     (1)研究区水合物储存首要控制因素是可为深部气源提供流体通道的区域主断层;其它小断层和破碎带可为水合物提供部分流体来源及储存空间;气体来源以深部热解气为主。
     (2)厘清了钻孔地层特征、地层单元空间展布情况,识别了研究区地层沉积相类型,并完成了沉积微相的划分,发现:水合物所处地层多位于江仓组上段(J2j2),沉积环境以湖泊为主,推测江仓组地层也可能对水合物有一定的控制作用(岩相控制);不同沉积环境地层中水合物赋存层段的粒级组分含量不同,局部小断层和粗碎屑沉积可为天然气水合物提供有利储存空间。
     (3)通过对冻土层的分析,发现祁连山冻土区水合物的储存不仅受冻土层厚度控制,还与冻土层的构成和岩性有很大关系,如勘探区内DK-2和DK-3钻孔中含煤、渗透性较弱的重复地层可能为水合物储存提供有利“盖层”;
     (4)通过各钻孔综合剖面及孔间岩性、沉积相和断层等的对比,确定了中侏罗统各组段界限的识别标志;
     (5)通过综合分析,并与加拿大冻土区进行对比,总结了祁连山冻土区在其冻土类型、冻土层厚度、冻土层岩性、水合物赋存层位地层和沉积相等方面的特殊性,较系统的获得了沉积构造特征对水合物的控制作用,这不仅为水合物钻探提供了地层、沉积环境方面的新认识,也为煤田地质工作提供了新的参考资料。
As a new emerging potential alternative sources of energy in 21stcentury, gashydrate (GH) has been studied widly on gas hydrate occurrence, lithology particle size,porosity, permeability of sediment bearing GH and the relation between gas hydratereservoir and thickness of permafrost layer in permafrost regions, previously. Withfurther research, scientists have realized the importance of tectonic activities andsedimentation controlling to gas hydrate distribution, recently. However, the researchstill remain rather weak.
     In this article, the effect of tectonic activities and sedimentation on gas hydrate isfirst studied on gas hydrate exploration of permafrost area in China, based on thesystematic and detailed stratum description of five cores bearing gas hydrate, andcomprehensive analysis of particle size, minerals, elements, fault fracture zone andpermafrost properties. Listed below are several results and acknowledgements whichare acquired:
     (1) With cores analysing, faults and broken zones identifying, three results wasobtained: (a) gas hydrate reservoir are principally controlled by regional main faultswhich are flow conduits for deep gas source; (b) other small faults and broken zonesprovide fluids partly and storage space for gas hydrate; (c) the source of gas mainlyconsists of deeper thermogenic gas.
     (2) The stratigraphic characteristics and special ditribution of stratigraphic unitsdistribution are clarified. Meanwhile, the sedimentary environment was analyzed.Two results was obtained: (a) gas hydrate is mainly existed in Jiangcang Formation(J2j2), where the depositional environment is lake. It is suggested that JiangcangFormation (J2j2) may have some controlling effect on hydrate reservoir (faciescontrolling); (b) the main particle size fraction bearing gas hydrate is different invaried sedimentation. And local coarse sediments provide beneficial storage space forgas hydrate.
     (3) Gas hydrate reservoir, found in the permafrost regions of Qilian Mountain, isnot only controlled by permafrost thickness, but also related with permafrost lithology,such as particularly coal-bearing and low permeability stratum in DK-2 and DK-3exploration area being beneficial“craprock”.
     (4) With core profile of integration and contrasting with lithology, sedimentary facies and faults, We get some new identification marks of private formationboundaries of the middle Jurassic.
     (5) Based on analysis and compared with permafrost regions bearing gas hydrate inCanada, we summarize the special aspects of Qilian Mountain gas hydrate strata,including sorts of permafrost, permafrost thickness, permafrost lithology, gas hydrateoccurrence and sedimentary faces. We systematically acquire structural featurescontrol function on gas hydrate. It firstly provides new acknowledgements ofstratigraphic and sedimentary environment for gas hydrate exploration, in addition, itprovides new reference materials for coal geological exploration.
引文
Badri M A, Aston S R. Observation on heavy metal geochemical associations in polluted andnon-polluted estuarine sediments. Environ Pollut, Ser. B, 1983, 6: 181-193.
    Beno t Beauchamp. Natural gas hydrates: myths, facts and issues. Comptes Rendus Geoscience,2004, 336(9): 751-765.
    Berecz E, Balla-Achs M. Gas Hydrate (Studies in Inorganic Chemistry 4). Plksy L Tran,Amsterdam Elsever Science Publishers B V.\, 1983, l-l00.
