用户名: 密码: 验证码:
H9N2亚型禽流感病毒与鸭坦布苏病毒的生物学特性研究及疫苗的初步研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H9N2亚型禽流感病毒在全世界流行广泛,危害巨大。通常该亚型禽流感病毒为低致病性,感染禽类后不会引起大批死亡。但最近发现感染该亚型病毒的禽类死亡率很高,应用多聚酶链式反应(PCR)方法诊断,发现感染本病禽类脏器中同时存在H9N2亚型禽流感病毒和新发现的鸭坦布苏病毒。基于此问题,本研究分别对H9N2亚型禽流感病毒和鸭坦布苏病毒的生物学特性进行了深入研究,并对预防这两种病毒的疫苗进行了初步探讨研究。
     为掌握我国H9N2亚型禽流感病毒流行株的生物学特性,本研究选取2003-2010年分离到的27株病毒进行了系统深入的研究。遗传演化分析发现我国H9N2亚型禽流感病毒的遗传演化复杂,部分毒株PA和NS基因与H9N2亚型禽流感病毒参考序列的同源性均不高,表明这些基因可能来源于其它亚型的流感毒株,序列分析发现H9N2亚型禽流感病毒近期分离株的基因片段主要起源于Ck/Shanghai/F/98(H9N2)株。交叉血凝抑制实验及病毒中和实验表明近年来我国H9N2亚型禽流感病毒的抗原性发生了明显的改变。对BALB/c小鼠致病性实验说明我国H9N2亚型禽流感病毒对小鼠的致病能力呈现下降趋势,尤其是2006年后的病毒分离株在小鼠体内的复制能力明显低于早期分离株。挑取处在不同进化分支的4株H9N2亚型禽流感病毒对4周龄SPF鸡进行了鼻腔接种致病性实验,发现这些毒株主要在感染鸡的气管和肺脏中增殖,但不出现明显症状。
     根据上述抗原性分析结果,从H9N2亚型禽流感病毒分离株中筛选出一株病毒Ck/Shanghai/441/09(H9N2)(简称Ck441)进行了初步的疫苗(免疫学)研究。Ck441病毒尿囊液灭活后制备灭活(毒株)疫苗,免疫4周龄SPF鸡,免疫3周后,用Ck441和一株2011年H9N2亚型禽流感病毒分离株进行攻毒实验,发现免疫组鸡均不发病、不排毒,而对照组鸡100%排毒,表明Ck441是一株理想的疫苗候选株。为提高病毒株的在细胞上的增殖能力,把Ck441的HA和NA插入到pBD载体SapI酶切位点之间,分别拯救获得了4株重组病毒,通过鸡胚和细胞增殖实验,发现441HANA/PR8-mutNS在鸡胚和细胞上增殖滴度都很高,将该株病毒经鸡胚和细胞扩增、灭活后制备灭活疫苗并免疫SPF鸡,都能够达到100%的保护率。
     鸭坦布苏病毒是2010年4月以来引起鸭产蛋量下降、生长阻滞甚至死亡的新发鸭传染性疾病的病原,为获得此病毒对哺乳动物和鸡的致病信息,将鸭坦布苏病毒奉贤分离株(FX2010)人工感染BALB/c小鼠和SPF鸡。经肌肉和腹腔注射接种小鼠,各组织脏器均没检测到病毒;经鼻腔接种小鼠,FX2010病毒可在BALB/c小鼠的肺脏中复制增殖;脑内接种,BALB/c小鼠出现明显的临床症状,被毛逆立,体重下降,在小鼠的脑和肺脏中均可分离到病毒,随着接种病毒量的增加,小鼠体重下降更加明显;经8d后,脑内病毒含量仍然很高,而肺脏中的病毒含量明显降低。FX2010经肌肉和鼻腔接种2周龄SPF鸡,经鼻腔接种鸡体重增长明显减缓,肌肉接种体重变化与对照组无明显差异。病毒分离发现,经鼻腔和肌肉接毒的鸡在多个脏器均可分离到病毒;FX2010病毒经鼻腔接SPF产蛋鸡,实验组鸡排出绿色粪便,产蛋量呈现一过性下降,部分脏器能够检测到病毒。在感染鸡的整个实验过程中,未见鸡严重发病或死亡,表明该病毒对鸡呈现低致病性。
     为初步研制防控鸭坦布苏病毒病的DNA疫苗,将鸭坦布苏病毒E基因和密码子优化后E基因分别插入到真核表达载体pCAGGS,通过IFA和Western blot实验,证明两种重组质粒在真核细胞内都能表达具有免疫原性的E蛋白,而优化后的重组质粒较野生型的表达量更高。重组疫苗(毒株)质粒免疫小鼠后,用间接ELISA检测两种DNA疫苗免疫小鼠的血清抗体,发现密码子优化后E基因的质粒激发的抗体效价高于未优化质粒,该试验为DNA疫苗防治鸭坦布苏病毒病提供了初步研究数据。
     总之,本研究阐明了H9N2亚型禽流感病毒和鸭坦布苏病毒的部分生物学特性,初步研制了H9N2亚型禽流感的灭活疫苗和鸭坦布苏病毒病的DNA疫苗质粒。这些研究为H9N2亚型禽流感病毒病和鸭坦布苏病毒病的防治提供坚实的理论依据。
H9N2avian influenza virus (AIV) was widely spread worldwide, and caused great losses to poultry industry. Normally, H9N2AIV was low pathogenicity to poultry, and can't cause death, but in the last few years, we found H9N2AIV was involved in the epidemic with poultry death. Using polymerse chain reaction (PCR), both H9N2AIV and Tembusu virus were identified in the lungs of dead ducks. So in this study we focused on biological characteristics of H9N2AIV and Tembusu viruses separately. In addition, we developed primarily the vaccines against the diseases caused by these two viruses.
     In order to know the biological characteristics of H9N2AIV,27H9N2AIVs isolated during2003to2010were selected. The genetic evolution analysis reveal the viruses posed multiple genotypes and diversity of the biological properties, PA and NS genes may recombine from other influenza virus subtypes, at the same time, we also found Ck/Shanghai/F/98(H9N2) is prevalent gene donator. The cross HI test and neutralization test indicated that the antigenic drift happened in the H9N2AIVs circulated in China. In the mouse experiments, the H9N2AIVs show a decreasing trend of pathogenicity on mice. After inoculated intranasally four-week-old SPF chicken with H9N2viruses, the viruses mainly amplified in tracheas and lungs.
