用户名: 密码: 验证码:
土壤剖面有机质垂向变化规律及其对TCE的吸附行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机污染物在从地表进入地下水的垂向入渗过程中,一方面表层土壤/沉积物中含有较高的有机质,对有机污染物的吸附起到了重要作用;另一方面由于包气带下部土壤介质数量巨大,对于有机污染物的吸附同样有重要影响;因此,开展有机污染物在垂向剖面介质中吸附行为特征研究,具有重要意义,本论文以三氯乙烯(TCE)为典型的有机污染物,以北京某地区包气带土壤为研究对象,实验室条件下,研究了垂向剖面上土壤组成、有机质变化规律及其对有机污染物TCE的吸附行为影响特征。
     论文主要取得以下研究成果:(1)包气带下部土壤的理化性质之间有明显的相关关系,特别是粘粒含量是影响土壤垂向剖面有机质含量、结构组成、腐殖化度以及有机质-矿质复合体变化的一个重要因素,其影响可能高于土壤沉积形成时期有机质初始含量和沉积年代,而有机质含量、结构组成、腐殖化度和复合体的差异对TCE吸附行为产生直接影响,因此,垂向剖面上粘粒含量的变化是影响TCE迁移、转化的关键因素。碱提取液吸光度测量方法简便,可以用作土壤腐殖化度的表征,与胡富比(HA/FA)和HA/TOC表征腐殖化度结果一致。(2)富里酸比胡敏酸酸性强,富里酸多以羧酸形式存在,胡敏酸多以羧基负离子的形式存在,胡敏酸结构比富里酸结构更为致密,同一层位胡敏酸比富里酸含碳量高,饱和程度也更高;表层土壤提取出来的胡敏酸与包气带土壤提取胡敏酸性质不同,表土胡敏酸中含有较多的甲基、亚甲基、羟基和羰基官能团,腐殖化程度相对较低,稳定性差,实验浓度范围内,对TCE吸附的Kd和Koc值均大于包气带土样胡敏酸。(3)在有机污染物垂向入渗的过程中,包气带介质中大量无机矿物的吸附作用不容忽视,土壤矿物组分对TCE等温吸附式为langmuir等温吸附,有最大吸附量;包气带下部土壤吸附过程中,在foc较小时,非线性较明显,当foc<0.16%以下时,无机矿物对TCE吸附贡献率相对较高,贡献率可能高达20%以上;随着有机碳含量的升高,当foc>0.82%以后,无机矿物的平均贡献率小于5%;有机质对TCE吸附贡献率显著提高,线性吸附趋势显著增强。(4)TCE溶液浓度对吸附产生影响,不同的污染物浓度会引起有机质和矿物质在吸附中的贡献率发生变化,污染物TCE浓度越高,有机质的吸附贡献率相对上升,矿物质的吸附贡献率相对下降。foc=0.16%时,在TCE浓度为50-500μg·L-1范围内,矿物质的贡献率波动范围为28%-16%。而foc>1%时,矿物质对吸附的贡献率下降到3%-1%之间。(5)土壤中有机质与粘土矿物是以有机质-矿质复合体形式存在;一方面,复合体中有机质并不是均匀覆盖在矿物质表面,矿物质对有机质存在选择性的吸附,高岭石易于吸附有机质中的—CH2基团,蒙脱土主要吸附芳烃基团;另一方面,土壤中有机质与矿物质结合形成有机质-矿质复合体后,有机质会进一步聚合,形成缩聚体,缩聚体中含有大量孔隙结构,随着复合体中有机质含量的增加,缩聚体聚合更加紧密,复合体内部孔径变小;有机质官能团的吸附效应和空隙填充效应两方面共同作用的结果,最终影响有机质-矿质复合体对有机污染物的吸附;即粘土含量高,复合体中有机质含量高,腐殖化度高,由于官能团对污染物的吸附作用强,空隙填充作用小。
On the course of organic contaminants go into groundwater from surface on profile, there are a large mass of organic matter in topsoil/sediment. It plays an important role of sorption of organic contaminants. On the other, as there are so much soil medium in the subsoil on profile. This must do great influence for sorption of organic contaminants. As the result, it will be much usage to begain the researches of sorption of organic contaminants on vedose zone. This research aimed at the organic contaminants of TCE. In the laboratory, with the soil of vidose zone on profile in one area of Beijing, this paper studyed the sorption behaviors of organic contaminants trichloroethylene (TCE) with the changes of compose of soil and organic matter. The results of the research were as follows:
     (1) The correlation is close among clay content, clay mineral, humification degree and TOC. The clay content of soil compose is the key influence to the content of TOC and the degree of humification of subsoil on profile. Particularly, the clay content influences the content of organic matter, structure and humification degree and organo-mineral complexes. The influence of clay content must be greater than the initial content of organic matter in the era of sedimentation and the deposit years. The differences, such as the content of organic matter, structure, humification degree and the complexes, affect the sorption behaviors of TCE. Consequently, the change of clay content is the key factor to influence the remove and transformation of TCE on vertical profile. The absorbance of alkali liquid can be used to replace HA/FA and HA/TOC to character the degree of humification of soil. (2) The carboxyl functional groups of HAs are