用户名: 密码: 验证码:
植被之间水流特性及污染物扩散试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对生态特征垂向变化较大的植被群落之间水流特性研究较少的现状,选择生态特征垂向均一和变化较大的芦苇、灌木和草本群落,设计了六种群落组合,利用室内水槽试验分析不同流量和植被密度时各种群落之间植被生态特征参数对水流特性和污染物纵向离散的影响。研究结论如下:
     1)垂向上,植被群落之间水流流速随直径增加而减小,随植被柔韧性增加而增加。灌木完全淹没后,流速垂向分布可以分为两个区域:一个为植被高度范围,另一个为植被冠层以上。植被冠层之上流速分布基本一致,呈对数曲线形式;植被高度范围内流速分布随其生态特征参数的垂向变化不同可以用不同的曲线描述。紊动强度垂向分布曲线上存在三个拐点:一个位于茎干向冠层过渡区域,第二个位于偏转点处,第三个位于冠层顶端处。
     2)在均匀流条件下,基于水流受力平衡推导植被阻力系数与Darcy阻力因子的关系,结合伯努利方程和Darcy阻力公式计算植被群落阻力系数,通过分析发现其随直径、水深、直径雷诺数、水深雷诺数和相对粗糙高度的垂向变化规律均可以表达为幂函数或指数曲线形式。利用多元非线性逐步回归分析方法建立了植被阻力系数垂向分布计算模型。
     3)利用改进的单站法计算植被之间污染物纵向离散系数,分析Nepf和Serra扩散模型应用于污染物纵向离散系数计算的可行性,结果表明两个模型在应用于天然植被时精度都比较低。将污染物纵向离散系数与植被直径、阻力系数和直径雷诺数联系起来,建立垂向生态特征参数变化较大的植被群落之间污染物纵向离散系数计算模型。
     4)将植被阻力分别概化为绕流阻力和底部糙率,建立水深平均的二维水流数值模型。验证结果表明:植被稀疏时,采用绕流阻力或将其概化为底部摩阻应力都可以得到较好的模拟结果。植被稠密时,概化为绕流阻力时计算结果更接近真实值。
The hydraulics characteristic of flow among the plant community that vertical ecological character changes steeply was rarely studied. The natural shrubs which vertical characteristics changes steeply and natural reeds which vertical characteristics changes little were chosen as the experimental objects. The six types of communities were designed. The effect of the ecological character on the vertical change of flow characteristics and pollutant longitudinal diffusion was experimental analyzed. The results show:
     1) In the vertical direction, it is the positive correlation between the velocity and the flexibility of the plant, however it is negative correlation between the velocity and the plant diameter. While shrubs are fully submerged, the vertical distribution of velocity can be divided into two parts: one is within the range of plant height; the other is above the plant canopy. The vertical velocity distribution of the former can be described as the logarithm curve, and the curve shape of the latter is different along with vegetation types. There are three inflexions in the vertical distribution curve of the turbulence density among the plant community. The first lies in the transition zone from the stem to the canopy; the second is located in the plant deflection point; the third is situated in the top of the plant canopy.
     2) Based on the balance of the force imposed on the plant, the formula between the drag coefficient due to plant community and Darcy friction factor is deduced, which is combined with Bernoulli equation and Darcy friction formula to calculate drag coefficients. The influence factors of vertical distribution of drag coefficient are analyzed. The vertical tendency of drag coefficient with flow depth, diameter, diameter Reynolds number, flow depth Reynolds number and relative roughness height are a declined curve and could be depicted as the power function or exponent function in the different discharges. The calculation models of drag coefficient are built by use of the multiple nonlinear regression analysis method.
     3) The pollutant dispersion coefficients in the longitudinal direction are calculated by means of the revised single-station method. Nepf model and Serra model’s applicability for the natural vegetation are verified and the results show that the precision of the two models are low. An empirical model is built to calculate longitudinal dispersion coefficient for the natural shrubs using multiple regression analysis method by relating the longitudinal dispersion coefficient to plant diameter, the plan diameter Reynolds number and drag coefficient.
     4) Chezy coefficient is expressed as the function of the plant ecological character parameter and drag coefficients which are calculated based on the flume experiment result. Drag due to plant was approximately regarded as cylinder-drag or bottom friction, respectively. The two dimensional depth average flow numerical model was built and resolved it by means of TVD-MacCormack scheme. The flume experiment data are validated and show: the calculated result agree well with the measured result among the sparse plants however drag due to vegetation was approximately regarded as the bottom friction or the cylinder-drag; while the drag due to vegetation was approximately regarded as the bottom friction force, the calculated result agree better with the measured result.
