用户名: 密码: 验证码:
异构网络中垂直切换若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动性管理技术是未来泛在、异构网络中最具挑战性的关键技术之一。垂直切换作为支持泛在、异构的移动性管理技术中的重要控制功能,用于保证用户跨异构网络移动时的会话连续性。接入网络的异构性是支持泛在、异构的移动性管理技术面临的最大挑战,这种异构性体现在网络体系结构、网络接口协议、AAA和QoS等控制技术,以及覆盖范围、数据速率、移动性支持能力特性等各个方面。就垂直切换技术而言,异构性带来了切换性能、切换决策和互操作控制等方面的巨大挑战,现有研究还存在明显的不足:一是切换性能仍需优化。垂直切换要保证与底层接入技术的无关性,必须在高层实现,而这种高层的通用性又必然带来性能上的损失。二是缺乏高效、可行的切换决策方法。垂直切换决策是典型的多标准决策问题,现有研究还存在可行性差、乒乓效应、不利于网络资源有效利用等缺点。三是垂直切换中的互操作问题,用于处理不同接入技术在QoS、AAA等控制技术上的差异。因此,本论文的选题具有重要的理论和现实意义。
     本论文系统总结了异构网络中垂直切换技术的研究现状和发展趋势,主要研究和解决垂直切换中的若干关键技术,包括典型垂直切换支持协议的性能分析、切换决策方法、连接管理实现性能优化和垂直切换中的QoS映射机制等问题。主要工作和研究内容如下:
     在典型垂直切换支持协议的性能分析方面,本文充分考虑垂直切换的不对称性和无线链路误码率高的特性,引入统一的分析模型,分析了网络层、传输层和应用层的典型垂直切换支持协议MIPv6、mSCTP和SIP协议的垂直切换性能,包括基本切换信令过程的性能及不对称垂直切换过程的性能,依据典型参数给出数值结果,进行定量比较。并且,基于分析过程和结果指出影响垂直切换性能的主要因素和可能的优化方法。
     在切换决策方法方面,本文提出一种基于QoS评价、面向应用特性的垂直切换决策方法。其中采用mSCTP作为多接口移动终端的传输层协议,将其多家乡性等良好特性与不确定多标准决策方法相结合。充分考虑了不同应用类型对QoS的不同需求,QoS评价和切换决策针对每个应用单独进行。选择能够满足应用对QoS要求的最恰当的网络,而非性能最佳的网络为切换目标网络。仿真结果表明,本文所提出的切换决策方法能够减少不必要的切换,并且能够在单个应用的性能优化与网络资源的有效利用之间达到良好的平衡。
     在连接管理方面,本文充分利用mSCTP将基于路径的拥塞控制和基于关联的流量控制解耦合的良好特性,及其对端到端移动性的支持能力,提出一种基于mSCTP实现带宽聚合与移动性相结合的连接管理机制。定义了其中的关键路径管理功能模块,介绍了路径切换过程,并提出一种基于广义路径定义的传输路径子集选择策略。对其带宽聚合效果、传输路径子集选择策略效果和移动性支持能力分别进行了仿真试验。仿真结果表明,本文所提出的连接管理机制能够实现带宽聚合与移动性的有效结合,基于应用特性的传输路径子集选择策略具有明显的性能优势。
     在垂直切换中的QoS映射机制方面,本文基于对UMTS、802.11e WLAN和802.16 WiMAX等无线接入网络中不同的QoS类定义及其QoS保证机制的研究,分析了垂直切换中的QoS映射机制研究存在的问题和挑战。并基于松耦合的网络互连结构和这些异构接入网络中QoS类的直接映射关系,针对移动用户从UMTS网络切换至802.11e EDCA、802.11e HCCA和802.16等场景,对QoS映射后的业务流性能进行了仿真试验。
Mobility management is one of the most challenging technologies in the future ubiquitous and heterogeneous network environments. As one of the key control functions of the future mobility management technology, vertical handoff is used to provide session continuity across heterogeneous networks.
     The heterogeneity of different wireless access networks is the most challenging issue of the future mobility management technology. Such heterogeneity exists in the different network architectures, radio interfaces, control mechanisms such as AAA and QoS, as well as the different features in coverage, data rate and mobility supporting capability etc. With respect to the research on vertical handoff, it still faces the challenges in handoff performance, handoff decision and interoperability etc. In the existing researches, some limitations do exist: 1) Handoff performance optimization. In order to realize the access-independent handoff, vertical handoff is often implenmented at the network layer or above and incurres considerable performance problems. 2) Vertical handoff decision is a typical multi-criteria decision problem. But the existing schemes still have some disadvantages such as unfeasibility, ping-pong effects and inefficient utilization of wireless network resources. 3) The interoperability in vertical handoff must be considered to deal with the differences in the control mechanisms such as AAA and QoS.