mainly COO– and the FAs’are COOH. Thus the acidity of FAs is higher. The structure of HAs is more compact than FAs, and HA has more saturation and more content of carbon than FA extracting from the same soil samples. The humic acids between topsoil and subsoil do not have the same characters. Tophumic acids have much methyl, methylene, hydroxyl group and carbonyl group. Tophumic acids have less humification degree and less stability. Kd and Koc of humic acids extracted from topsoil(tophumic acids) to TCE sorption are bigger than the humic acids exctracted from subsoil(subhumic acids) normally. (3) Organic adsorption behavior of TCE plays a very important role. However, on the course of organic contaminants go into groundwater from surface on profile, there is a large mass of mineral in vadose zone. The sorption of mineral does not be neglected. The TCE adsorption isotherm of soil sample is nonlinearity clearly in subsoil and the contribution ration of mineral adsorption is higher while foc is less. The linear of the adsorption isotherm of soil samples is bigger obviously with a little increasing of content of organic matter on vertical profile. The TCE adsorption isotherm of mineral is Longmuir and there is the biggest adsorption. (4) The adsorption isotherm of sample can be changed by the solute concentration of TCE, foc increases and n values increase gradually. Different concentration of TCE will lead to the much difference in adsorption ratio between organic matter and mineral. The more is concentration of TCE, the higher is sorption rate of organic matter and the less is adsorption rate of mineral. The adsorption rate of mineral changes between 28% and 16% when foc equals 0.16% and TCE changes between 50μg·L-1 and 500μg·L-1. The adsorption rate of mineral changes between 3% and 1% when foc greater than 1% and the influence of the adsorption rate of mineral and organic matter to TCE is less. (5) The mineral is not covered uniformly by organic matter but is distributed irregularly on sorption point after the organo-mineral complex formed in soil. Kaolinite attracts–CH2 easily and montmorillonite aromatic group easily. On the other hand, the complexes can be contracted to form polymerizations with the increasing of organic matter. There is a great deal of interspace in the polymerizations. The higher is the content of organic matter the more compact is the polymerizations. The interspace diameter gets smaller. The results of two aspects affect the TCE sorption of complexes.
引文
Aaby B,Tauber H. 1975. Rates of peat formation in relation to humification and local environment, as shown by studies of a raised bog in Denmark [J]. Boreas, 4:1-17.
    Aaby B. 1976. Cyclic climatic variations in climate over the past 5500 year reflected in raised bogs [J]. Nature, 263:281-284.
    Ahmad R, Kookana R S, Alston A M, Skjemstad J O. 2001. T he nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CP/ MAS NMR spectroscopy. Environ.Sci. Technol, 35, 878- 884.
    Amir S,Benlboukht F,Cancian N,et al. 2008. Physical-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composing [J]. Journal of Hazardous Materials, (160):448-455.