引文
[1]王宪礼,李秀珍.湿地的国内外研究进展[J].生态学杂志.1997,16(1):58-62.
    [2] Mitsch W J. Wetland of the old and new world ecology and management in: Mitsch W J (ed) Global wetlands: old world and new[M]. Elsevier, Netherlands, 1994.
    [3]杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展.2002, 21(2): 111~120.
    [4]殷康前,倪晋仁.湿地研究综述.生态学报[J].1998,18(5):539-546.
    [5] Wilen B O.Wetlands of the U.S..in: Whigham (ed):Wetlands of the world [M].Kluver Academic Publishers, Netherlands,1993.
    [6] Allan Crowe.Quebec: Millennium Wetland Event Program with Abstracts[C].Quebec, Canada, Elizabeth MacKay.2000.1-256.
    [7]李政海,王海梅,刘书润,宋国宝,高吉喜.黄河三角洲生物多样性分析[J].生态环境.2006, 15(3):577-582.
    [8] Nepf, H.M. and Vivoni, E.R. Flow structure in depth-limited, vegetated flow [J]. J. Geophys. Res. 2000,105(C12): 28547–28557.
    [9] Tsujimoto,T.Fluvial processes in streams with vegetation[J].J. Hydr.Res.1999,37(6): 789–803.
    [10] Yen, B.C. Open Channel Flow Resistance [J]. J. Hydr. Engrg. 2002,128(1): 20–39.
    [11]吴大千.黄河三角洲植被覆盖分布特征及其动态变化研究[硕士学位论文].山东济南:山东大学.2007,1~91.
    [12] Rouvé, G.(ed.). Hydraulische Probleme beim naturnahen Gew?sserausbau[R]. Deutsche Forschungs Gemeinschaft (DFG), Weinheim. 1987.
    [13] Ke Feng, F.j.Molz. A 2-D dimension-based wetland flow model [J].journal of hydrology. 1997, (136): 230~250.
    [14] T.R. Grapes, C. Bradley, G.E. Petts. Hydrodynamics of floodplain wetlands in a chalk catchment: The River Lambourn, UK [J]. Journal of Hydrology. 2006,( 320) :324–341.
    [15] Hong-Yuan Lee, Shang-Shu Shih. Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland[J]. Ecological engineering. 2004, (23): 85–94.
    [16] Christian Langevin, Eric Swain1, Melinda Wolfert. Simulation of integrated surface-water/ ground-water flow and salinity for a coastal wetland and adjacent estuary[J]. Journal of Hydrology.2005, (314):212–234.
    [17] K.Ulbrich, R.Marsula, F.Jeltsch, H.Hofmann, C.Wiscel. Modeling the ecological imoact of contaminated river sediment on wetland[J].Ecological Modeling. 1997, (94):221~230.
    [18] C.A.M.E. Wilson , O. Yagci , H.-P. Rauch , N.R.B. Olsen. 3D numerical modelling of a willow vegetated river/floodplain system[J]. Journal of Hydrology. 2006, (327):13–21.
    [19] Terhi Helmi?. Unsteady 1D flow model of a river with partly vegetated floodplains- application to the Rhine River [J]. Environmental Modelling & Software. 2005, (20): 361~375.
    [20] Terhi Helmi?. Unsteady 1D flow model of compound channel with vegetated floodplains [J]. Journal of Hydrology. 2002, (269): 89~99.
    [21] Andrea D’Alpaos, Stefano Lanzoni , Simon Marius Mudd , Sergio Fagherazzi. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine[J], Coastal and Shelf Science. 2006, (69):311-324.
    [22] Hyeongsik Kang, Sung-Uk Choi. Turbulence modeling of compound open-channel flows with and without vegetation on the floodplain using the Reynolds stress model[J]. Advances in Water Resources. 2006, ( 29):1650–1664.
    [23]宿晓辉.带有植物的河道水流紊流运动大涡模拟[博士学位论文].辽宁大连.大连理工大学.2002.
    [24]朱兰燕.植物渠道水流和污染物输移离散三维数值模拟[硕士学位论文].辽宁大连.大连理工大学.2008.
    [25]张明亮,沈永明,朱兰燕.受植被影响的弯曲渠道水流平面二维湍流数值模拟[J]. 2008,39(7):794-800.
    [26]顾峰峰.芦苇阻力系数物模及湿地水流数模研究[博士学位论文].辽宁大连.大连理工大学.2006.
    [27]程莉.植树护岸条件下河道水流水流的数值模拟[硕士学位论文].江苏南京.河海大学.2003.