    Boswell R, Hunter R, Collett TS, et al. Investigation of gas hydrate bearing sandstone reservoirsat the Mount Elbert stratigraphic test well, Milne Point, Alaska. Proceedings of the 6thInternational Conference on Gas Hydrates, Vancouver, Canada, 2008.
    Boswell R, Rose K, Collett T S, et al. Geologic controls on gas hydrate occurrence in the MountElbert prospect, Alaska North Slope. Marine and Petroleum Geology, 2011, 28: 589-607.
    Clennell M B, Hovland M, Booth J S, et al. Formation of natural gas hydrates in marinesediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties.Journal of Geophysical Research, 1999, 104: 22985-23003.
    Collett T S , Dallimore S R. Permafrost-related natural gas hydrate. In Max M D ed. NaturalGas Hydrate in Oceanic and Permafrost Environments. The Netherlands: Kluwer AcademicPublishers, 2000, 43-60.
    Collett T S, Bird K J, Kvenvolden K A, et al. Geological interrelations relative to gas hydrateswithin the North Slop of Alaska∥US Geological Survey. Open File Report, 1988, 150: 88-389.
    Collett T S, Lee M W, Agena W F et al. Permafrost-associated natural gas hydrate occurrenceson the Alaska North Slope. Marine and Petroleum Geology, 2011, 28: 279-294.
    Collett T S. Energy resource potential of natural gas hydrates. AAPG, 2002, 86(11): 1971-1992.
    Collett T S. Geologic and engineering controls on the production of permafrost-associated gashydrate accumulation. Proceedings of the 6th International Conference on Gas Hydrates (ICGH),2008.
    Collett T S. Permafrost-associated gas hydrate accumulations. In Sloan E D, Happer J, HnatowM ed. International Conference on Natural Gas Hydrates. Annals of the New York Academy ofScience, 1993, 715: 247-269.
    Collett T.S., Lee M.W., Agena W.F et al. Permafrost Associated Natural Gas HydrateOccurrences on the Alaska North Slope. Marine and Petroleum Geology (2009), doi:10.1016/j.marpetgeo. 2009.12.01
    Connell-Madore S and Katsube T J. Grain-size distribution and gas permeability of sedimentsamples from the JPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well,Northwest Territories. Geological Survey of Canada, Current Research, 2007, B6, 13P.
    Dallimore S R, Collett T S. Regional gas hydrate occurrences, permafrost conditions, andCenozoic geology, Mackenzie Delta area. In Dallimore S R, Uchida T, Collett T S ed. ScientificResult s f rom JAPEX/ JNOC/ GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta,Northwest Territories, Canada. Geological Survey of Canada, Bulletin, 1999, 544: 31-43.
    Dallimore S R, Collett T S. Summary and implication of the Mallik 2002 gas hydrateproduction research well program. In: Dallimore S R, Collett T S. eds. Scientific Results from theMallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, NorthwestTerritories, Canada. Geological Survey of Canada, Bulletin, 2005, 585: l-36.
    Dallimore S R, Uchida T, Collett T S. Scientific Results from JA PEX JNOC GSCM allik 2L238 GasHydrate ResearchWell, M ackenzie Delta, Northwest Territories Canada. Bull Geol SurvCanada, 2002, 544.
    Dallimore S R, Wright J F, Nixon F M, et al. Geologic and porous media factors affecting the2007 production response characteristics of the Mallik Gas Hydrate Production Research Well.Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver,British Columbia, CANADA, 2008.
    Diaconescu C C , Kieckhefer R M, Knapp J H. Geophysical evidence for gas hydrates in thedeep water of the South Caspian Basin, Azerbaijan. Marine and Petroleum Geology, 2001, 18:209-221.
    Gorman A R, HolbrookW S, HornbachM J, et a.l Migration of methane gas through the hydratestability zone in a low-flux hydrate province . Geology, 2002, 30 (4): 327-330.
    Haberer R M, Mangelsdorf K, Wilkes H, et al. Occurrence and palaeoenvironmentalsignificance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38Gas Hydrate Production Research Well (Canada). Organic Geochemistry, 2006, 37: 519-538.
    Hutchinson D.R, Hart P.E, Collett T.S, et al. Geologic framework of the 2005 Keathley Canyongas hydrate research well, northern Gulf of Mexico. Marine and Petroleum Geology, 2008, 25:906-918.
    Klapp S A., Hemes S, Klein H, et al. Grain size measurements of natural gas hydrates. MarineGeology, 2010, 274: 85-94.
    Kvenvolden K A and Lorenson T D. A Global Inventory of Natural Gas Hydrate Occurrence.2010. URL: http://walrus.wr.usgs.gov/globalhydrate/.