    Bachus D A, Gschwend P M. 1990. Fluorescent polycilic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater. Environ.Sci.Technol, 24: 1214-1223.
    Bo Pan , Baoshan Xing. 2007. Effect of physical forms of soil organic matter on phenanthrene sorption. Chemosphere, 68:1262–1269.
    C. Chenu, A. F. Plante. 2006. Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the‘primary organo-mineral complex[J]. European Journal of Soil Science. 57, 596-607.
    C.Zaccone ,D.Said-Pullicino ,G.Gigliotti ,T.M.Miano.2008. Diagenetic trends in the phenolic constituents of Sphagnum-dominated peat and its corresponding humicacid fraction . Organic Geochemistry. 39:830-838
    C.Zaccone ,D.Said-Pullicino ,G.Gigliotti ,T.M.Miano.2008. Diagenetic trends in the phenolic constituents of Sphagnum-dominated peat and its corresponding humicacid fraction . Organic Geochemistry. 39:830-838
    Carroll K M, Harkness M R, Bracco A A. 1994. Application of a permeat/ polymer diffusional model to desorption of polychlorinated biphenyls from Hudson River sediments. Environ. Sci. Technol. , 28:253-258.
    Cavani L,Ciavatta C, Gessa C. 2003. Identification of organic matter from peat,leonardite andlignite fertilisers using humification parameters and electrofocusing [J]. Bioresource echnology, 86(1):45-52.
    Chefetz B, Deshmukh A P, Hatcher P G, Guthrie E A. 2000. Pyrene sorption by natural organic matter. Environ. Sci. Technol, 34, 2925-2930.
    Chen Z, Xing B, McGill W B, Dudas M J. 1996.α-Naphthol sorption as regulated by structure and composition of organic substances in soils and sediments, Can. J. Soil Sci, 76, 513-522.
    Chi F H, Amy G L. 2004. Transport of anthracene and benz(a)anthracene through iron-quartz and three aquifer materials in laboratory columns. Chemosphere, 55, 515-524.
    Chiou C T, Kile D E, Rutherford DW et al., 2000. Sorption of selected organic compounds from water to a peat soil and its humic acid and humic fractions: Potential Sources of the Sorption Nonlinearity [J]. Environ. Sci. Technol. , 34(7)∶1254-1258
    Chiou C T, Malcolm R M. 1986. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol.. 20(5):502-508.
    Chiou C T , Kile D.E. 1998. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations, Environ. Sci. Technol.. 32(3): 338-343
    Chiou C T , Kile D E, Rutherford D W, et al,. 2000. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity, Environ. Sci. Technol.. 34(7): 1254-1258
    Chorover, J,Amistadi, M K. 2001. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochimica Cosmochimica Acta, 65:95-109.
    Dou S, Xiao Y C, Zhang J J. 2006. Quantities and structural characteristics of various fractions of soil humin. Acta Pedologica Sinica, 43 (6):934-940
    Doug R G, Leonard W L. 1986. Influence of the Nature of Soil Organic on the sorption of Toluene and Trichloroethlene, Environ.Sci.Technol.. 20(12):1263-1269
    Edition of the Drinking Water Standards and Health Advisories. 2004. EPA 822-R-02-038. Office of Water U.S. Environmental Protection Agency, Washington, DC.
    Eguchi M, Kitagawa M, et al,. 2001. A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Wat. Res. . 35(9), 2145-2152.
    Esposito A, Borghi A D, Veglio F. 2002. Investigation of naphtalene sulfonate compounds sorption in a soil artificially contaminated using batch and column assays. Waste Management. 22,937-943
    Garbarini D R, Lion L W. 1985. Evaluation of sorptive partitioning of nonionic pollutants in closed systems by headspace analysis. Environ. Sci . Technol . , 19(11) :1122-1128.
    Garbarini D R , Lion L W. 1986. Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ. Sci . Technol . , 20(12) :1263-1269.