     Based on the systematical summary and analysis of the latest researches on vertical handoff, this dissertation focuses on the issues of performance analysis of the typical handoff protocols, the handoff decision method, the connectivity management, the QoS mapping in vertical handoff and so on.
     The major contributions of this dissertation are as following:
     1) Performance analysis of the typical vertical handoff supporting protocols. Considering the asymmetry feature of vertical handoff and the error-prone feature of wireless links, this paper analyzes the handoff performance of MIPv6 ,mSCTP and SIP based on unified analysis model. Qualitative and quantitative analysis and comparison of the handoff performance including handoff delay, handoff packet loss and signaling overhead are given accordingly. Besides, the main factors influencing vertical handoff performance are pointed out and possible performance improvement schemes are discussed.
     2) With regards to the vertical handoff decision, a QoS evaluation based and application-oriented vertical handoff decision method is proposed. mSCTP is adopted as the transport layer protocol in the terminal architecture. It supports cooperation among heterogeneous network interfaces. Different QoS requirements of various application types are considered in weight value determination. The handoff decision follows "per application" and "the most suitable" principles for efficient network resources utilization. Simulation results show that the proposed method can reduce the unnecessary handoff and realize well tradeoff between the performance optimization of single application and efficient utilization of network resources.
     3) From vertical handoff to connectivity management based on mSCTP. A connectivity management scheme based on mSCTP is proposed to realize the integration of bandwidth aggregation and mobility supporting at transport layer. The major path management functions are defined and the path handoff procedure is introduced. A transport path subset selection policy based on wide-sense path definition is proposed. The simulations on the effect of the throughput improvement, the path subset selection policy and the mobility supporting are complemented respectively. The simulation results show that the proposed scheme can realize efficient integration of bandwidth aggregation and mobility and the application-based path subset selection policy has apparent performance advantages.
     4) QoS mapping among heterogeneous wireless networks. Based on the research of the different QoS class definition and QoS guarantee mechanisms in UMTS network, 802.11e WLAN network and 802.16 WiMAX network, the problems and challenges of the QoS mapping in vertical handoff are analyzed. Based on the loose-coupling internetworking architecture of the heterogeneous access networks, the service traffic performance after the mobile users move from UMTS to 802.11e EDCA, 802.11e HCCA and 802.16 are simulated and analyzed.
     This work is jointly supported by: National High-technology (863) Program of China (No. 2006 AA01Z229, No. 2005AA121630, No. 2005AA121110) and the Chinese Ministry of Education for Returnee of Studying Abroad.
引文
[1].陈山枝,时岩,胡博,移动性管理理论与技术的研究,通信学报,2007年。
    [2]. ITU-T. Mobility Management updates for Y. NGN-MOB. 2004. 2.
    [3]. ITU-T. Q. 1706/Y.2801, Mobility Management Requirements for NGN. 2006.11.
    [4]. ITU-T. Y.MMF, Framework of Mobility Management for NGN.
    [5]. ITU-T. Y.LMF, Framework of Location Management for NGN.
    [6]. ITU-T. Y.HMF, Framework of Handover Management for NGN.
    [7]. ITU-T. Q.1703, Service and network capabilities framework of network aspects for systems beyond IMT-2000. 2004.5.
    [8]. ITU-T. Q.1761, Principles and requirements for convergence of fixed and existing IMT-2000 systems. 2004.1.
    [9]. 3GPP TR 22.978 v7.1.0, Technical Specification Group Services and Systems Aspects, All-IP Network (AIPN) feasibility study (Release 7), 2005.6.
    [10]. IETF. RFC 3753, Mobility Related Terminology. 2004.6.
    [11]. IETF. draft-itsumo-sip-mobility-req-02, Mobility Management in a SIP Environment Requirements, Functions and Issues. 2000.12.
    [12]. ETSI. Draft ETSI TR 00001 V0.4.2, TISPAN_NGN Release, 1: Release Definition. 2005.6.
    [13]. ETSI. Draft ETSI TR 00004 v0.0.6, TISPAN-NGN NGN Terminology. 2005.7.
    [14]. MWIF. Technical Report MTR-002 Release 1.7, Architecture Requirements. 2001.2.