    [28]拾兵,曹叔尤,付强,李桂芬.密集丛水流的基本方程[J].西南民族学院学报(自然科学版).1999,25(1):1~7.
    [29]刘锋,阎洁,邱秀云,周著,侯杰.植物“柔性坝”拦沙机理的试验研究[J].泥沙研究. 2006,(6):55~59.
    [30]拾兵,曹叔尤,黄尔,付强.水流中植物的挠曲变形及耗散能[J].西南民族学院学报.(自然科学版).1999,25(4):338~342.
    [31] laounia.非淹没植被水流特性研究[硕士学位论文].江苏南京.河海大学.2005.
    [32]朱红钧.凤眼莲生态型河道水流特性试验研究[硕士学位论文].江苏南京.河海大学.2007.
    [33]焦志洋.复式河道滩地植物对水流内部结构影响的试验研究[硕士学位论文].山东青岛.中国海洋大学.2006.
    [34]黄本胜,赖冠文,邱静,万鹏.河滩种树对行洪影响试验研究[J].水动力学研究与进展A辑.1999,14(4):468~474.
    [35]石月珍.河滩种树的复式断面河道水流特性研究[硕士学位论文].新疆乌鲁木齐.新疆农业大学.2002.
    [36]时钟,李艳红.含植物河流平均流速分布的实验研究[J].上海交通大学学报.2003,37(8): 1254~1260.
    [37] Z Shi, J. M. R. Hughes. Laboratory flume studies of microflow environments of aquatic plants[J]. Hydrol. Process. 2002, (16):3279–3289.
    [38]时钟.海岸盐沼冠层水流平均流速分布的实验研究[J].海洋工程.2001,19(3):51~59.
    [39]闫静.含植物明渠水流阻力及紊流特性的实验研究[博士学位论文].江苏南京.河海大学.2008.
    [40]王忖.有植被的河道水流试验研究[硕士学位论文].江苏南京.河海大学.2003.
    [41]朱红钧,赵振兴,韩璐.有植被的河道水流紊动特性模型试验研究[J].水利水运工程学报.2006,(4):57~61.
    [42]杨克君,刘兴年,曹叔尤,张之湘.植被作用下的复式河槽漫滩水流紊动特性[J].水利学报.2005,36(10):1263-1268.
    [43]韩璐.柔性植被河道水流特性试验研究[硕士学位论文].江苏南京.河海大学.2006.
    [44]王莹莹,赵振兴.有低矮植被覆盖的河道水流特性试验研究[J].华北水利水电学院学报.2007,28(2):22~25.
    [45]王莹莹.有双重植被河道水流特性试验研究[硕士学位论文].江苏南京.河海大学.2007.
    [46] Hsieh,T. The Resistance of Piers on High Velocity Flow[D].State University of Iowa, USA. 1962,1–50.
    [47] Petryk S, Bosmajian G. Analysis of flow through vegetation[J]. Journal of Hydraulic Engineering.1975, 101(7) :871~884.
    [48] Pasche, E., Rouvé, G.. Overbank flow with vegetatively roughened flood plains[J]. J. Hydr. Engrg. 1985,111(9): 1262–1278.
    [49] Shih, S. F, Rahi,G.S. Seasonal variation of Manning’s roughness coefficient in a subtropical marsh[J]. Transactions of ASAE.1982, (25):116–120.
    [50] Naot, D., Nezu, I., Nakagawa, H., Hydrodynamic behavior of partly vegetated open channels [J]. Journal of Hydraulic Engineering, ASCE. 1996,122(11):625–633.
    [51] Darby, S. E., Thorne, C. R.: Predicting stage-discharge curves in channels with bank vegetation [J]. Journal of Hydraulic Engineering, ASCE. 1996,122(10):583–586.
    [52] Kadlec R H. Overland Flow in Wetlands: Vegetation Resistance[J] .J Hydraul Engng. 1990, 116 (5) :691-706.
    [53] Chen, C.L. Flow resistance in broad shallow grassed channels [J]. Journal of the Hydraulics Division, ASCE.1976,102(HY3):307–322.
    [54] Chiew,Y. and Tan,S. Frictional resistance of overland flow on tropical turfed slope[J]. Journal of Hydraulic Engineering, ASCE. 1992,118(1): 92–97.
    [55] Hall, B. R. and Freeman, G. E. Study of hydraulic roughness in wetland vegetation takes new look at Manning’s n, The Wetlands Research Program Bulletin[R].US Army Corps of Engineers, Waterways Experiment Station.1994, 4(1):1–4.