    Garbarini D R, Lion L W, 1985, Evaluation of sorptive partitioning of nonionic pollutants in closed systems by headspace analysis. Environ. Sci. Technol., 19(11):1122-1128
    Garbarini D R, Lion L W. 1985. Evaluation of sorptive partitioning of nonionic pollutants in closed systems by headspace analysis. Environ. Sci. Technol.. 19(11):1122-1128.
    Gauthier T D, Seitz W R, Grant C L, 1987, Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ. Sci. Technol., 21(3):243-252
    Gauthier T D, Seitz W R, Grant C L. 1987. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ. Sci. Technol.. 21(3):243-252.
    Guidelines for drinking-water quality. 2008. Word Health Oragnization, Hsu Y H, Wang M K, Pai C W, et al,. 2000. Sorption of 2,4-dichlorophenoxy propionic acid by organo-clay complexes. Applied Clay Science. 16, 147-159.
    Hu W G, Mao J, Xing B. 2000. Poly (methylene ) crystallites in humic substances detected by nuclear magnetic resonance [ J ]. Environ. Sci. Technol. . 34(3):530-534.
    Huang W , Schalutman M A ,Weber W J Jr. . 1996. Adistributed reactivity model for sorption by soils and sediments. 5. The influence of near-surface characteristics in mineral domains. Environ. Sci. Technol. , 30: 2993-3000.
    Huang W, Weber W J Jr. 1998. Adistributed reactivity model for sorption by soil and sediment. 9. Slow concentration-dependent sorption rats[J ] . Environ. Sci. Technol. , 32 : 3549 - 3555.
    Jingdong Mao,Xiaowen Fang,Klaus Schmidt-Rohr,et al. 2007. Molecular-scale heterogeneity of humic acid in particle size fractions of two Iowa soils[J].Geoderma. 140:17-29
    John F. McCarthy a, Jan Ilavsky , Julie D. 2008. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter[J]. Geochimica et Cosmochimica Acta. 72:4725-4744.
    Johnson M.D., Huang W., Dang Z., et al,. 1999. A distributed reactivity model for sorption by soils and sediments. 12. effects of subcritical water extraction and alterations of soil organic matter on sorptionequilibria, Environ. Sci. Technol.. 33(10): 1657-1663
    Juhna T, Klavins M, Eglite L. 2003. Sorption of humic substances on aquifer material at artificial recharge of groundwater. Chemosphere. 51, 861-868.
    Kahle M, Kleber M, Jahn R. 2002. Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase variables. J Plant Nutr Soil Sci . 165:141-149.
    Kaiser K, Guggenberger G . Mineral surfaces and soil organic matter. Eur J Soil Sci.2003, 54: 1-18.
    Kaiser K, Kaupenjohann M, Zech W. 2001. Sorption of dissolved organic carbon in soils: effects of soil sample storage, soil-to-solution ratio, and temperature. Geoderma. 99, 317-328
    Karapanagioti H K, Kleineidam S, Rugner H. 2001. Impacts of heterogeneous organic matter on phenanthrene sorption: different soil and sediment samples. Environ.Sci.Technol. 35(23):4684-4690
    Kleber M, Sollins P, Sutton R. 2007. A conceptual model of organo-mineral interactions in soils:self-assembly of organic molecular fragments into zonalstructures on mineral surfaces. Biogeochemistry, 85:9-24.
    Kleineidam S, 1999. Rugner H, Ligouis B. Organic matter faces and equilibrium sorption of phenanthrene. Environ.Sci.Technol., 33(10):1637-1644
    Knauss K G, Dibley M J, et al,. 1999. Aqueous oxidation of trichloroethene (TCE): akinetic analysis. Applied Geochemistry, . 14, 531-541.
    Kopinke F D, Georgi A, Mackenzie K. 2001. Sorption of pyrene to dissolved humic substances and related model poly mers.1. Structure-property correlation, Environ. Sci. Technol, 35, 2536-2542.