    [15]. MWIF. Technical Report MTR-003 Version 1.0, Layered Functional Architecture. 2000.8.
    [16]. C. Perkins. IP Mobility Support for IPv4, IETF RFC 3344. 2002.8.
    [17]. D. Johnson, C. Perkins, J. Arkko. Mobility Support in IPv6, IETF RFC 3775. 2004.6.
    [18]. M. Riegel, M. Tuexen. mobile SCTP, draft-riegel-tuexen-mobile-sctp-06.txt. 2006.
    [19]. Rosenberg J, Schulzrinne H, Camanilo G. SIP: Session initiation protocol. IETF RFC 3261, 2002.
    [20]. Hui Wang, Yanfeng Zhang, Yong Xia. NETLMM Protocol, draft-wanghui-netlmm- protocol-00. April 2006.
    [21]. R. Moskowitz, P. Nikander. Host Identity Protocol (HIP) Architecture, RFC 4423. May 2006.
    [22]. 3GPP TR22.121 v5.3.1, The Virtual Home Environment (Release 5). 2002.6.
    [23]. 3GPP TS 23.198 v7.0.0, Open Service Access: Stage 2 (Release 7). 2006.6.
    [24].张平,纪阳,移动泛在业务环境及其体系架构设计的挑战,北京邮电大学 学报,2005年10月,第28卷,第5期,第1-3,37页。
    [25]. Draft IEEE Std. P802.21/D00.05: Media Independent Handover Services. Jan. 2006.
    [26]. Norbert Niebert, Andreas Schieder, Henrik Abramowicz, Christian Prehofer, Holger Karl. Ambient Networks-An Architecture for Communication Networks Beyond 3G. IEEE Wireless Communications, Vol. 11, No. 2, April 2004. pp. 14-22.
    [27]. Norbert Niebert, Hannu Flinck, Robert Hancoc3, Holger Karl, Christian Prehofer. Ambient Networks - Research for Communication Networks Beyond 3G. Proceedings of IST Mobile Sumrnit. June 2004.
    [28]. Hannu Flinck, Eleanor Hepworth, Jochen Eisl, Shintaro Uno. Issues of advanced mobility management in Ambient Networks. Wireless World Research Forum WWRF #12 Toronto, Canada, Nov. 2004.
    [29].863项目研究报告,移动网络中移动性管理协议及其网络演进方案的研究,信息产业部传输研究所,2004年10月。
    [30].863项目研究报告,广泛移动性管理技术研究报告,北京邮电大学,2005年12月。
    [1].Mochel MOULY,Marie-Bemadette PAUTET著,骆健霞,顾龙信,徐云霄译.GSM数字移动通信系,电子工业出版社,1996年6月。
    [2].陈山枝,时岩,胡博,移动性管理理论与技术的研究,通信学报,2007年。
    [3].朱艺华,无线移动网络的移动性管理,人民邮电出版社,2005年10月。
    [4].时岩,陈山枝,秦臻,支持泛在、异构的移动性管理技术中的层次及跨层设计应用研究,移动通信,2007年。
    [5]. Mark Stemm, Randy H. Katz. Vertical Handoffs in Wireless Overlay Networks. ACM Mobile Networking (MONET), Special Issue on Mobile Networking in the Internet. Vol. 3, 1998, pp. 335-350.
    [6]. Chakravorty R., Vidales P., Patnapongpibul L., Subramanian K., Pratt Ⅰ., Crowcroft J. On Inter-network Handover Performance using IPv6. http://www.cl.clam.ac.uk/users/rc277/handovers.pdf.
    [7]. Farhan Siddiqui, Sherali Zeadally. Mobility management across hybrid wireless networks: Trends and challenges, IEEE Computer Communications. 2005.
    [8]. C. Wen-Tsuen, L. Jen-Chu, H. Hsieh-Kuan. An adaptive scheme for vertical handoffs in wireless overlay networks. Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004, pp. 111-112.
    [9]. M. Inoue, K. Mahmud, H. Murakami and M. Hasegawa. MIRAI: A Solution to Seamless Access in Heterogeneous Wireless Networks. ICC 2003, vol. 2, pp. 1033-1037.
    [10]. Wen-Tsuen Chen, Yen-Yuan Shu. Active Application Oriented Vertical Handoff in Next-Generation Wireless Networks. 2005 IEEE Wireless Communications and Networking Conference (WCNC 2005), 13-17 March 2005, Vol. 3, pp. 1383-1388.