     Based on the antigenic analysis result, Ck/Shanghai/441/09(H9N2)(abbr. Ck441) was selected as candidate strain for vaccine developement. Four-week-old SPF chickens were injected intramuscularly with inactivated vaccine, and then challenged with Ck441and a recent H9N2AIV isolates. the vaccinated chickens didn't shed H9N2AIVs after challenge, while100%negative control chickens shed the viruses. In order to obtain high titer of H9N2virus in cell culture, the HA and NA genes of Ck441were inserted into pBD vector, and several reassortant viruses were rescure based on12plasmids system.441HANA/PR8-mutNS was selected as vaccine candidate for its high titers in both embryonated eggs and MDCK cell (HA-2) culture. The inactive vaccine based on the allantoic fluid or the cell culture supernatants containing441HANA/PR8-mutNS provided complete protection against H9N2AIV challenge.
     Duck Tembusu virus was a newly emerged virus which caused egg production decline、 retarded growth, and even death among ducks. In order to know whether the virus could infect chickens or mammalians, BALB/c mouse and SPF chicken were infected artificially with Tembusu virus Fengxian2010isolate (FX2010). No virus replication was detected in the organs of the mice injected FX2010intramuscular or intraperitoneal injection. Virus replication was detected in the lungs and nasal tissue of the mice injected----FX2010intranasally. When inoculated intracerebral with FX2010, the mice got sick and lost their weight significantly, the virus replication was detected in the brains and lungs. The more viruses inoculated, the more serious the symptoms appeared. Moreover, although the virus titers decreased significantly in lungs8days after mice inoculated intracerebral, the virus titers were still high in brains. Two-week-old SPF chickens were injected with FX2010intramuscularly and intranasally. The chickens injected intranasally grew slowly, while the chickens injected intramuscularly grew normally when compared with the control chickens. When intranasally inoculated with FX2010, the laying hens excreted green feces, and egg production declined. No chicken died, indicated that FX2010was low pathogenic to chicken.
     To develop a DNA vaccine against duck Tembusu disease, recombinant plasmids pCAGGS-E and pCAGGS-OptiE were constructed by inserting E gene and coden-optimized E genes into pCAGGS vector. E protein was expressed in293T cells transfected with pCAGGS-E and pCAGGS-OptiE and proved by IFA and Western blot assay. The pCAGGS-OptiE expressed more E proteins than pCAGGS-E in transfected293T cells. Both pCAGGS-OptiE and pCAGGS-E could stimulate mouse immuno-system to produce specific antibodies against duck Tembusu virus, although pCAGGS-OptiE was more efficiency than pCAGGS-E. This experiment provided primary dates for DNA vaccine against the disease caused by duck Tembusu virus.
     In conclusion, this study we described partial characteristics of H9N2AIVs and duck Tembusu virus, and developed primary vaccines against the diseases caused by H9N2AIVs and duck Tembusu virus. The results would be helpful in the prevention the two diseases.
引文
1 Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls [J]. J Virol,2005, 79 (5):2814-22.
    2 Peiris M, Yuen KY, Leung CW, et al. Human infection with influenza H9N2[J]. Lancet, 1999,354 (9182):916-7.
    3 Guo Y, Li J, Cheng X. Discovery of men infected by avian influenza A (H9N2) virus [J]. Zhonghua ShiYan He Lin Chuang Bing Du Xue Za Zhi,1999,13(2):105-8.
    4 甘孟侯主编.禽流感[M].第二版,北京:北京农业大学出版社,2002.
    5 McAuley JL, Zhang K, McCullers JA, et al. The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis [J]. J Virol,2010,84(1):558-64.
    6 Le Goffic R, Leymarie 0, Chevalier C, et al. Transcriptomic analysis of host immune and cell death responses associated with the influenza A virus PB1-F2 protein [J]. PLoS Pathog,2011,7(8):e1002202.
    7 Briedis DJ, Conti G, Munn EA, et al. Migration of influenza virus-specific polypeptides from cytoplasm to nucleus of infected eells [J]. Virology,1981, 111(1):154-164.
    8 Choppin PW, Scheid A. The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses [J]. Rev Infect Dis,1980,2(1):40-61.
    9 Krug RM, Soeiro R. Studies on the intranuclear localization of influenza virus specific proteins[J]. Virology,1975,64(2):378-87.
    10 Portela A, Zurcher T, Nieto A, et al. Replication of orthomyxo viruses [J]. Adv Virus Res,1999,54:319-348.
    11 Barry JM. The site of origin of the 1918 influenza pandemic and its public health implications [J]. J TransI Med,2004,2(1):3.
    12 Johnson NP, Mueller J. Updating the accounts:global mortality of the 1918-1920 "Spanish" influenza pandemic[J]. Bull Hist Med,2002,76 (1):105-15.
    13 Laver G, Garman E. The origin and control of pandemic influenza[J]. Science,2001, 293(5536):1776-7.
    14 Taubenberger JK, Reid AH, Krafft AE, et al. Initial genetic characterization of the 1918 "Spanish"influenza virus[J]. Science,1997,275(5307):1793-6.
    15 Reid AH, Fanning TC, Janczewski TA, et al. Characterization of the 1918 "Spanish" influenza virus neuraminidase gene[J]. Proc Natl Acad Sci U S A,2000,97 (12):6785-90.
    16 Reid AH, Fanning TG, Janczewski TA, et al. Characterization of the 1918 "Spanish" influenza virus matrix gene segment[J]. J Virol,2002,76(21):10717-23.
    17 Blumenfeld HL, Kilbourne ED, Louria DB, et al. Studies on influenza in the pandemic of 1957-1958. I. An epidemiologic, clinical and serologic investigation of an intrahospital epidemic, with anote on vaccination efficacy [J]. J Clin Invest,1959, 38 (1Part2):199-212.
    18 Dowdle WR. Influenza A virus recycling revisited[J]. Bull World Health Organ 1999, 77 (10):820-8.
    19 Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza Aviruses in the 1957 and 1968 pandemics[J]. J Virol,1989,63(11):4603-8.