    Kubicki J D, Apitz S E. 1999. Models of natural organic matter and interactions with organic contaminants. Organic Geochemistry. 30, 911-927
    Lahlou M, Harms H, Springael D, et al. 2000. Influence of soil components on the transport of polyclic aromatic hydrocarbon degrading bacteria through saturated porous media. Environmental Science & Technology. 34: 3649-3656
    Lambert S M. 1967. Functional relationship between sorption in soil and chemical structure. J . Agric. Food Chem. , 15 :572-576
    Lambert S M, Porter P E, Schieferstein R H. 1965. Movement and sorption of chemicals applied to soil. Weeds, 13: 185-190
    LeBoeuf E J, Weber WJ Jr. 1997. Adistributed reactivity model for sorption by soil and sediments. 8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for apolymer-based model . Environ. Sci . Technol . . 31 :1697-1702.
    Leone P, Gennari M, Boero V, et al. 2002. Adsorption of imida zolinone herbicides on smectite-humic acid and smectite-ferrihydrite associations. Journal of Agricultural and Food Chemistry, 50: 291-298.
    Luc Tremblay, Scott D K, James A. Rice , Jean-Pierre Gagnéc. 2005. Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles.Marine Chemistry. 96 (12) :21-341
    M. Kleber·P, Sollins·R., Sutton. 2007. A conceptual model of organo-mineral interactions in soils:self-assembly of organic molecular fragments into zonalstructures on mineral surfaces[J]. Biogeochem- istry, 85:9-24.
    McGinley P M, Katz L E, Weber W J Jr.. 1993. A distributed reactivity model for sorption by soils and sediments.2. Multicomponent systems and competitive effects[J]. Environ. Sci. Technol., 27: 1524-1531
    Moder B T, Uwe Goos K, Eisenreich S J. 1997. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces[J]. Environ. Sci. Technol., 31(4):1079-1086.
    Moran M, Hamilton P. 2003. Volatile organic compounds in ground water from rural private wells. NGWA.org Water Well Journal. 32-35
    Neto L M,Rosell R,Sposito G. 1998. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence [J]. Geoderma, 81:305-311.
    Pascale Besse-Hoggan, Tatiana Alekseeva, Martine Sancelme, 2009. Atrazine biodegradation modulated by clays and clay/humic acid complexes. Environmental Pollution. 157: 2837–2844
    Piatt J, Backhus D A, Capel P D, Eisenreich S J. 1996. Temperature-dependent sorption of naphthalene, phenanthrene,a nd pyrene to low organic cabon aquifer sediments. Environ.Sci.Technol. 30: 751-760
    Pignatello J J. 1991. Organic substances and sedments in water, Vol. 2. Hum ics and soils (Edited by Baker R A). Chelsea, Michigan: Lew is Publishers, 291-307.
    Pignatello J J. 1998. Soil organic matter as a nanoporous sorbent of organic pollutants. Advances in Colloid and Interface Science, 76-77:445-467.
    Rosa A H,Simoes M L,Oliveira L C,et al. 2005. Multimethod study of the degree of humification of humic substances extracted from different tropical soil profiles in Brazil’s Amazonian region [J].Geoderma, 127:1-10.
    Schnitzer M. 1991. Soil organic matter the next 75 year. Soil Sci, 151(1):41-58.
    Shen Y H. 1999. Sorption of natural dissolved organic mater on soil. Chemosphere. 38, 1505-1515.
    Spark K M, Swift R S. 2002. Effect of soil composition and dissolved organic matter on pesticide sorption. The Science of the Total Environment, 298, 147-161
    Stevenson F J. 1994. Humus Chemistry: Genesis, Composition, Reactions [M]. John, Wiley, New York
    Tekrony M C, Ahlert R C, 2001. Adsorption of chlorinated hydrocarbon vapors onto soil in the presence of water. Journal of Hazardous Materials. B84, 135-146.