    [11].Yi-Bing Lin,Imrich Chlamtac著,方旭明,林楷,张雪竹,赵旸译,无线与移动网络结构,人民邮电出版社,2002年5月。
    [12]. Mehbodniya, A., Chitizadeh, J. An intelligent vertical handoff algorithm for next generation wireless networks. Second IFIP International Conference on Wireless and Optical Communications Networks, 2005 (WOCN 2005), 6-8 March 2005, pp.244-249.
    [13]. Wen-Tsuen Chen, Yen-Yuan Shu. Active Application Oriented Vertical Handoff in Next-Generation Wireless Networks. 2005 IEEE Wireless Communications and Networking Conference (WCNC 2005), 13-17 March 2005, Vol. 3, pp. 1383-1388.
    [14]. Wen-Tsuen Chen, Jen-Chu Liu, Hsieh-Kuan Huang. An adaptive scheme for vertical handoff in wireless overlay networks. Proceedings of the Tenth International Conference on Parallel and Distributed Systems, 2004, (ICPADS 2004), 7-9 July 2004, pp. 541-548.
    [15]. Tareq A1-Gizawi, Kostas Peppas, Fotis Lazarakis. Interoperability Criteria, Mechanisms and Evaluation of System Performance for Transparently Interoperating WLAN and UMTS-HSDPA Networks. IEEE Network, Vol. 19, No. 4, July/August 2005, pp.66-72.
    [16]. Hasswa A., Nasser N., Hossanein H. Generic vertical handoff decision function for heterogeneous wireless. Second IFIP International Conference on Wireless and Optical Communications Networks, 2005 (WOCN 2005), 6-8 March 2005, pp.239-243.
    [17]. Qiang Guo, Jie Zhu, Xianghua Xu. An adaptive multi-criteria vertical handoff decision algorithm for radio heterogeneous network. IEEE International Conference on Communications, 2005 (ICC 2005), 16-20 May 2005, Vol. 4, pp.2769-2773.
    [18]. Jing Nie, Xin He, Zheng Zhou, Cheng Lin Zhao. Benefit-driven handoffs between WMAN and WLAN. IEEE Military Communications Conference, 2005 (MILCOM 2005), 17-20 Oct. 2005, Vol. 4, pp. 2223-2229.
    [19]. Fang Zhu, McNair, J. Optimizations for vertical handoff decision algorithms. IEEE Wireless Communications and Networking Conference, 2004, (WCNC 2004), 21-25 March 2004, Vol. 2, pp. 867-872.
    [20]. Balasubramaniam S., Indulska J. Vertical handovers as adaptation methods in pervasive systems. The 11th IEEE International Conference on Networks, 2003 (ICON2003), 28 Sept.-1 Oct. 2003, pp. 705 - 710.
    [21]. C. Perkins. IP Mobility Support for IPv4, IETF RFC 3344. 2002.8.
    [22]. D. Johnson, C. Perkins, J. Arkko. Mobility Support in IPv6, IETF RFC 3775. 2004.6.
    [23]. Hyun-Ho Choi, Song O., Dong-Ho Cho. A seamless handoff scheme for UMTS-WLAN interworking. IEEE Global Telecommunications Conference, 2004, (GLOBECOM '04), 29 Nov.-3 Dec. 2004, Vol. 3, pp.1559 - 1564.
    [24]. Montavont N., Njedjou E., Lebeugle F., Noel T. Link triggers assisted optimizations for mobile 1Pv4/v6 vertical handovers. Proceedings of 10th IEEE Symposium on Computers and Communications, 2005, (ISCC 2005), 27-30 June 2005, pp. 289-294.
    [25]. Bernaschi M., Cacace F., Iannello G Vertical handoff performance in heterogeneous networks. Proceedings of 2004 International Conference on Parallel Processing Workshops (ICPP 2004 Workshops), pp.100 - 107.
    [26]. D. Fan, L. Ni, A. Esfahanian. HOPOVER: a new handoff protocol for overlay networks. Proceedings of the IEEE International Conference on Communications, 2002, pp. 3234-3239.
    [27]. S. Sharma, B. Inho, Y. Dodia, C. Tzi-cker. Omnicon: a mobile IP-based vertical handoff system for wireless LAN and GPRS links. Proceedings of the Second IEEE Annual conference on Pervasive Computing and Communications, 2004, pp. 155-164.
    [28]. Cheng Wei Lee, Li Ming Chen, Meng Chang Chen, Yeali Sunny Sun, "A Framework of Handoffs in Wireless Overlay Networks Based on Mobile IPv6", IEEE Journal on Selected Areas in Communications, Vol. 23, No. 11, pp. 2118-2128.