    20 Claas EC, de Jong JC, van Beek R, et al. Human inf luenza virus A/Hong Kong/156/97 (H5N1) infection[J]. Vaccine,1998,16 (9-10):977-978.
    21 Claas EC, Osterhaus AD, van Beek R,et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus [J]. Lancet,1998,351:472-477.
    22 Subbarao K, Klimov A, Katz J, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness [J]. Science,1998, 279(5349):393-6.
    23 De Jong JC, Claas E C, Osterhaus AD, et al. A pandemic warning?[J]. Nature,1997, 389:554.
    24 Suarez DL, Perdue ML, Cox N, et al. Comparisons of highly virulent H5N1 infuenza A viruses isolated from humans and chickens from Hong Kong[J]. J Virol,1998, 72:6678-6688.
    25 Guan Y, Shortridge KF, Krauss S, et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China [J]. J Virol, 2000,74 (20):9372-80.
    26 Fraser C, Donnelly CA, Cauchemez S, et al. Pandemic potential of a strain of inuenza A (H1N1:early findings[J]. Science,2009,324:1557-61.
    27 Donaldson LJ, Rutter PD, Ellis BM, et al. Mortal ity from pandemic A/H1N12009 inuenza in England:public health surveillance study[J]. BMJ,2009,339:b5213.
    28 Webster RG, Bean WJ, Gorman OT, et al. Evolution and ecology of influenza A viruses [J]. Microbiol Rev,1992,56 (1):152-79.
    29 Robertson JS. Sequence analys is of the haemagglut inin of A/Taiwan/1/86, a new variant of humaninfluenza A(H1N1) virus[J]. J Virol,1987,68 (Pt4):1205-8.
    30 Both GW, Sleigh MJ, Cox NJ, et al. Ant igenic drift in influenza virus H3 hemagglut inin from 1968 to 1980:multiple evolutionary pathways and sequential amino acid changes at key antigenic sites [J]. J Virol,1983,48(1):52-60.
    31 Lamb RA, Choppin PW. The gene structure and replication of influenza virus [J]. Annu Rev Biochem,1983,52:467-506.
    32 Xu X, Rocha EP, Regenery HL, et al. Genetic and antigenic analyses of influenza A (H1N1 viruses,1986-1991[J]. Virus Res,1993,28 (1):37-55.
    33 Weis W, Brown JH, Cusack S, et al. Structure of the influenza virus haemagglutinin complexed withits receptor, sialic acid[J]. Nature,1988,333(6172):426-31.
    34 Bean WJ, Schell M, Katz J, et al. Evolution of the H3 influenza virus hemagglutinin' from human and nonhuman hosts[J]. J Virol,1992,66(2):1129-38.
    35 Wilson IA, Cox NJ. Structural basis of immune recognition of influenza virus hemagglutinin[J]. AnnuRev Immunol,1990,8:737-71.
    36 Domingo E, Martinez-Salas E, Sobrino F, et al. The quasispecies (extremely heterogeneous) natureof viral RNA genome populations:biological relevance-a review[J]. Gene,1985,40(1):1-8.
    37 Williams SP, Robertson JS. Analysis of the restriction to the growth of nonegg-adapted human influenza virus in eggs[J]. Virology,1993,196(2):660-5.
    38 Katz JM, Wang M, Webster RG. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus[J]. J Virol,1990,64 (4):1808-11.
    39 Gallagher P, Henneberry J, Wilson I, et al. Addition of carbohydrate side chains at novel sites oninf luenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule[J]. J CellBiol,1988,107(6Pt1):2059-73.
    40 Deshpande KL, Fried VA, Ando M, et al. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence [J]. Proc Natl Acad Sci USA, 1987,84(1):36-40.
    41 Ohuchi M, Orlich M, Ohuchi R, et al. Mutations at the cleavage site of the hemagglutinin after the pathogenicity of influenza virus A/chick/Penn/83 (H5N2) [J]. Virology,1989,168(2):274-80.
    42 Caton AJ, Brown lee GG, Yewdell JW, et al. The antigenic structure of the influenza virus A/PR/8/34hemagglutinin (H1 subtype) [J]. Cell,1982,31 (2Pt1):417-27.
    43 Skehel JJ, Stevens DJ, Daniels RS, et al. A carbohydrate side chain on hemagglut inins of HongKong influenza viruses inhibits recognition by a monoclonal antibody[J]. Proc Natl Acad Sci U S A,1984,81 (6):1779-83.
    44 Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein ofinfluenza virus[J]. Annu Rev Biochem,1987,56:365-94.
    45 Wiley DC, Wilson IA, Skehel JJ. Structural identification of the antibody-binding sites of HongKong influenza haemagglutinin and their involvement in antigenic variation [J]. Nature,1981,289(5796):373-8.
    46 Kaverin NM, Rudneva IA, Ilyushina NA, et al. Structural differences among hemagglutinins ofinfluenza A virus subtypes are reflected in their antigenic architecture:analysis of H9 escape mutants[J]. J Virol,2004,78(1):240-9.
    47 Schulze IT. Effects of glycosylation on the properties and functions of influenza virus hemagglutinin[J]. J Infect Dis,1997,176 Suppl 1:S24-8.
    48 Williams SP, Robertson JS. Analysis of the restriction to the growth of nonegg-adapted human influenza virus in eggs[J]. Virology,1993,196 (2):660-5.
    49 Ito T, Couceiro JN, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential[J]. J Virol,1998,72(9):7367-73.
    50 Castrucci MR, Donatelli I, Sidoli L, et al. Genetic reassortment between avian and human influenza A viruses in Italian pigs[J]. Virology,1993,193(1):503-6.
    51 Perez DR, Lim W, Seiler JP, et al. Role of quail in the interspecies transmission of H9 influenza A viruses:molecular changes on HA that correspond to adaptation from ducks to chickens [J]. J Virol,2003,77 (5):3148-56.
    52 Oxford JS, McGeoch DJ, Schild GC, et al. Analysis of virion RNA segments and polypep tides of influenza A virus recombinants of defined virulence [J]. Nature,1978, 273(5665):778-9.
    53 Rott R. The structural basis of the function of influenza virus glycoproteins[J]. Med Microbiol Immunol,1977,164 (1-3):23-33.