    The International Humic Substances Society (IHSS)—-Isolation of IHSS samples Tímea E , Aurél M , Rita Fêl dényi. 2004. Effect of pH and the role of organic matter in t he adsorption of isoproturon on soils. Chemosphere, 57(8):771-779
    Tombacz E, Libor Z, Illes E, Majzik A. 2004. Klumpp, E.The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles[J]. Organic Geochemistry. 35:257-267.
    Wang K, Xing B. 2005. Structural and sorption characteristics of adsorbed humic acid on clay minerals. Journal of Environmental Quality. 34, 342-349.
    Weber W J Jr, Huang W, Yu H. 1998. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments.2. Effects of soil organic matter heterogeneity. Journal of contaminant hydrology, 31: 149-165
    Weber W J Jr, LeBoeuf E J, Young T.M., et al,. 2001. Contaminant interactions with geosorbent organic matter: insights drawn from polymer sciences, Wat. Res.. 35(4): 853-868
    Weber W J Jr, McGinley P M, Katz L E. 1992. A distributed reactivity model for sorption by soil and sediments. 1. Conceptual basis and equilbrium assessments. Environ. Sci. Technol., 26:1956-1962.
    Weber WJ Jr, Huang W. 1996. A distributed reactivity model for sorption by soil and sediments. 4. Intraparticle heterogeneity and phase distribution relationships under nonequilibrium conditions. Environ. Sci. Technol., 30∶881-888
    Werber E J, Colon D, Banghman G L. 2001. Sediment-associated reaction of aromatic amines.1.Elucidation of sorption mechanism. Environ.Sci.Technol.. 35, 2470-2475
    Xiaojuan Feng, Andre J, Simpson, Myrna J. Simpson. 2005. Chemical and mineralogical controls onhumic acid sorption to clay mineral surfaces[J].Organic Geochemistry, 36:1553-1566.
    Xiaojuan Feng, Andre′J. Simpson, Myrna J. Simpson. 2005. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Organic Geochemistry. 36:1553–1566
    Xing B, Pignatello J J. 1997. Dual-mode sorption of low polarity compounds in glassy poly (vinyl chloride) and soil organic matter. Environ. Sci. Technol., 31: 792-799.
    Xing B, 2001. Sorption of Naphthalene and Phenanthrene by Soil Humic Acids[J]. Environ. Pollu. , 111∶303-309
    Xing B, Pignatello J J. 1998. Competitive sorption Between 1,3-dichlorobenzene or 2,4-dichlorophenol and nature aromatic acids in soil organic matter.Enciron.Sci.Technol., 32:614-619
    Yang L, Chang Y, Chou M. 1999. Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia. Journal of Hazardous Materials. B 69, 111-126.
    Ying G G, Williams B. 2000. Laboratory study on the interaction between herbicides and sediments in water systems. Environmental Pollution. 107, 399-405.
    Ying-Ying Huang, Shan-Li Wang, Jen-Chyi Liu. 2005. Influences of preparative methods of humic acids on the sorption of 2,4,6-trichlorophenol, Chemosphere, 70, 1218-1227
    Yonebayashi K, Hattori T. 1994. Chemical and biological studies on environmental humic acids, composition of elemental and functional groups of humic acids[J]. Soil Sci. PlantNutr.. 40(4):601-608
    Zdenek Filip, 2003. Jaromír Kubát.Aerobic short-term microbial utilization and degradation of humic acids extracted from soils of long-term field experiments[J].European Journal of Soil Biology, 39:175-182
    陈迪云,谢文彪,吉莉等.混合有机污染物在土壤中的竞争吸附研究.环境科学[J].2006,27(7):1377-1382
    陈兰,唐晓红.2007.魏朝福.土壤腐殖质结构的光谱学研究进展.中国农学通报[J].23(8):233-239.
    陈立新,杨成栋. 2007.落叶松人工林土壤腐殖物质组分及其对酸度的影响[J].林业科学2(43):8-14.
    代静玉,秦淑平,周江敏. 2004.土壤中溶解性有机质分组组分的结构特征研究[J].土壤学报. 41(5):721-727.