    [29]. Kim S.-E., Copeland J.A. TCP for seamless vertical handoff in hybrid mobile data networks. IEEE Global Telecommunications Conference, 2003, (GLOBECOM '03), 1-5 Dec. 2003, Vol. 2, pp. 661 - 665.
    [30]. M. Riegel, M. Tuexen. mobile SCTP. draft-riegel-tuexen-mobile-sctp-06.txt, 2006.
    [31]. Samir Chebbine, Mohand Tahar Chebbine, Abdel Obaid, Robert Johnston. Framework architecture and mathematical optimization of vertical handover decision on 4G networks using mSCTP. IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, 2005 (WiMob'2005), Aug. 22-24, 2005, Vol. 2, pp.235 - 241.
    [32]. Li Ma, Fei Yu, Victor C. M. Leung. A new method to support UMTS/WLAN vertical handover using SCTP. IEEE Wireless Communications, August 2004, pp. 44-51.
    [33]. Rosenberg J, Schulzrinne H, Camanilo G SIP: Session initiation protocol. IETF RFC 3261, 2002.
    [34]. Wei Wu, Banerjee N., Basu K., Das S.K. SIP-based vertical handoff between WWANs and WLANs. IEEE Wireless Communications (see also IEEE Personal Communications), Vol. 12, Issue 3, June 2005, pp. 66 - 72.
    [35]. Nidal Nasser. Handoffs in Fourth Generation Heterogeneous Networks. IEEE Communications Magazine, Oct. 2006, Vol.44, No. 10, pp.96-103.
    [36]. Qi Wang, Abu-Rgheff M.A. A Multi-layer Mobility management Architecture Using Cross-layer Signaling Interaction. The 5th European Personal Mobile Communications Conference, 2003: 237 - 241.
    [37]. Christian Vogt, Martina Zitterbart. Efficient and Scalable, End-to-End Mobility Support for Reactive and Proactive Handoffs in IPv6. IEEE Communications Magazine, June 2006, Vol.44, No. 6, pp.74-82.
    [38]. Srivastava V. Motani M. Cross-layer Design: A Survey and the Road Ahead. IEEE Communications Magazine, 2005, 43: 112 - 119.
    [39]. Banerjee N., Acharya A., Das S. K. Seamless SIP-Based mobility for Multimedia Applications. IEEE Network, March/April 2006, Vol. 20, No.2, pp.6-13.
    [40]. Sun J. Z., Sauvola J. From Mobility Management to Connectivity Management. Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005), pp. 307-312.
    [41]. Sun J.-Z., Sauvola J. Mobility Management Reconsideration: Hierarchical Model and Flow Control Methodology. 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003, (PIMRC 2003), vol. 3, pp. 2809-2813.
    [1]. C. Perkins. IP Mobility Support for IPv4, IETF RFC 3344. 2002.8.
    [2]. D. Johnson, C. Perkins, J. Arkko. Mobility Support in IPv6, IETF RFC 3775. 2004.6.
    [3]. K. Elmalki, et al. Low Latency Handoffs in Mobile IPv4. draft-ietf-mobileip-lowlatency-handoffs-v4-11.txt. 2005.10.
    [4]. R. Koodli. Fast Handovers for Mobile IPv6. IETF RFC 4068. July 2005.
    [5]. Rajeev Koodli, C.Perkins. A framework for Smooth Handovers with Mobile IPv6, draft-koodli-mobileip-smooth-v6-00.txt. July 2000.
    [6]. M. Riegel, M. Tuexen. mobile SCTP. draft-riegel-tuexen-mobile-sctp-06.txt. 2006.
    [7]. R. Stewart, M. Ramalho, Q. Xie, et al. IETF draft-ietf-tsvwg-addip-sctp-15, Stream Control Transmission Protocol (SCTP) Dynamic Address Reconfiguration. May 2006.
    [8]. R. Stewart, Q. Xie et al. Stream Control Transmission Protocol. IETF RFC 2960, 2000.
    [9]. R. Stewart, Q. Xie. Stream Control Transmission Protocol A Reference Guide. 清华大学出版社.2003.1.
    [10].郭伟,互联网的流控制传输协议研究,北京邮电大学博士论文,2005年。
    [11]. Rosenberg J, Schulzrinne H, Camanilo G. SIP: Session initiation protocol. IETF RFC 3261. 2002.
    [12]. E. Wedlund and H.Schulzrinne. Mobility Support using SIP. in Second ACM/IEEE International Conference on Wireless and Mobile Multimedia(WoWMoM'99), (Seattle, Washington). Aug. 1999.