    54 Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus[J]. Virology,1999,258(1):1-20.
    55 Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus[J]. Annu Rev Biochem,1987,56:365-94.
    56 Klenk HD, Rott R, Orlich M, et al. Activation of influenza A viruses by trypsin treatment [J]. Virology,1975,68(2):426-39.
    57 Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus [J]. Virology,1999,258(1):1-20.
    58 Kawaoka Y, Naeve CW, Webster RG. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?[J]. Virology,1984, 139(2):303-16.
    59 Hiromoto Y, Saito T, Lindstrom S, et al. Characterization of low virulent strains of highly pathogenic A/Hong Kong/156/97 (H5N1) virus in mice after passage in embryonated hens'eggs [J]. Virology,2000,272(2):429-37.
    60 Hatta M, Neumann G, Kawaoka Y.Reverse genetics approach towards understanding pathogenesis of H5N1 Hong Kong influenza A virus infection[J]. Philos Trans R Soc Lond B Biol Sci,2001,356 (1416):1841-3.
    61 Hulse DJ, Webster RG, Russell RJ, et al. Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens [J]. J Virol,2004,78(18):9954-64.
    62 Reid AH, Taubenberger JK. The 1918 flu and other influenza pandemics:"over there"' and backagain[J]. Lab Invest,1999,79 (2):95-101.
    63 Gibson CA, Daniels RS, Oxford JS, et al. Sequence analysis of the equine H7 influenza virus haemagglutinin gene[J]. Virus Res,1992,22(2):93-106.
    64 Banbury MW, Kawaoka Y, Thomas TL, et al. Reassortants with equine 1 (H7N7) influenza virus hemagglutinin in an avian influenza virus genetic background are pathogenic in chickens [J]. Virology,1991,184(1):469-71.
    65 Hayden FG, Fritz R, Lobo MC, et al.Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense [J]. J Clin Invest,1998,101 (3):643-9.
    66 Colman PM, Laver WG, Varghese JN, et al. Three-dimensional structure of a complex of antibodywith influenza virus neuraminidase[J]. Nature,1987,326(6111):358-63.
    67 Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution[J]. Nature,1983,303(5912):35-40.
    68 Hayden FG, Fritz R, Lobo MC, et al. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense [J]. J Clin Invest,1998,101 (3):643-9.
    69 Matrosovich M, Zhou N, Kawaoka Y, et al. The surface glycoproteins of HS influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties [J]. J Virol,1999,73(2):1146-55.
    70 Castrucci MR, Kawaoka Y. Biologic importance of neuraminidase stalk length in influenza A virus [J]. J Virol,1993,67 (2):759-64.
    71 Wagner R, Wolff T, Herwig A, et al. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth:a study by reverse genetics[J]. J Virol,2000,74(14):6316-23.
    72 Hinshaw VS, Webster RG, Naeve CW, et al. Altered tissue tropism of human-avian reassortant influenza viruses[J]. Virology,1983,128(1):260-3.
    73 Hulse DJ, Webster RG, Russell RJ, et al. Molecular determinants within the surface proteinsinvolved in the pathogenicity of H5N1 influenza viruses in chickens[J]. J Virol,2004,78 (18):9954-64.
    74 McKimm-Breschkin J, Trivedi T, Hampson A, et al. Neuraminidase sequence analysis andsusceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir[J]. Antimicrob Agents Chemother,2003,47(7):2264-72.
    75 Biswas SK, Nayak DP. Influenza virus polymerase basic protein 1 interacts with influenza virus polymerase basic protein 2 at multiple sites[J]. J Virol,1996, 70(10):6716-22.
    76 Gonzalez S, Ortin J. Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates[J]. Embo J,1999,18 (13):3767-75.
    77 Perez DR, Donis RO. A 48-amino-acid region of influenza A virus PB1 protein is sufficient for complex formation with PA[J]. J Virol,1995,69(11):6932-9.
    78 Kobayashi M, Toyoda T, Ishihama A. Influenza virus PB1 protein is the minimal and essentialsubunit of RNA polymerise[J]. Arch Virol,1996,141 (3-4):525-39.
    79 Nakagawa Y, Oda K, Nakada S. The PB1 subunit alone can catalyze cRNA synthesis, and the PAsubunit in addition to the PB1 subunit is required for viral RNA synthesis in replication of the influenza virus genome[J]. J Virol,1996,70 (9):6390-4.
    80 Gonzalez S, Ortin J. Characterization of influenza virus PB1 protein binding to viral RNA:two separate regions of the protein contribute to the interaction domain [J]. J Virol,1999,73(1):631-7.
    81 Honda A, Mizumoto K, Ishihama A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerise [J]. Genes Cells,1999, 4(8):475-85.
    82 Perales B, de la Luna S, Palacios I, et al. Mutational analysis identifies functional domains in the influenza A virus PB2 polymerise subunit [J]. J Virol,1996, 70(3):1678-86.
    83 Yao Y, Mingay LJ, McCauley JW, et al. Sequences in influenza A virus PB2 protein that determine productive infection for an avian influenza virus in mouse and human cell lines[J]. J Virol,2001,75 (11):5410-5.
    84 Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range[J]. J Virol,1993,"67 (4):1761-4.
    85 Hatta M, Gao P, Halfinann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses[J]. Science,2001,293 (5536):1840-2.
    86 Amonsin A, Payungporn S, Theamboonlers A, et al. Genetic characterization of H5N1 influenza Aviruses isolated from zoo tigers in Thai land [J]. Virology,2006, 344(2):480-91.
    87 Maines TR, Lu XH, Erb SM, et al. Avian influenza (H5N1) viruses isolated from humans in Asiain 2004 exhibit increased virulence in mammals[J]. J Virol,2005, 79(18):11788-800.
    88 Zhou B, Li Y, Halpin R, et al. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice[J]. J Virol,2011,85 (1):357-65.
    89 Fodor E, Crow M, Mingay LJ, et al. A single amino acid mutation in the PA subunit of theinfluenza virus RNA polymerase inhibits endonucleolytic cleavage of ' capped RNAs[J]. J Virol,2002,76(18):8989-9001.
    90 Perales B, Sanz-Ezquerro JJ, Gastaminza P, et al. The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis[J]. J Virol,2000,74(3):1307-12.