    Kvenvolden K A. Potential effects of gas hydrate on human welfare // Prorceeding of NationalAcademy of Science Colloquium. USA, 1999, 96: 3420-3426.
    Lee S Y, Gerald D H. Methane hydrates potential as a future energy source. Fuel ProcessingTechnology, 2001, 71: 181-186.
    Lim H, Lee S, Bahk J. Comparison between Borehole Geophysical Observations andSedimentary Facies for Three Long Cores Recovered from the Ulleung Basin, Korea: Insights intothe Distribution of Gas Hydrate. American Geophysical Union, Fall Meeting, 2010, abstract#OS51D-07.
    Matsumoto R, Borowski W S. Gas hydrate estimates form newly determined oxygen isotopicfractionation (GH-IW) and18O anomalies of the interstitial waters: leg 164, Blake Ridge, In: PaullC K, Matsumoto R, Wallace P J et al, eds. Proceedings of the Ocean Drilling Program, Scientificresults, 164: College Station, Texas, Ocean Drilling Program, 2000, 59-66.
    Milkov A V, Sassen R. Economic geology of offshore gas hydrate accumulations and provinces.Marine and Petroleum Geology, 2002, 19: 1-11.
    Milkov A V. Molecular and stable isotope compositions of natural gas hydrates; a revised globaldataset and basic interpretations in the context of geological settings . Organic Geochemistry, 2005,36(5):681-702.
    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates.Marine Geology, 2000, 167: 29-42.
    Numasawa M, Dallimore SR, Yamamoto K, et al. Objectives and operation overview of theJOGMEC /NRCan /Aurora Mallik gas hydrate production test. Proceedings of the 6thInternational Conference on Gas Hydrates, Vancouver, Canada, 2008.
    Riedel M, Collett T S, Shankar U. Documenting channel features associated with gas hydratesin the Krishna-Godavari Basin, offshore India. Marine Geology,2011, 279(1-4): 1-11.
    Sloan E D. Happel J, Hantow M A. .International on Natural Gas Hydrates, Annals of the NewYork Aeademy of sciences, 1994, 715: l-23.
    Sloan E Dendy. Clathrate Hydrates of Natural Gases[M]. New York:Marcel Dekker, Inc. 1990.
    Sloan E Dendy. Fundamental principles and applications of natural gas hydrates. Nature, 2003,426(20): 353-359.
    Takahashi H, Tsuji Y. Multi-well exploration program in 2004 for natural hydrate in theNankai-Trough offshore Japan. Paper OTC 17162 presented at the Offshore TechnologyConference, Houston, Texas, 2005.
    Tomaru H, Fehn U, Lu Z L. Halogen systematics in the Mallik 5L-38 gas hydrateproductionresearch well, Northwest Territories, Canada: Implications forthe origin of gas hydratesunder terrestrial permafrost conditions. Applied Geochemistry, 2007, 22: 656-675.
    Tréhu A M, Bohrmann G, Rack F R, et al. Proceedings of the Ocean Drilling Program,InitialReports, 204 [CDROM]. College Station, Texas: Texas A & M University (Ocean DrillingProgram), 2003.
    Uchida T, Tsuji T, Waseda A. Sedimentological Properties of Natural Gas Hydrates-BearingSands in the Nankai Trough and Mallik Areas. American Geophysical Union, Fall Meeting, 2009,abstract #OS31A-1175.
    William W, Michael W, Robert H, et al. Physical properties of sediment from theBPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well. Marine and PetroleumGeology, (2010): 1-19.
    WintersW J, Dallimonre S R, Collett T S, et al. Physical properties of sediments from the JAPEX JNOC GSC Mallik 2L-38 gas hydrate research well[A]. Bulletin Geological Survey.Canada, 544, 2002[R], 95-100.
    YakusheíV.S., Chuíilinr E.M. Natural gas and gas hydrate accumulations within permafrost inRussia. Cold Regions Science and Technology, 2000, 31: 189-197.
    Zühlsdorff, C, Haflidason, H; Sejrup H P, et al. Sedimentary environments and gas hydrates onthe V ring Plateau, mid-Norwegian continental margin. American Geophysical Union, FallMeeting, 2009, abstract #OS33A-1212.
    白生海.青海省侏罗纪含煤盆地及含煤地层.中国煤田地质,1993,3(5):20-23.
    曹代勇,刘天绩,王丹,等.青海木里地区天然气水合物形成条件分析.中国煤炭地质,2009,21(9):3-6.