    [56] Fathi-Moghadam, M. and Kouwen, N. Nonrigid,non-submerged, vegetative roughness on floodplains[J]. J. Hydr. Engrg. 1997,123(1): 51–57.
    [57] Turner, A.K. and Chanmeesri, N. Shallow flow of water through non-submerged vegetation[J].Agricultural Water Management. 1984,(8): 375–385.
    [58] Roig,L.C. Hydrodynamic Modeling of Flows in Tidal Wetlands[D].University of California, Davis,USA.1994.
    [59] Kutija, V. and Hong, T.M.H. A numerical model for assessing the additional resistance to flow introduced by flexible vegetation[J]. J. Hydr. Res. 1996,34(1): 99–114.
    [60] Broadhurst, L.J., Heritage, G.L., van Niekerk, A.W., James, C.S., Rogers,K.H. Translating discharge into local hydraulic conditions on the Sabie River: an assessment of channel flow resistance[R]. Water Research Commission WRC Report 474/2/97. 1997.
    [61] Rouse,H.Critical analysis of open-channel resistance[J]. J. Hydr. Div, ASCE. 1965,91(4): 1–25.
    [62] Darby, S.E. Effect of Riparian Vegetation on Flow Resistance and Flood Potential[J]. J. Hydr. Engrg. 1999, 125: 443–454.
    [63] Wu F C,Shen H W,Chou Y J. Variation of Roughness Coefficients for Unsubmerged and Submerged Vegetation[J] .J Hydraul Engng, 1999, 125 (9) :934-942.
    [64] Stone, B.M. and Shen, H.T. 2002. Hydraulic Resistance of Flow in Channels with Cylindrical Roughness[J]. J. Hydr. Engrg. 2002,128(5): 500–506.
    [65] C.A.M.E.Wilson, Stoesser, T., Bates, P.D. and Batemann Pinzen, A. Open Channel Flow through Different Forms of Submerged Flexible Vegetation[J]. J. Hydr. Engrg. 2003, 129 (11): 847–853.
    [66] Shimizu, Y. and Tsujimoto, T. Numerical Analysis of Turbulent Open-Channel Flow Over a Vegetation Layer Using a k-εTurbulence Model[J].Journal of Hydroscience and Hydraulic Engineering. 1994,11(2): 57–67.
    [67] Naot, D., Nezu, I. and Nakagawa, H. Unstable Patterns in Partly Vegetated Channels[J]. J. Hydr. Engrg. 1996,122(11): 671–673.
    [68] Nepf, H.M. Drag, turbulence, and diffusion in flow through emergent vegetation[J]. Water Resources Research. 1999, 35(2): 479–489.
    [69] López, F. and García, M.H. Mean flow and turbulence structure of openchannel flow through non-emergent vegetation[J]. J. Hydr. Engrg. 2001,127(5): 392–402.
    [70] Stephan, U. and Gutknecht, D. Hydraulic resistance of submerged flexible vegetation[J]. Journal of Hydrology. 2002, 269(1-2): 27–43.
    [71] SCS.1954. Handbook of channel design for soil and water conservation[M]. Soil Conservation Service SCS-TP-61. U.S. Department of Agriculture, Washington, D.C.
    [72] Kouwen, N. and Unny, T.E. Flexible roughness in open channels [J]. J.Hydr. Div., ASCE. 1973,99(5): 713–728.
    [73] Temple, D. M. Velocity distribution coefficients for grass-lined channels. J. Hydraul. Eng. 1986, 112(3):193–205.
    [74] Kouwen, N. and Fathi-Moghadam, M. Friction Factors for Coniferous Trees along Rivers[J]. J. Hydr. Engrg. 2000, 126(10): 732–740.
    [75] Freeman, G.E., Rahmeyer, W.H. and Copeland, R.R. Determination of resistance due to shrubs and woody vegetation[R].Technical Report ERDC/CHL TR-00-25. U.S. Army Engineer Research and Development Center, Vicksburg, MS. 2000.
    [76] Sokolov, Yu.N. Hydraulic resistance of floodplains [J].Water Resources 1980, (5): 563–572.
    [77] Flippin-Dudley, S.J., Abt, S.R., Bonham, C.D., Watson, C.C. and Fischenich, J.C. Evaluation of flow-resistance equations for vegetated channels and floodplains [R]. U.S. Army Engineer Research and Development Center, Vicksburg, MS. 1998.
    [78] Kouwen, N. Modern approach to design of grassed channels[J].J. Irrigation Drainage Engng. 1992, (118): 733–743.