    91 Huarte M, Falcon A, Nakaya Y, et al. Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses[J]. J Virol,2003, 77 (10):6007-13.
    92 Naffakh N, Massin P, van der Werf S. The transcription/replication activity of the polyrnerase ofinfluenza A viruses is not correlated with the level of proteolysis induced by the PA subunit[J]. Virology,2001,285(2):244-52.
    93 Hulse-Post DJ, Franks J, Boyd K, et al. Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks[J]. J Virol,2007,81(16):8515-24.
    94 Neumann G Castrucci MR, Kawaoka Y. Nuclear import and export of influenza virusnucleoprotein[J]. J Virol,1997,71(12):9690-700.
    95 Wang P, Palese P, ONeill RE. The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza avirus nucleoprotein NP is a nonconventional nuclear localization signal [J]. J Virol,1997,71(3):1850-6.
    96 Avalos RT, Yu Z, Nayak DP. Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells[J]. J Virol,1997, 71 (4):2947-58.
    97 Galarza JM, Sowa A, Hill VM, et al. Influenza A virus NP protein expressed in insect cells by arecombinant baculovirus is associated with a protein kinase activity and possesses single-stranded RNA binding activity[J]. Virus Res,1992,24(1):91-106.
    98 Compans RW, Pinter A. Incorporation of sulfate into influenza virus glycoproteins [J]. Virology,1975,66(1):151-60.
    99 Lohmeyer J, Talens LT, Klenk HD. Biosynthesis of the influenza virus envelope in abortive infection[J]. J Gen Virol,1979,42(1):73-88.
    100Rey 0, Nayak DP. Nuclear retention of M1 protein in a temperature-sensitive mutant of influenza (A/WSN/33) virus does not affect nuclear export of viral ribonucleo proteins[J]. J Virol,1992,66(10):5815-24.
    101 Whittaker G, Kemler I, Helenius A. Hyperphosphorylation of mutant influenza virus matrix protein.Ml, causes its retention in the nucleus [J]. J Virol,1995, 69(1):439-45.
    102 AliA, Nayak DP. Assembly of Sendai virus:M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein[J]. Virology, 2000,276(2):289-303.
    103 Bui M, Whittaker q Helenius A. Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins [J]. J Virol,1996,70(12):8391-401.
    104 Martin K, Helenius A. Nuclear transport of influenza virus ribonucleoproteins:the viral matrixprotein (M1) promotes export and inhibits import[J]. Cell,1991, 67(1):117-30.
    105 Zhang J, Lamb RA. Characterization of the membrane association of the influenza virus matrixprotein in living cells[J]. Virology,1996,225 (2):255-66.
    106 Zhirnov OP. Isolation of matrix protein M1 from influenza viruses by acid-dependent extractionwith nonionic detergent [J]. Virology,1992,186 (1):324-30.
    107Ciampor F, Thompson CA, Grambas S, et al. Regulation of pH by the M2 protein of influenza Aviruses[J]. Virus Res,1992,22 (3):247-58.
    108 Grambas S, Hay AJ. Maturation of influenza A virus hemagglutinin--estimates of the pH encountered during transport and its regulation by the M2 protein[J]. Virology, 1992,190(1):11-8.
    109 Ohuchi M, Cramer A, Vey M, et al. Rescue of vector-expressed fowl plague virus hemagglutinin inbiologically active form by acidotropic agents and coexpressed M2 protein[J]. J Virol,1994,68 (2):920-6.
    110Sakaguchi T, Leser GP, Lamb RA. The ion channel activity of the influenza virus M2 proteinaffects transport through the Golgi apparatus [J]. J Cell Biol,1996, 133(4):733-47.
    111 Takeuchi K, Lamb RA. Influenza virus M2 protein ion channel "activity stabilizes the native formof fowl plague virus hemagglutinin during intracellular transport [J]. J Virol,1994,68(2):911-9.
    112Takeda M, Pekosz A, Shuck K, et al. Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture [J]. J Virol,2002, 76(3):1391-9.
    113Watanabe T, Watanabe S, I to H, et al. Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity[J]. J Virol,2001,75(12):5656-62.
    114Scholtissek C, QuackqKlenk HD, et al. How to overcome resistance of influenza A viruses against adamantane derivatives[J]. Antiviral Res,1998,37(2):83-95.
    115 Suzuki H, Saito R, Oshitani H. Excess amantadine use and resistant viruses[J]. Lancet,2001,358(9296):1910.
    116 Chien CY, Te jero R, Huang Y, et al. A novel RNA-binding motif in influenza A' virusnon-structural proteinl[J]. Nat Struct Biol,1997,4(11):891-5.
    117 Liu J, Lynch PA, Chien CY, et al. Crystal structure of the unique RNA-binding domain of the influenza virus NS1 protein[J].Nat Struct Biol,1997,4(11):896-9.
    118Donelan NR, Basler CF, Garcia-Sastre A. A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice [J]. J Virol,2003,77 (24):13257-66.
    119 Wang X, Li M, Zheng H, et al. Influenza A virus NS 1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon [J]. J Virol,2000,74(24):11566-73.
    120 de la Luna S, Fortes P, Beloso A, et al. Influenza virus NS1 protein enhances the rate of translationinitiation of viral mRNAs[J]. J Virol 1995; 69(4):2427-33.
    121 Enami K, Sato TA, Nakada S, et al. Influenza virus NS1 protein stimulates translation of the M1 protein. J Virol,1994,68(3):1432-7.
    122 Fortes P, Beloso A, Ortin J. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocksmRNA nucleoeytoplasmic transport [J]. Embo J,1994,13(3):704-12.
    123 Wang W, Krug RM. U6atac snRNA, the highly divergent counterpart of U6 snRNA, is the specifictarget that mediates inhibition of AT-AC splicing by the influenza virus NS1 protein [J]. RNA,1998,4(1):55-64.
    124 Neumann G, Kawaoka Y Genetic engineering of influenza and other negative-strand RNA virusescontaining segmented genomes[J]. Adv Virus Res,1999,53:265-300.
    125 Qian XY,'Alonso-Caplen F, Krug RM. Two functional domains of the influenza virus NS1 proteinare required for regulation of nuclear export of mRNA[J]. J Virol,1994, 68(4):2433-41.