    党志,于虹,黄伟林等. 2001.土壤/沉积物吸附有机污染物机理研究的进展[J].化学通报.2:81-85
    党志,黄伟林,彭平安. 2004.天然地质样品有机质组成对菲吸附-解吸的影响.环境科学研究[J]. 17(4), 74-76
    窦森.土壤有机培肥后HA结构性质变化规律系统研究:[博士学位论文].沈阳:沈阳农业大学,1988
    顾志忙,王晓蓉,顾雪元等.2000.傅里叶变换红外光谱和核磁共振法对土壤腐殖酸的表征.分析化学研究简报[J]. 3(38):314-317
    关伟,李桂海,2006.何江等.芳烃类有机物在黄河沉积物中的多组分吸附及其影响因素研究.安徽农业大学学报[J]. 33 (2):192-195
    贺婧,颜丽,杨凯. 2003.不同来源腐殖酸的组成和性质的研究[J].土壤通报. 34(4):343-345.
    黄擎,李发生,汪群慧. 2006.对几种典型土壤中粘粒级有机-矿质复合体的初步表征[J].农业环境科学学报. 25(2):407-411.
    李承强,魏源送,樊耀波等. 1999.堆肥腐熟度的研究进展[J].环境科学进展7(6):1-12.
    李金花.共存污染物对三种有机物在土壤-沉积物上吸附行为影响研究: [博士学位论文].上海.上海交通大学,2008
    李丽.不同级分腐殖酸的分子结构特征及其对菲的吸附行为的影响:[博士学位论文],北京,中国科学院,2003
    李楠,吴景贵,夏海丰. 2007.傅立叶变换红外光谱法表征玉米秆茬培肥土壤胡敏酸的变化[J].植物营养与肥料学报. 13(5):974-978
    李铁,叶常明. 1997.酚类化合物在水体颗粒上的吸附实验.环境化学[J]. 16(3):227-232
    李震宇,朱荫泥. 1999.西湖沉积物有机质特征[J].环境化学. 18(2):122-126
    李志宏,赵兰坡,窦森.土壤学[M].北京.化学工业出版社.2005:18-53
    梁爱珍,张晓平,杨学明等.2005.土壤细颗粒对有机质的保护能力研究[J].土壤通报, 5(36):748-752.
    梁重山,党志,刘丛强等. 2004.菲在土壤/沉积物上的吸附-解吸过程及滞后现象的研究[J].土壤学报, 41(3): 329-335
    梁重山,党志,刘丛强. 2006.胡敏酸的结构特征及其吸附行为[J].分析化学. 3:288-292.
    梁重山,党志. 2000.超临界二氧化碳流体萃取土壤中有机污染物的研究进展[J].重庆环境科学, 22(1) : 48–50
    梁重山,党志.2001.土壤有机质提取方法的研究进展[J].矿物岩石地球化学通报. 20(1):58-61.
    梁重山,刘丛强,党志. 2001.现代分析技术在土壤腐殖质研究中的应用[J].土壤. 3:154-158
    林秀梅,潘波,刘文新等. 2006天然土壤有机质中菲的分配行为[J].环境科学. 27(4):748-753
    马春梅,朱诚,郑朝贵等.2008.中国东部山地泥炭高分辨率腐殖化度记录的晚冰期以来气候变化[J].中国科学D辑:地球科学, 38(9):1078-1091.
    乔照华. 2008.土壤有机质含量与土壤物理性能参数的相关性分析[J].中国农村水利水电. (2):3-4.
    秦淑平.不同利用方式下黄泥土中腐殖物质的组成、结构特征及其对有机污染物的吸附行为[D].南京:南京农业大学,2005:3-5
    宋建中,于赤灵,彭平安等. 2003.珠江三角洲地区土壤与表层沉积物有机质的性质结构研究[J].土壤学报, 40:335-343.