    [79] Li, R.-M. and Shen, H.W. Effect of tall vegetations on flow and sediment[J]. J. Hydr. Div. ASCE. 1973, 99(5): 793–814.
    [80] Lindner, K. Der Str?mungswiderstand von Pflanzenbest?nden. Mitteilungen 75. Leichtweiss -Institut für Wasserbau[D]. Technische Universit?t Braunschweig. 1982.
    [81] Palmer, V.J. A method for designing vegetated waterways[J]. Agric. Eng. 1945, 26(12): 516–520.
    [82] Temple, D.M. Flow resistance of grass-lined channel banks[J]. Applied Engineering in Agriculture.1999,15(2): 129–133.
    [83] Temple, D.M. Closure to velocity distribution coefficients for grass-lined channels[J]. J. Hydr. Engrg. 1987, 113(9): 1221–1226.
    [84] Escarameia, M., Gasowski, Y. and May, R. Grassed drainage channels hydraulic resistance characteristics [J]. Water and Maritine Engineering. 2002, 154(4): 333–341.
    [85] K.S.Erduran,V.Kutija. Quasi-three-dimensional numerical model for flow through flexible, rigid, submerged and non-submerged vegetation[J].Journal of Hydroinformatics. 2003, (3 ): 189-202.
    [86] Juha J?rvel?. Effect of submerged flexible vegetation on flow structure and resistance [J]. Journal of Hydrology. 2005, (307):233–241.
    [87] Cowan, W.L. Estimating hydraulic roughness coefficients[J]. Agricultural Engineering. 1956, (37): 473–475.
    [88] Chow, V.T. Open-channel hydraulics[M]. McGraw-Hill, USA,New York. 1959.
    [89] Masterman, R. and Thorne, C.R. Predicting influence of bank vegetation on channel capacity[J]. Hydr.Engrg. 1992, 118(7): 1052–1058.
    [90] B.G. Anderson , I.D. Rutherfurd , A.W. Western.. An analysis of the influence of riparian vegetation on the propagation of flood waves[J]. Environmental Modelling & Software. 2006, (21): 1290-1296.
    [91]王晓燕.植被刚度对水流阻力特性影响的研究[硕士学位论文].江苏南京.河海大学.2007.
    [92] Baptist, M.J. A flume experiment on sediment transport with flexible, submerged vegetation[A]// International workshop on Raparian Forest vegetated channels: hydraulic, morphological and ecological aspects[C].Trento, Italy. 2003.
    [93] C. A. Vionnet, P. A. Tassi and J. P. Estimates of flow resistance and eddy viscosity coefficients for 2D modelling on vegetated floodplains[J]. Martín Vide Hydrol. Process. 2004, (18): 2907–2926.
    [94] M.J. Baptist, V. Babovic, J.Rodríguez Uthurburu,M. Keijzer, R.E.Uittenbogaard, A. Mynett, A.Verwey. On inducing equations for vegetation resistance[J]. Journal of Hydraulic Research. 2006, (1):1–16.
    [95] Ronald R. Copeland. Determination of flow resistance coefficients due to shrubs and woody vegetation[R]. ERDC/CHL CHETN-VIII-3. US Army Corps of Engineers.2003.
    [96] Werth, D. Predicting Resistance and Stability of Vegetation in Floodplains [D].Utah State University, USA.1997.
    [97] Thompson, G.T. and Roberson, J.A. A theory of flow resistance for vegetated channels[C]. Trans. ASAE. 1976,19(2): 288–293.
    [98] Jordanova, A.A. and James, C.S. Experimental study of bed load transport through emergent vegetation[J]. J. Hydr. Engrg.2003,129(6): 474–478.
    [99] Rouvé, G.(ed.). Hydraulische Probleme beim naturnahen Gew?sserausbau[R]. Deutsche Forschungs Gemeinschaft (DFG), Weinheim. 1987.
    [100] Pasche, E. Turbulenzmechanismen in naturnahen Flie?gew?ssern and die M?glichkeiten ihrer mathematischen Erfassung. Mitteilungen [D]. Institute für Wasserbau and Wasserwirtschaft, Technische Hochschule Aachen. 1984.
    [101] DVWK.Hydraulische Berechnung von Flie?gew?ssern. Merkbl?tter 220[R]. Deutscher Verband für Wasserwirtschaft and Kulturbau e.V., Bonn.1991.
    [102] Mertens, W. Zur Frage hydraulischer Berechnungen naturnaher Flie?gew?sser[J]. Wasserwirtschaft. 1989,79(4): 170–179.