    126 Park YW, Katze MCP Translational control by influenza virus. Identification of cis-actingsequences and trans-acting factors which may regulate selective viral mRNA translation[J]. J Biol Chem,1995,270(47):28433-9.
    127Hatada E, Saito S, Okishio N, et al. Binding of the influenza virus NS1 protein to model genome RNAs[J]. J Gen Virol,1997,78(Pt5):1059-63.
    128 Talon J, Salvatore M, ONeill RE, et al. Influenza A and B viruses expressing altered NS1 proteins:A vaccine approach[J]. Proc Nat1 Acad Sci USA,2000,97 (8):4309-14.
    129 Jiao P, Tian G, Li Y, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice[J]. J Virol,2008, 82(3):1146-54.
    130 Seo SH, Webster RG, Cross-reactive, cell-mediated immunity and protection of chickens fromlethal H5N1 influenza virus infection in Hong Kong poultry markets [J]. J Virol, 2001,75(6):2516-25.
    131 Seo SH, Hoffmann E, Webster RG. The NS 1 gene of H5N1 influenza virusesanti-viral cytokine responses[J]. Virus Res,2004,103 (1-2):107-13.
    132 Zhu Q, Yang H, Chen W, et al. A naturally occurring deletion in its NS gene contributes to theattenuation of an H5N1 swine influenza virus in chickens [J]. J Virol,2008, 82(1):220-8.
    133陈伯伦,张继泽,陈伟斌,等.鸡A型禽流感病毒的分离与血清学初步鉴定[J].中国兽医杂志,1994,20(10):3-5.
    134李建伟.欧亚大陆H9N2亚型禽流感病毒分子演化的研究[博士学位论文].哈尔滨:东北农业大学,2002,31-32.
    135Peiris JS,Guan Y,Markwell D, et al.Cocirculation of Avian H9N2 and Contemporary "Human" H3N2 Influenza A Viruses in Pigs in Southeastern China:Potential for Genetic Reassortment?[J]. J Virol,2001,75 (20):9679-86.
    136郭元吉,李建国,程小雯,等.禽H9N2亚型流感病毒能感染人的发现[J].中华实验和临床病毒学杂志,1999,13(2):105-108.
    137 Peiris M, Yuen KY, Leung CW, et al. Human infection with influenza H9N2[J]. Lancet, 1999,354:916-917.
    138杨其峰,崔治中,巩艳艳.鸡胚中H9N2亚型禽流感病毒的分离鉴定[J].中国家禽,2010,32(6):15-18.
    139李春艳,肖晶,李曦,等.微载体规模化培养MDCK细胞增殖H9N2亚型禽流感病毒的研究[J].中国人兽共患病学报,2009,25(12):1149-1153.
    140 Ruth A. Karron, Karen Cal lahan, Catherine Luke, et al. A Live Attenuated H9N2 Influenza Vaccine Is Well Tolerated and Immunogenic in Healthy Adults[J].J Infect Dis,2009, 199(5):711-716.
    141 Steensel M, Bublot M, Van Borm S, et al. Prime-boost vaccination with a fowlpox vector and an inactivated avian influenza vaccine is highly immunogenic in Pekin ducks challenged with Asian H5N1 HPAI[J]. Vaccine,2009,27(5):646-54.
    142王文,陈红,谭文杰,等.表达人高致病性禽流感病毒H5N1(安徽株)结构基因的DNA疫苗在小鼠中诱导的免疫应答分析[J].病毒学报,2010,26(3):170-175.
    143 Neumann G, Zobel A, Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules [J]. Virology,1994,202:477-479.
    144Neumann G, Watanabe T, Ito H,et al. Generation of influenza A viruses entirely from cloned cDNAs[J]. Proc Natl Acad Sci U S A,1999,96(16):9345-50.
    145 Hoffmann E, Neumann G, Hobom G,et al. "Ambisense" approach for the generation of influenza A virus:vRNA and mRNA synthesis from one template[J]. Virology,2000, 267:310-317.
    146 Hoffmann E, Krauss S, Perez D. Eight-plasmid system for rapid generation of influenza virus vaccines [J]. Vaccine,2002,20:3165-70.
    147 Hoffmann E, Neumann G, Kawaoka Y. et al.A DNA transfection system for generation of influenza A virus from eight plasmids[J]. Proc Natl Acad Sci USA,2000,97:6108-6113.
    148 Neumann G, Fujii K, Kino Y, et al.An improved reverse genetics system for influenza virus generation and its implications for vaccine product ion[J]. Proc Natl Acad Sci USA,2005,102 (46):16825-16829.
    149 Pixi Yan, Youshu Zhao, Xu Zhang,et al. An infectious disease of ducks caused by a newly emerge Tembusu virus strain in mainland China[J]. Virology,2011,417:1-8.
    150 Rice C M, Lenches E M, Eddy R S, et al. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution[J]. Science,1985, 229:726-733.
    151 Gaunt M W, Sail A A, de Lamballerie X,et al. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography [J]. J Gen Virol,2001,82; 1867-1876.
    152Modis Y, Ogata S, Clements D, et al. Structure of the dengue virus envelop protein after membrane fusion[J]. Nature,2004,427 (6972):313-9.
    153Rey FA. Dengue virus envelope glycoprotein structure:new insight into its interactions during viral entry [J]. Proc Natl Acad Sci USA,2003,100(12):6899-6901.
    154 Seligman SJ, Bucher DJ, The inportance of being outer:consequance of the distinction between the outer and inner surfaces of flavivirus glycorprotein E[J]. trends Microbiol,2003,11 (3):108-10.
    155滕巧泱,颜丕熙,张旭,等.一种新的黄病毒导致蛋鸭产蛋下降及死亡[J].中国动物传染病学报,2010,18(6):1-4.
    156李玉峰,马秀丽,于可响,等.一种从鸭新分离的黄病毒研究初报[J].畜牧兽医学报,2011,42(6):885-891.
    157Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo [J].Science,1990,247(4949 Pt 1):1465-1168.
    158Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein[J]. Science,1993,259(5102): 1745-1749.
    159 Tang DC, DeVit M, Johnston SA. Genet ic immunization is a simple method for eliciting an immune response[J]. Nature,1992,356(6365):152-154.