    曹代勇,孙红波,孙军飞.青海东北部木里煤田控煤构造样式与找煤预测.地质通报,2010,29(11):1696-1703.
    曹伟,盛煜,陈继.青海木里煤田冻土环境评价研究.冰川冻土,2008,30(1):157-158
    陈多福,王茂春,夏斌.青藏高原冻土带天然气水合物的形成条件与分布预测.地球物理学报,2005,48(1):165-172.
    陈忠,颜文,陈木宏,等.海底天然气水合物分解与甲烷归宿研究进展.地球科学进展,2006,21(4):394-400.
    方银霞,黎明碧,金翔龙,等.东海冲绳海槽天然气水合物的形成条件.科技通报,2003,19(1):1-5.
    冯益民.祁连造山带研究概况--历史、现状及展望.地球科学进展,1997,12(4):307-314.
    符俊辉,周立发.南祁连盆地石炭-侏罗纪地层区划及石油地质特征.西北地质科学,1998,19(2):47-54.
    付俊辉,周立发.南祁连盆地三叠纪地层及石油地质特征.西北地质科学,2000,21(2):64-72.
    龚建明,杨文达,卢振权,等.东海天然气水合物的区域地质特征及可能的远景区.海洋地质动态,2001,7(7):20-23.
    郭平,刘士鑫,杜建芬.天然气水合物气藏开发.北京:石油工业出版社,2006,1-22.
    郭星旺.祁连山冻土区天然气水合物测井响应特征及评价:[硕士学位论文].北京:中国地质科学院,2011.
    郝诒纯,徐钰林,许仕策,等.南海珠江口盆地第三纪微体古生物及古海洋学研究.武汉:中国地质大学出版社,1996:33-65.
    何幼斌,王文广.沉积岩与沉积相.北京:石油工业出版社,2007.
    黄朋,潘桂棠,王立全,等.青藏高原天然气水合物资源预测.地质通报,2002,21(11):794-798.
    黄霞,祝有海,王平康,等.祁连山冻土区天然气水合物烃类气体组分的特征和成因.地质通报,2011,30(12):1851-1856.
    坚润堂,李峰,王造成.青藏高原冻土区活动带天然气水合物异常特征.西南石油大学学报:自然科学版,2009,31(2):13-17.
    金庆焕,张学光,杨木壮,等.天然气水合物资源概论.北京:科学出版社,2006.
    黎明碧,金翔龙,初凤友,等.神狐-一统暗沙隆起中部新生代地层层序划分及沉积演化.沉积学报,2002,20(4):545-550.
    刘刚,周东升.微量元素分析在判别沉积环境中的应用.石油实验地质,2007,29(3):307-314.
    刘怀山,韩晓丽.西藏羌塘盆地天然气水合物地球物理特征识别与预测.西北地质,2004,37(4):33-38.
    卢振权,龚建明,吴必豪,等.东海天然气水合物的地球化学标志与找矿远景,海洋地质与第四纪地质,2003,23(3):77-81.
    卢振权,吴必豪,饶竹,等.青藏铁路沿线多年冻土区天然气水合物的地质、地球化学异常.地质通报,2007,26(8):1029-1040.
    卢振权,吴能友,陈建文,等.试论天然气水合物成藏系统.现代地质,2008,22(3):363-375.
    卢振权,祝有海,张永勤,等.青海省祁连山冻土区天然气水合物存在的主要证据.现代地质,2010a,24(2):329-336.
    卢振权,祝有海,张永勤,等.青海祁连山冻土区天然气水合物的气体成因研究.现代地质,2010b,24(3):581-588.
    梅水泉.岩石化学在湖南前震旦系沉积环境及铀来源研究中的应用.湖南地质,1988,7(3):25-31.
    庞守吉,苏新,杨旭,等.祁连山冻土区天然气水合物科学钻探试验井中侏罗统的沉积学特征.地质通报,2011,30(12):1829-1838.
    青海煤炭地质105勘探队.青海省天峻县聚乎更二露天勘探报告. 2009.
    青海省地质矿产局编.青海省区域地质志.北京:地质出版社,1991.
    沙志彬,郭依群,杨木壮,等.南海北部陆坡区沉积与天然气水合物成藏关系.现代地质与第四纪地质,2009,29(5):89-98.
    邵磊,李献华,韦刚健,等.南海陆坡高速沉积体的物质来源.中国科学(D缉),2001,31(10):828-833.
    史斗,孙成权,朱岳年.国外天然气水合物研究进展.兰州:兰州大学出版社,1992,l-88.
    史斗,郑军卫.世界天然气水合物研究开发现状和前景.地球科学进展,1999,14(4):330-339.