    [103] Nuding,A. Flie? widerstandsverhalten in Gerinnen mit Ufergebüsch. Wasserbau- Mitteilungen[D].Technische Hochschule Darmstadt.German. 1991.
    [104] Schumacher, F. Zur Durchflu?berechnung gegliederter, naturnah gestallter Flie?gew?sser. Mitteilungen 127[D]. Institut für Wasserbau and Wasserwirtschaft, Technische Universit?t Berlin. 1995.
    [105] Becker, K. Der Einflu? von kurzen Geh?lzstreifen auf den Hochwasserabflu? in Flüssen mit gegliedertem Querschnitt. Mitteilungen [D]. Institut für Wasserwirtschaft and Kulturtechnik, Universit?t Karlsruhe. 1999.
    [106] Specht, F.J. Einflu? von Gerinnebreite and Uferbewuchs auf die hydraulisch- sedimentologischen Verh?ltnisse naturnaher Flie?gew?sser[D]. Fachbereich Bauingenieurwesen, Technische Universit?t Braunschweig.2002.
    [107] Klaassen, G.J. and Zwaard, J.J. Roughness coefficients of vegetated floodplains[J]. J. Hydr. Res. 1974, 12(1): 43–63.
    [108] Meijer, D.G., van Velzen, E.H. Prototype-scale flume experiments on hydraulic roughness of submerged vegetation [A]// Proceedings of the 28th IAHR Congress[C]. Graz, Austria. 1999.
    [109] James, C.S., Birkhead, A.L., Jordanova, A.A., Kotschy, K.A., Nicolson, C.R., Makoa, M.J. Interaction of reeds, hydraulics and river morphology[R]. Water Research Commission Report 856/1/01. Pretoria, South Africa. 2001.
    [110] Vogel, S. Life in moving fluids: the physical biology of flow[M]. 2nd edition. Princeton University Press, Princeton. 1994.
    [111] Kao, T.Y. and Barfield, B.J. Predictions of Flow Hydraulics of Vegetated Channels[J]. Trans. ASAE. 1978,21(3): 489–494.
    [112] Kouwen, N. and Li, R.-M. Biomechanics of vegetative channel linings[J].J. Hydr. Div. ASCE. 1980.106(6): 1085–1103.
    [113] Fischenich, J.C. Velocity and Resistance in Densely Vegetated Floodways[D]. Colorado State University. 1996.
    [114] Oplatka, M. 1998. Stabilit?t von Weidenverbauungen an Flussufern. Mitteilungen 156. Versuchsanstalt für Wasserbau, Hydrologie and Glaziologie[D], ETH Zürich,Switzerland. 1998.
    [115] Jonathan K.Lee, Lisa C.Roig , Harry L. Jenter , Hannah M. Visser. Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades[J]. Ecological Engineering. 2004, (22): 237–248.
    [116] Tsihrintzis, V.A. Variation of roughness coefficients for unsubmerged and submerged vegetation[J]. J. Hydr. Engrg. 2001,127(3): 239–245.
    [117] S.J. Capon. Flood variability and spatial variation in plant community composition and structure on a large arid floodplain[J].Journal of Arid Environments. 2005, (60):283–302.
    [118] Dunn CJ. Experimental determination of drag coefficients in openchannel with simulated vegetation [D].University of Illinois at Urbana Champaign, Urbana, IL.1996.
    [119] T. Fischer-antze,T. Soesser ,P.Bates, N.R.B.Olsen. 3D numerical modelling of open-channel flow with submerged vegetation[J].Journal of hydraulic research. 2001,39(3):303~310.
    [120] Rouse, H. and Ince, S. History of hydraulics [M]. Dover Publications. New York. 1963.
    [121] Eastgate, W. I. Vegetated stabilization of grassed waterways and dam bywashes [D]. Univ. of Qeensland, St. Lucia, Queensland, Australia. 1966.
    [122] Eastgate, W. I. Vegetated stabilization of grassed waterways and dam bywashes [R]. Water Research Foundation of Australia.1969.
    [123] Gourlay, M. R.. Discussion of“Flow resistance in vegetated channels by N. Kouwen, T. E. Unny, and H. M. Hill”[J]. J. Irrig. Drain. Div., Am. Soc. Civ. Eng.1970,96(3): 351–357.
    [124] Ikeda, S., and Kanazawa, M. Three-dimensional organized vortices above flexible water plants[J]. J. Hydraul. Eng.1996, 122(11), 634–640.
    [125]刘和平,刘树华,朱挺翟.森林冠层湍流结构的特征研究[J].北京大学学报.1997,33(2): 246-253.