    [13]. H. Schulzrinne and E.Wedlund. Application-Layer Mobility Using SIP. Mobile Comp. and Commun. Rev., Vol.4, no.3, 2000, pp.47-57.
    [14]. N. Banerjee, A. Acharya, S. K. Das. Seamless SIP-Based Mobility for Multimedia Applications. IEEE Network, March 2006.
    [15].孙利民,阚志刚,郑健平,王在方,廖勇,移动IP技术,电子工业出版社, 2003.8.
    [16].蒋亮,郭健等,下一代网络移动IPv6技术,机械工业出版社,2005.8.
    [17]. Christian Vogt, Martina Zitterbart. Efficient and Scalable, End-to-End Mobility Support for Reactive and Proactive Handoffs in IPv6. IEEE Communications Magazine, 2006, 44(6): 74-82.
    [18]. Hyun-Ho Choi, Osok Song, Dong-Ho Cho. A Seamless Handoff Scheme for UMTS -WLAN Interworking. IEEE GlobeCom 2004. 2004.
    [19]. Massimo Bernaschi, Filippo Cacace. Vertical Handoff Performance in Heterogeneous Networks. ICPPW'04. 2004.
    [20]. Cheng Wei Lee, Li Ming Chen, Meng Chang Chen, Yeali Sunny Sun. A Framework of Handoffs in Wireless Overlay Networks Based on Mobile IPv6. IEEE Journal on Selected Areas in Communications, 2005, 23 (11 ): 2118-2128.
    [21]. Li Ma, Fei Yu, Victor C. M. Leung, Tejinder Randhawa, A New Method to Support UMTS/WLAN Vertical Handover Using SCTP. IEEE Wireless Communications, 2004, 11 (4): 44-51.
    [22]. Li Ma, Fei Yu, Victor C. M. Leung. SMART-FRX: A Novel Error-Recovery Scheme to Improve Performance of Mobile SCTP during WLAN to Cellular Forced Vertical Handoff. IEEE WCNC 2005. 2005.
    [23]. Wei Wu, Nilanjan Banerjee, Kalyan Basu, Sajal K. Das. SIP-Based Vertical Handoff Between WWANs and WLANs. IEEE Wireless Communications, 2005, 12(3): 66-72.
    [24]. Ramy Farha, Alberto Leon-Garcia. Mobility Analysis for all-IP Networksss:, IEEE WCNC 2005.2005.
    [25]. Nilanjan Banerjee, Kalyan Basu, Sajal K. Das. Hand-off Delay Analysis in SIP-based Mobility Management in Wireless Networks: IPDPS'2003. 2003.
    [26]. Hyun-Ho Choi, Osok Song, Dong-Ho Cho. A Seamless Handoff Scheme for UMTS-WLAN Interworking: IEEE GlobeCom 2004. 2004.
    [27]. Nilanjan Banerjee, Wei Wu et al. Analysis of SIP-based mobility management in 4G wireless networks. Computer Communications, 2004, 27(8): 697-707.
    [28].何晓英,刘琼,雷振明.基于位置预查询的因特网移动支持方案.软件学报, 2004,15(2):259-267.
    [29]. T. Narten et al. Neighbor Discovery for IP Version 6,draft-ietf-ipv6-2461bis-06. Mar. 2006.
    [30]. Draft IEEE Std. P802.21/D00.05: Media Independent Handover Services. 2006.
    [1]. Al-Gizawi T, Peppas K, Lazarakis F. Interoperability Criteria, Mechanisms and Evaluation of System Performance for Transparently Interoperating WLAN and UMTS-HSDPA Networks. IEEE Network, 2005, 19(4): 66-72.
    [2]. Hasswa A, Nasser N, Hossanein H. Generic vertical handoff decision function for heterogeneous wireless. Proceedings of the Second IFIP International Conference on Wireless and Optical Communications Networks (WOCN 2005). Dubai, UAE, 2005. pp. 239-243.
    [3]. Guo Q, Zhu J, Xu X H. An adaptive multi-criteria vertical handoff decision algorithm for radio heterogeneous network. Proceedings of the 2005 IEEE International Conference on Communications (ICC 2005). Seoul, Korea, 2005. 2769-2773.
    [4]. Nie J, He X, Zhou Z, Zhao C L. Benefit-driven handoffs between WMAN and WLAN. Proceedings of the 2005 IEEE Military Communications Conference (MILCOM 2005). Atlantic City, N J, USA, 2005. 2223-2229.