    160 Liu MA, Ulmer JB. Human cl inical trials of plasmid DNA vaccines [J]. Adv Genet,2005, 55:25-40.
    161 Carver KA, LaPatra SE, Kurath G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye 0. nerka salmon [J]. Dis Aquat Organ,2005,64(1):13-22.
    162 Davidson AH, Traub-Dargatz JL, Rodeheaver RM, et al. Immunologic responses to West Nile virus in vaccinated and clinically affected horses[J]. J Am Vet Med Assoc,2005, 226 (2):240-5.
    163Thacker EL, Holtkamp DJ, Khan AS, et al. Plasmid-mediated growth hormone-releasing hormone efficacy in reducing disease associated with Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus infection[J]. J Anim Sci,2006, 84(3):733-42.
    164 Bergman PJ, Camps-Palau MA, McKnight JA, et al. Development of a xenogeneic DNA vaccine program for canine mal ignant melanoma at the Animal Medical Center [J]. Vaccine,2006, 24(21):4582-5.
    165 Le TP, Coonan KM, Hedstrom RC, et al. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers[J]. Vaccine,2000,18 (18):1893-901.
    166MacGregor RR, Boyer JD, Ciccarelli RB, et al. Safety and immune responses to a DNA-based human immunodeficiency virus (HIV) type Ⅰ env/rev vaccine in HIV-infected recipients:follow-up data[J]. J Infect Dis,2000,181(1):406.
    167Tobery TW, Siliciano RF et al. Targeting of HIV-Ⅰ antigens for rapid intracellular degradationenhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses invivo after immunization [J]. J Exp Med,1997,185(5):909-920.
    168李呈军.中国H9N2亚型禽流感病毒进化分析与H5N1亚型禽流感病毒标记疫苗的研究[博士学位论文].哈尔滨:中国农业科学院哈尔滨兽医研究所,2005.
    169朱雯迎,许传田,张秀美等.6株H9N2禽流感病毒分子进化及对小鼠的致病性[J].中国兽医学报,2011,31(8):1180-1183.
    170桑晓宇,高玉伟,李林,等.5株H9N2亚型禽流感病毒血凝蛋白分子特征分析和豚鼠间传播能力分析[J].中国预防兽医学报,2012,34(2):92-95.
    171 Li C J, Yu K Z, Tian G B, et al. Evolution of H9N2 influenza viruses from domestic coultry in Mainland China [J]. Virology,2005,340:70-83.
    172 David L Suarez. Evolution of avian influenza viruses[J]. Veterinary Microbiology, 2000,74 (1-2):15-27.
    173Nikolai V, Kaverin, Irina A, et al. Structural Differences among Hemagglutinins of Infuenza A Virus Subtypes Are Refected in Their Antigenic Architecture:Analysis of H9 Escape Mutants[J]. J Virol,2004,78 (1):240-249.
    174 Kaverin NV, Rudneva IA, Govorkova EA, et al. Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies [J]. J Virol,2007,81(23):12911-7.
    175 Reiko Yoshida, Manabu Igarashi, Hiroichi Ozaki.et al. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses[J]. PloS Pathog,2009,5(3):1-9.
    176Mohamed Rajik, Abdul Rahman Omar, Aini Ideris,et al.A novel peptide inhibits the influenza virus replication by preventing the viral attachment to the host cells[J]. Int J Biol Sci,2009,5 (6):543-8.
    177 Zhang P, Tang Y, Liu X, et al. A novel genotype H9N2 influenza virus possessing human H5N1 internal genomes has been circulating in poultry in eastern China since 1998[J]. J Virol,2009,83(17):8428-38.
    178万晓鹏.中国大陆H9N2亚型禽流感病毒遗传演化分析及疫苗株的选择[硕士学位论文].哈尔滨:中国农业科学院哈尔滨兽医研究所,2010.
    179 Guo YJ, Krauss S, Senne DA,et al.Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia[J]. Virology,2000, 267(2):279-88.
    180孙瑞芹,何宏轩,高云英.低致病性禽流感H9N2病毒感染鸡群引起巴氏杆菌的内源性感染[J].中国农学通报,2009,25(10):15-18.
    181王新卫,柴丽娜,王泽霖.不同H9N2亚型禽流感病毒株致病力的比较试验[J].中国兽医学报,2011,31(12):1702-1705.
    182 Xu Tong, Qiao Jian, Zhao Li-hong, et al. Effect of dexametha-sone on acute respiratory distress syndrome induced by theH5N1 virus in mice [J]. Eur Respir J,2009, 33:852-860.
    183 Xu Tong, Qiao Jian, Zhao Li-hong, et al. Acute respiratory dis-tress syndrome induced by avian influenza A (H5N1) virus in mice [J]. Am J Respir Crit Care Med,2006,174: 1011-1017.
    184王新卫,柴丽娜,王泽霖.不同H9N2亚型禽流感病毒株致病力的比较试验[J].中国兽医学 报,2011,31(12):1702-1705.
    185平继辉.H9N2亚型禽流感病毒抗原变异及感染哺乳动物分子机制的研究[博士学位论文].南京:南京农业大学,2008.
    186 Mok CK, Yen HL, Yu MY, et al. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis. J Virol,2011, 85(18):9641-5.
    187Saiki PK, Gelfand DH, Stoffel S, et al. Primer-directed enzymat ic ampl if icat ion of DNA with a thermostable DNA polymerase[J]. Science,1988,239:487-91.
    188李银.禽流感病毒H9N2鸭分离株的生物学与分子生物学特性及其快速诊断的研究[博士学位论文].南京:南京农业大学,2006.
    189 Liu Hongqi, Liu Xiufan, Cheng Jian, et al. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001[J]. Avian Dis,2003,47(1):116-127.
    190Guan Y, Shortridge KF, Krauss S, et al. Molecular characterization of H9N2 influenza viruses:were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? [J]. Proc Natl Acad Sci U S A,1999,96 (16):9363-7.
    191Foeglein A, Loucaides EM, Mura M,et al. Influence of PB2 host-range determinants on the intranuclear mobility of the influenza A virus polymerase [J]. J Gen Virol, 2011,92 (Pt7):1650-61.
    192 Ping J, Dankar SK, Forbes NE,et al.PB2 and hemagglutinin mutations are major determinants of host range and virulence in mouse-adapted influenza A virus [J]. J Virol,2010,84(20):10606-18.