    [126] Kummu,M. Roughness characteristics and velocity profile in vegetated and non- vegetated channel[D].Helsinki University of Technology.Helsinki,2002.
    [127] Finnigan J.Turbulence in plant canopies[J].Annual Review of Fluid Mechanics. 2000, 32: 519-571.
    [128] López F.open-channel flow with roughness elements of different span-wise aspect ratios: turbulence structure and numerical modeling[D].University od Illinois at Urbana- Champaign,1997.
    [129] Musleh, F.A., Cruise, J.F. Functional relationships of resistance in wide flood plains with rigid unsubmerged vegetation[J]. J. Hydr. Eng. 2006,132(2): 163-171.
    [130] El-Hakim, O., Salama, M.M. Velocity distribution inside and above branched flexible roughness[J]. Journal of Irrigation and Drainage Engineering 1992, 118 (6), 914–927.
    [131] Tsujimoto, T., Kitamura, T. and Okada, T. Turbulent open-channel flow over bed covered by rigid vegetation[J]. Journal of Hydroscience and Hydraulic Engineering. 1992,10(2): 13–25.
    [132] Ghisalberti, M. & Nepf, H.H. Mixing layers and coherent structures in vegetated aquatic flows [J]. Journal of Geophysical Research..2002,107(2): 3.1-3.11.
    [133] F.G. Carollo; V.Ferro; and D.Termini. Flow Velocity Measurements in Vegetated Channels[J]. Journal of Hydraulic Engineering.2002, 128(7):664-673.
    [134] Sukhodolov, A. & Sukhodolova, T. Evolution of mixing layers in turbulent flow over submersed vegetation: Field experiments and measurement study[A]// Proceedings of the international conference on fluvial hydraulics River Flow[C]. Lisbon, Portugal. 2006: 525-534.
    [135] Stephan, U.Zum Fliesswiderstandsverhalten flexibler Institute of Hydraulics, Hydrology and Water Resources Management, Faculty of Civil Engineering, Technical University of Vienna[D]. 2001.
    [136] Nikuradse, J. Stro¨mungsgesetze in rauhen Rohren. Forschungsheft 361[M]. Ausgabe B. Band 4. 1933.
    [137] Plate, E.J., Quraishi, A.A.Modeling of velocity distributions inside and above tall crops[J]. Journal of Applied Meteorology. 1965,(4):400–408.
    [138] Kouwen, N., Unny, T.E., Hill, H.M. Flow retardance in vegetated channels[J]. Journal of Irrigation and Drainage Division. 1969, 95 (IR2), 329–340.
    [139] Nnaji, S., Wu, I., Flow resistance from cylindrical roughness [J].Journal of the Irrigation and Drainage Division. 1973, 99 (IR1):15–26.
    [140] Haber, B.,Uber den Erosionsbeginn bei der Uberstro¨mung von flexiblen Rauheitselementen [D]. Mitteilungen des Leichtweiss-Institutes fu¨r Wasserbau der Technischen Universita¨t Braunschweig.Heft 74. 1982.
    [141] Murota, A., Fukuhara, T., Sato, M. Turbulence structure in vegetated open channel flows[J]. Journal of Hydroscience and Hydraulic Engineering.1984, 2 (1): 47–61.
    [142] Christensen, B.A. Open Channel and Sheet Flow Over Flexible Roughness [A]// Proceedings of the 21st IAHR Congress in Melbourne[C]. Australia, 1985, 462–467.
    [143] Watanabe, T., Kondo, J., The influence of canopy structure and density upon the mixing length within and above vegetation[J]. Journal of Meteorological Society of Japan.1990,68 (2):227–234.
    [144] Klopstra, D., Barneveld, H.J., van Noortwijk, J.M., van Velzen,E.H. Analytical Model for Hydraulic Roughness of Submerged Vegetation[A]// Proceedings of the 27th IAHR Congress in San Francisco[C]. USA. 1997, 775–780.
    [145] Shavit U, Brandon T. Dispersion within emergent vegetation using PIV and concentration measurements[A]// In: DLR-MITTEILUNG[C]. Deutschen Forschungsanstalt fur Luft-und Raumfahrt. Germany:2001, 397-406.
    [146] HM Nepf, JA Sullivan, RA Zavistoski. A model for diffusion within emergent vegetation[J]. Limnology and Oceanography, 1997,42(8):1735-1745.
    [147] B White, HM Nepf. Scalar transport in random cylinder arrays at moderate Reynolds number [J]. Journal of Fluid Mechanics.2003, 487(25):43-79
    [148] Y. Tanino, HM Nepf. Lateral dispersion in random cylinder arrays at high Reynolds number [J]. Journal of Fluid Mechanics.2008, 600:339-371.