    [5]. Zhu F, McNair J. Optimizations for vertical handoff decision algorithms. Proceedings of the 2004 IEEE Wireless Communications and Networking Conference (WCNC 2004). Atlanta, Georgia, USA, 2004. 867-872.
    [6]. Balasubramaniam S, Indulska J. Vertical handovers as adaptation methods in pervasive systems. Proceedings of the 11th IEEE International Conference on Networks (ICON2003). Sydney, Australia, 2003. 705-710.
    [7]. R. Yavatkar, D. Pendarakis, R. Guerin. A Framework for Policy-based Admission Control. RFC 2753, January 2000.
    [8].徐泽水.不确定多属性决策方法及应用.第1版.北京:清华大学出版社,2004.
    [9].徐玖平,吴巍.多属性决策的理论与方法.第1版.北京:清华大学出版社,2006.
    [10]. Stevens-Navarro E, Wong V. W. S. Comparison between Vertical Handoff Decision Algorithms for Heterogeneous Wireless Networks. VTC 2006-Spring. 947-951.
    [11]. Sock J. Koh, Qiaobing Xie, Soohong Daniel Park. draft-sjkoh-msctp-01, Mobile SCTP (mSCTP) for IP Handover Support. October 2005.
    [12]. Sock Joo Koh, Moon Jeong Chang, Meejeong Lee. mSCTP for soft handover in transport layer. IEEE Communications Letters, Vol. 8, No. 3, March 2004, pp. 189-191.
    [13]. Noonan J., Perry P., Murphy J. Client Controlled Network Selection. Fifth IEE International Conference on 3G Mobile Communication Technologies, 2004, pp. 543-547.
    [14]. S. Kashihara, T. Nishiyama, K. Iida, H. Koga, Y. Kadobayashi, S. Yamaguchi. Path Selection Using Active Measurement in Multi-Homed Wireless Networks. Proceedings of the 2004 International Symposium on Applications and Internet (SAINT 2004), pp. 273-276.
    [15]. Funasaka J., Ishida K., Obata H., Jutori Y. A Study on Primary Path Switching Strategy of SCTP. Proceedings of Autonomous Decentralized Systems 2005 (ISADS 2005), pp. 536-541.
    [16]. Samir Chebbine, Mohand Tahar Chebbine, Abdel Obaid, Robert Johnston. Framework architecture and mathematical optimization of vertical handover decision on 4G networks using mSCTP. IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, 2005 (WiMob'2005), Aug. 22-24, 2005, Vol. 2, pp. 235-241.
    [17]. Moonjeong CHANG, Meejeong LEE, Seokjoo KOH. Transport layer mobility support utilizing link signal strength. IEICE TRANS. COMMUN., Vol. E87-B, No. 9, September 2004, pp. 2548-2556.
    [18]. ITU-T G. 1010. End-user multimedia QoS categories. Nov. 2001.
    [19]. 3GPP, TS22.105 V6.4.0. Technical Specification Group Services and System Aspects, Service aspects; Services and service capabilities (Release 6). 2005.
    [20].许树柏.层次分析法原理.第1版.天津:天津大学出版社,1988.
    [21]. The Network Simulator-ns-2, http://www.isi.edu/nsnam/ns/.
    [22]. MATLAB Compiler Suite Documentation.Mathworks. 2003.
    [1]. PHATAK D S, GOFF T. A novel mechanism for data streaming across multiple IP links for improving throughput and reliability in mobile environments. IEEE INFOCOM 2002. New York, USA, June 2002. 773-781.
    [2]. MAGALHAES L, KRAYETS R. Transport Level Mechanisms for Bandwidth Aggregation on Mobile Hosts. IEEE ICNP 2001. Riverside, CA, USA, November 2001. 165-171.
    [3]. HSIEH H, SIVAKUMAR R. A Transport Layer Approach for Achieving Aggregate Bandwidths on Multihomed Mobile Hosts. ACM MobiCom 2002. Atlanta, GA, USA, September 2002. 35-46.
    [4]. IYENGAR J, SHAH K, AMER P, et al. Concurrent Multipath Transfer Using SCTP Multihoming Over Independent End-to-End Paths. IEEE/ACM Transactions on Networking, 2006, 14(5): 951-964.
    [5]. ABD EL AL A, SAADAWI T, LEE M. A transport layer load sharing mechanism for mobile wireless hosts. IEEE PERCOMW 2004. Washington, DC, USA, 2004. 87-91.