    193Yamada S, Hatta M, Staker BL,et al. Biological and structural characterization of a host-adapting amino acid in influenza virus [J]. PLoS Pathog,2010,6(8):e1001034.
    194李树纯,李心海,仲书官,等.H9N2亚型禽流感病毒基因组的遗传进化分析[J].病毒学报,2012,28(1):7-14.
    195索朗斯珠,邹威,王灿,等.禽流感病毒H9N2亚型西藏分离株HA和NA基因的克隆与序列分析[J].畜牧兽医学报,2010,41(12):1659-1666.
    196王延树,李建丽,梁武,等.13株H9N2亚型禽流感病毒HA基因变异分析[J].中国家禽,2011,33(15):9-12.
    197 Skehel J. An overview of influenza haemagglut inin and neuraminidase [J]. Biologicals, 2009,37(3):177-8.
    198 Els MC, Air CM, Murti KG, et al. An 18-amino acid deletion in an influenza neuraminidase [J]. Virology,1985,142:241-247.
    199Castrucci MR, Kawaoka Y. Biologic importance of neuraminidase stalk length in influenza A virus [J]. J Virol,1993,67:759-64.
    200 Munier S, Larcher T, Cormier-Aline F, et al. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens[J]. J Virol,2010,84:940-52.
    201 Zhang W, Xue T, Wu X, et al. Increase in viral yield in eggs and MDCK cells of reassortant H5N1 vaccine candidate viruses caused by insertion of 38 amino acids into the NA stalk[J]. Vaccine,2011,29(45):8032-41.
    202 Paragas J, Talon J, O' Neill RE,et al. Influenza B and C virus NEP (NS2) proteins possess nuclear export activities[J]. J Virol,2001,75 (16):7375-83.
    203Li Z, Watanabe T, Hatta M, et al. Mutational analysis of conserved amino acids in the influenza A virus nucleoprotein[J]. J Virol,2009,83(9):4153-62.
    204王朝霞,滕巧泱,戴晓光,等.PR8流感病毒突变株的制备及其在鸡胚上生长特性的研究[J].中国兽医科学,2010,40(08):788-792.
    205 Tree JA, Richardson C, Fooks AR,et al. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains [J]. Vaccine,2001,19(25-26):3444-50.
    206Gerdil C. The annual production cycle for influenza vaccine[J]. Vaccine,2003, 21(16):1776-9.
    207黄海碧,滕巧泱,王朝霞,等.稳定表达流感病毒PR8 HA蛋白MDCK细胞系的建立及鉴定[J].中国预防兽医学报,2010,32(7):917-520.
    208童海兵,张小荣,吴艳涛,等.H9N2亚型禽流感灭活疫苗的免疫效果评价[J].2010,32(10):22-251.
    209殷震,刘景华.动物病毒学[M].第二版.北京,科学出版社,1997,631-2
    210 Lim SM, Koraka P, Osterhaus AD,et al. West Nile virus:immunity and pathogenesis [J]. Viruses,2011,3 (6):811-28.
    211 Kurosu T. Quasispecies of dengue virus [J]. Trop Med Health,2011,39 (4 Suppl):29-36.
    212刘欣玉,俞永新,李茂光,等.我国新分离乙型脑炎病毒株毒力特征研究[J].2008,24(6):437-431.
    213 Wang K, Deubel V. Mice with different susceptibility to Japanese encephalitis virus infection show selective neutralizing antibody response and myeloid cell infectivity[J]. PLoS One,2011,6(9):e24744.
    214 Grant L Campbell, Susan L Hills, Marc Fischer, et al. Estimated global incidence of Japanese encephalitis:a systematic reviewGo to:Estimation de 1'incidence mondiale de 1'encephalite japonaise:une evaluation syst e matique[J]. Bull World Health Organ,2011,89(10):766-774.
    215 Takeshi Kurosu. Quasi species of dengue virus[J] Trop Med Health,2011,39(4 Suppl): 29-36.
    21 6刘欣玉,俞永新,李茂光,等.我国新分离乙型脑炎病毒株毒力特征研究[J].病毒学报,2008,24(5):427-431.
    217 Jingliang Su, Shuang Li, Xudong Hu, et al. Duck Egg-Drop Syndrome Caused by BYD Virus, a New Tembusu-Related Flavivirus [J]. PLoS One,2011,6(3):e18106.
    21 8李玉峰,马秀丽,于可响,等.一种从鸭新分离的黄病毒研究初报[J].畜牧兽医学报,2011,42(6):885-891.
    219曹贞贞,张存,黄瑜,等.鸭出血性卵巢炎的初步研究[J].2010,46(12):3-6.
    220Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes[J]. Proc Natl Acad Sci U S A,1990,87(21):8301-5.
    221姬希文,闫丽萍,颜丕熙,等.鸭坦布苏病毒抗体间接ELISA检测方法的建立[J].中国预防兽医学报,2011,8:630-634.
    222 Robinson HL.Nucleic acid vaccines:an over view[J]. Vaccine,1997,15(8):785-787.
    223 Bu Z G,Ling Y, Ziegler H K,et al. Enhanced cellular immune reponse against SIV Gag induced by immunizat ion with DNA vaccines expressing assembly and release-defective SIV Gag proteins. Virology,2003,309:272-281.
    224 Jiang J J,Yamato E ij,M iyazaki Jun-ichi Intravenous delivery of naked plasmid DNA for in vivo cytokine expression[J]. Biochem Biophys Res Commun,2001,289 (5):1088-92.
    225黄月红,陈运新,陈志新,等.外源性rIL-10基因质粒静脉注射及其在大鼠体内表达[J].中国药理学通报,2008,24(6):837-837.
    226Andr e S, Seed B, Eberle J, et al. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage[J]. J Virol, 1998,72 (2):1497-503.
    227 Greenland JR, Letvin NL. Chemical adjuvants for plasmid DNA vaccines [J]. Vaccine,2007, 25(19):3731-41.
    228 Henriques AM, Madeira C, Fevereiro M, et al. Effect of cat ionic liposomes/DNA charge ratio on gene expression and antibody response of a candidate DNA vaccine against Maedi Visna virus [J]. Int J Pharm,2009,377(1-2):92-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700