    [149] Y. Tanino, HM Nepf. Experimental investigation of lateral dispersion in aquatic canopies [A]//The 32nd congress of IAHR[C].Venice, Italy. 2007.
    [150] T Serra, JS Fernando, V Rodríguz. Effects of emergent vegetation on lateral diffusion in wetland [J]. Water research.2004, 38:139-147.
    [151] D Poggi, G Katul, J Albertson. Scalar dispersion within a model canopy: Measurements and three dimensional lagrangian models [J]. Advances in Water Resouces.2006, 29(2): 326-335.
    [152] M Ghisalberti, HM Nepf. Mass transport in vegetated shear flows[J]. Environmental fluid mechanics.2005, 5(6):527-551.
    [153] E Mufphy, M Ghisalberti, HM Nepf. Model and laboratory study of dispersion in flows with submerged vegetation[J]. Water Resources Research.2007, 43(10):1012-1015.
    [154]周克钊,余常钊,张永良.天然河流纵向离散系数示踪实验计算方法研究[J].环境科学学报.1986,6(3):314-326.
    [155] Taylor,G.I.Diffusion by continuous movement[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1921,(20):196-212.
    [156] Taylor,G.I. Conditions under Which Dispersion of a Solute in a Stream of Solvent can be Used to Measure Molecular Diffusion [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1954, 225 (1163):473-477.
    [157] Fischer,HB.The Mechanics of Dispersion in Natural Streams [J]. J.Hydraulic Div.,ASCE. 1967,93(6): 187-216.
    [158] Glover, R.E. Dispersion of Dissolved or Suspended materials in flowing streams [J]. U.S. Geological Survey Professional Papers.1964,433-440.
    [159]周克钊.天然河流纵向离散系数确定方法的研究[硕士学位论文].北京。清华大学水利水电工程系.1985.
    [160] Nadaoka K,Yagi H. Shallow water turbulence modeling and horizontal large eddy computation of river flow. Journal of Hydraulic Engineering [J]. 1998, 124(5):493-500.
    [161] Lopez F, Garcia M. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation [J]. Journal of Hydraulic Engineering.2001, 127(5):392-402.
    [162] Defina A, Bixio A C. Mean flow and turbulence in vegetated open channel flow[J]. Water Resources Research. 2005,41(7): W07006.
    [163] Rastoqi Ashok K, Rodi Wolfgang. Two-dimensional mathematical model for the dispersion of heat in Rivers [M]. SAE special publications.1975,4:146-153.
    [164] Dongfang Liang, Roger A. Falconer, Binliang Lin. Comparison between TVD-MacCormack and ADI-type solvers of the shallow water equations [J]. Advances in Water Resources.2006,29(12):1833-1845.
    [165] Dongfang Liang, Binliang Lin, Roger A. Falconer. A boundary-fitted numerical model for flood routing with shock-capturing capability [J]. Journal of Hydrology.2006,332(3): 477-486.
    [166] Dongfang Liang, Binliang Lin, Roger A. Falconer. Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme [J]. Int. J. Numer. Meth. Fluids.2006,53(5): 811-826.
    [167] Fisher, K. The impact of temporal and spatial variations in vegetation in rivers[R]. Report SR 393. HR Wallingford Ltd, Wallingford. 1995.
    [168] Bakry, M.F., Gates, T.K. and Khattab, A.F. Field-measured hydraulic resistance characteristics in vegetation-infested canals[J]. Journal of Irrigation and Drainage Engineering. 1992, 118(2): 256–274.
    [169] Fisher, K. The impact of temporal and spatial variations in vegetation in rivers[R]. Report SR 393. HR Wallingford Ltd, Wallingford. 1995.
    [170] Maione, U., Monti, R. and Romiti, R. Hydraulic drag in vegetated channels– A campaign investigation[A]// Proceedings of an international conference New Trends in Water and Environmental Engineering for Safety and Life[C]. In: Maione, U., Lehto, M. and Monti, R. (eds.).Balkema, Rotterdam. 2000.
    [171] Sellin, R.H.J. and van Beesten, D. Berm vegetation and its effects on flow resistance in a two-stage river channel: an analysis of field data [M].In: Bousmar, D. and Zech, Y. (eds.). River Flow. 2002. 319–327.
    [172] Sean J. Bennett, Taner Pirim , Brian D. Barkdoll.2002.Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel[J]. Geomorphology. (44): 115–126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700