    孙铁珩,李培军,周启星等.土壤污染形成机理与修复技术[M].北京.科学出版社.2005
    孙卫玲,倪晋仁,郝鹏鹏等. 2004.泥沙对双酚A的吸附及其影响因素研究[J].环境科学学报. 24(6): 975-981.
    王文华,王淑琴,徐维并. 1995.北京昆明湖底泥中有机物的表征[J].环境科学学报. 15(2):178-185
    王旭东,胡田田,关文玲. 2001.有机物料腐解过程胡敏酸的分级研究[J].土壤. (6):321-325
    文启孝.土壤有机质研究法[M].北京:农业出版社,1982.118-123.
    吴景贵,吕岩,王明辉等. 2004.有机肥腐解过程的红外光谱研究[J].植物营养与肥料学报, 10(3):259-266.
    吴景贵,王明辉,姜亦梅等. 2005.玉米秸秆还田后土壤胡敏酸变化的谱学研究[J].中国农业科学. 38(7): 1394-1400.
    吴景贵,王明辉,万忠梅等. 2006.玉米秸秆腐解过程中形成胡敏酸的组成和结构研究[J].土壤学报.43(3): 443-451.
    吴景贵,席时权,姜岩,等. 1999.玉米秸杆腐解过程的红外光谱研究[J].土壤学报.36(1):91-100.
    吴景贵,席时权,曾广赋等. 1999.玉米秸秆腐解过程的红外光谱研究[J].土壤学报. 36(1): 91-99
    吴文伶,孙红文. 2009.菲在沉积物上的吸附-解吸研究[J].环境科学. 30(4):1133-1138
    吴文玲,孙红文. 2006.三氯乙烯在模型吸附剂上的吸附特性[J].生态环境. 15(2): 207-211.
    肖彦春.土壤胡敏素分组及特性的研究:[博士学位论文]:吉林:吉林农业大学,2004
    熊田恭一(李庆荣,孙铁男,等译) .土壤有机质化学[M].北京:科学出版社,1984. 2-5
    熊毅,陈家坊.土壤胶体(第三册)土壤胶体的性质[M] .北京:科学出版社, 1990
    熊毅.土壤胶体[M].北京:科学出版社.1985:54
    杨琛, Huang Weilin,傅家谟等. 2005.菲在不同成熟度干酪根上的吸附与解吸行为[J].中国环境科学. 25(2):178-182
    杨琛,黄伟林,傅家谟等. 2004.不同类型的原煤对疏水性有机污染物的吸附与解吸[J].环境科学. 25(6):145-149
    杨景成,黄建辉,,潘庆民等. 2004.西双版纳不同热带生态系统土壤有机质的光谱学特性[J].植物生态学报. 28(5):623-629.
    尹茜,朱诚,马春梅等. 2006.天目山千亩田泥炭腐殖化度记录的中全新世气候变化[J].海洋地质与第四系地质, 26(6):117-122.
    于学峰,周卫健,史江峰. 2005.度量泥炭腐殖化度的一种简便方法:泥炭灰度[J].海洋地质与第四系地质, 20(1):133-136.
    袁慧诗,潘波,刘文新等. 2006.多环芳烃在全土及其碱提残余物上的吸附行为[J].环境化学. 25(2):154-158
    张坤峰,何江涛,刘明亮,曲雪妍,张晶. 2009.土壤中有机碳含量对三氯乙烯的吸附影响实验[J].岩石矿物学杂志. 28(6):649-652
    张彦旭,潘波,刘文新等. 2006.天然土壤对菲吸附行为的动态变化.农业环境科学学报. 25(3):699-703
    郑凡东,熊燕娜等. 2009.潮白河顺义段再生水补给区包气带理化参数相关性分析[J].水文地质工程地质. 6:118-112
    周江敏,代静玉,潘根兴. 2004.应用光谱分析技术研究土壤水溶性有机质的分组及其结构特征[J].光谱学与光谱分析. 24(9):1060-1065.
    朱燕,代静玉. 2006.腐殖物质对有机污染物的吸附行为及环境学意义[J].土壤通报. 37(6):1124-1130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700