    苏新,陈芳,于兴河,等.南海陆坡中新世以来沉积物特性与气体水合物分布初探.现代地质,2005,19(1):1-13.
    苏新.海洋天然气水合物分布与“气-水-沉积物”动态体系--大洋钻探204航次调查初步结果的启示.中国科学(D辑),2004,34(12):1091-1099.
    孙崇仁,陈国隆,李璋荣,等.青海省岩石地层.武汉:中国地质大学出版社,1997,173-189.
    唐勇,金翔龙,方银霞,等.冲绳海槽天然气水合物BSR的地震研究.海洋学报,2003,25(4):59-65.
    王平康,祝有海,卢振权,等.祁连山冻土区天然气水合物岩性和分布特征.地质通报,2011,30(12):1839-1850.
    王佟,刘天绩,邵龙义,等.青海木里煤田天然气水合物特征与成因.煤田地质与勘探,2009,37(6):26-30.
    文怀军,鲁静,尚潞君,等.青海聚乎更矿区侏罗纪含煤岩系层序地层研究.中国煤田地质,2006,18(5):19-21.
    吴吉春,盛煜,于晖,等.祁连山中东部的冻土特征(I):多年冻土分布.冰川冻土,2007,29(3):418-422.
    吴能友,蔡秋容.南海大洋钻探184航次初步成果简介.海洋地质,1999(4):9-52.
    吴青柏,蒋观利,蒲毅彬,等.青藏高原天然气水合物的形成与多年冻土的关系.地质通报,2006,25(1-2):29-33.
    吴自成,吕新彪,王造成.青藏高原多年冻土区天然气水合物的形成及地球化学勘查.地质科技情报,2006,25(4):9-14.
    席胜利,郑聪斌,李振宏.鄂尔多斯盆地西缘奥陶系地球化学特征及其沉积环境意义.古地理学报,2004,6(2):196-206.
    徐学祖,程国栋,俞祁浩.青藏高原多年冻土区天然气水合物的研究前景和建议.地球科学进展, 1999, 14 ( 2) :201 - 204.
    姚伯初.南海北部陆缘天然气水合物初探.海洋地质与第四纪地质,1998,18(4):11-17.
    伊海生,时志强,刘文均,等.青藏高原多年冻土区天然气水合物形成潜力及远景.西藏地质, 2002 (1) : 45 - 52.
    于兴河,张志杰,苏新,等.中国南海天然气水合物沉积成藏条件初探及其分布.地学前缘,2004,11(1):311-315.
    于兴河,张志杰.南海北部陆坡区新近系沉积体系特征与天然气水合物分布的关系.中国地质,2005,32(3):470-476.
    张凤鸣.木里煤田的冻土.煤田地质与勘探,1989,3:50-53.
    张光学,陈邦彦.南海甲烷水合物资源研究与找矿前景.海洋地质,2000,3:1-9.
    张光学,黄永样,祝有海,等.南海天然气水合物的成矿远景.海洋地质与第四纪地质,2002,22(1):75-81.
    张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展.中国地质,2007,34(6):953-961.
    张立薪,徐学祖,马巍.青藏高原多年冻土与天然气水合物.天然气地球科学, 2001, 12(1) : 22 - 26.
    张志攀,祝有海,苏新.羌塘盆地沉积物热释光特征及潜在意义.现代地质,2008,22(3):452-456.
    赵澄林,朱筱敏.沉积岩石学.北京:石油工业出版社,2001.
    赵省民,邓坚,李锦平,等.漠河多年冻土区天然气水合物的形成条件及成藏潜力研究.地质学报,2011,85(9):1536-1550.
    周怀阳,彭晓彤,叶瑛.天然气水合物.北京:海洋出版社,2000,1-92.
    周幼吾,郭东信,邱国庆,等.中国冻土.北京:科学出版社,2000,309-326.
    朱筱敏.沉积岩石学.北京:石油工业出版社,2008.
    祝有海,刘亚玲,张永勤.祁连山多年冻土区天然气水合物的形成条件.地质通报,2006,25(1-2):58-63.
    祝有海,饶竹,刘坚,等.南海西沙海槽S14站位的地球化学异常特征及其意义.现代地质,2005,19(1):39-44.
    祝有海,张光学,卢振权,等.南海天然气水合物成矿条件与找矿前景.石油学报,2001,22(5):6-10.
    祝有海,张永勤,文怀军,等.祁连山冻土区天然气水合物及其基本特征.地球学报,2010,31(1):7-16.
    祝有海,张永勤,文怀军,等.青海祁连山冻土区发现天然气水合物.地质学报,2009,83(11):1762-1771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700