    [6]. GOFF T, PHATAK S. Unified Transport Layer Support for Data Striping and Host Mobility. IEEE Journal on Selected Areas in Communications, 2004, 22(4): 737-746.
    [7]. BALAKRISHNAN M, MISHRA R, RAO R. On the Use of Bandwidth Aggregation Over Heterogeneous Last Miles. IEEE BROADNETS 2005. Boston, MA, USA, September 2005. 619-625.
    [8]. HACKER T J, ATHEY B D, NOBLE B. The end-to-end performance effects of parallel tep sockets on a lossy wide-area network. IEEE IPDPS, 2002. Fort Lauderdale, FL, USA, April 2002. 46-55.
    [9]. SUN J Z, SAUVOLA J. From Mobility Management to Connectivity Management. IEEE ISCC 2005. La Manga del Mar Menor, Cartagena, SPAIN, June 2005. 307-312.
    [10]. SUN J Z, SAUVOLA J. Mobility Management Reconsideration: Hierarchical Model and Flow Control Methodology. IEEE PIMRC 2003. Beijing, CHINA, September 2003.2809-2813.
    [11]. R. Stewart, Q. Xie, et al. Stream Control Transmission Protocol, RFC 2960. October 2000.
    [12]. ABD EL AL A, SAADAWI T, LEE M. Load Sharing in Stream Control Transmission Protocol. IETF draft-ahmed-lssctp-01.txt, May 2005.
    [13]. RIEGEL M, TUEXEN M. Mobile SCTE IETF draft-riegel-tuexen-mobile-sctp-07.txt, October 2006.
    [14]. STEWART R, RAMALHO M, XIE Q, et al. Stream Control Transmission Protocol (SCTP) Dynamic Address Reconfiguration. IETF draft-ietf-tsvwg-addip-sctp-15.txt, May 2006.
    [15]. Noonan J., Perry P., Murphy J. Client Controlled Network Selection. Fifth IEE International Conference on 3G Mobile Communication Technologies, 2004, pp. 543-547.
    [16].郭伟,互联网的流控制传输协议研究,北京邮电大学博士论文,2005年。
    [17].Draft IEEE Std.P802.21/D00.05.Media Independent Handover Services. January 2006.
    [18].徐树柏.层次分析法原理(第一版).天津:天津大学出版社,1998.
    [19].徐泽水.不确定多属性决策方法及应用(第一版).北京:清华大学出版社, 2004
    [20]. The Network Simulator-ns-2, http://www.isi.edu/nsnam/ns/.
    [1]. 3GPP TS23.107. Technical Specification Group Services and System Aspects: Quality of Service (QoS) Concept and Architecture v6.3.0. June 2005.
    [2]. 3GPP TS23.207. Technical Specification Group Services and System Aspects: End-to-End Quality of Service (QoS) Concept and Architecture v6.6.0. September 2005.
    [3]. IEEE Std 802.11e/D13.0. IEEE Standard for Information Technology: Telecommunications and Information Exchange Between System: Local and Metropolitan Area Networks: Specific Requirements Part11: Wireless LAN Media Access Control (MAC) and Physical Layer (PHY). January 2005.
    [4]. IEEE Std 802.16/D5. IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Fixed Broadband Wireless Access Systems. October 2004.
    [5]. IEEE Std 802.16e/D9. IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Febrary 2006.
    [6]. IEEE 802.1D-1998. Part 3: Media Access Control (MAC) Bridges. ANSI/IEEE Std 802.1D. 1998.
    [7]. IEEE 802.1Q-1998. Virtual Bridge Local Area Networks. ANSI/IEEE Std 802.1Q. 1998.
    [8]. Seyong Park, Kyungtae Kim, Doung C. Kim, Sunghyun Choi, Sangjin Hong. Collaborative QoS Architecture between DiffServ and 802.11 e Wireless LAN. Proccedings of IEEE VTC'03-Spring. April 2003.
    [9].程浩,史杏荣,基于IEEE 802.11e和DiffServ的端到端QoS结构.计算机工程,32(18),2006.9.pp.100~105.
    [10]. S. I. Maniatis, E. G. Nikolouzou, I. S. Venieris. QoS issues in the converged 3G wireless and wired networks. IEEE Communications Magazine, 40(8), August, 2002, p44~53.
    [11]. M. N. Moustafa, I. Habib, M. Naghshineh, M. Guizani. QoS-enabled broadband mobile access to wireline networks. IEEE Communications Magazine, 40(4), April, 2002, p50~56.
    [12]. T. Robles, A. Kadelka, H. Velayos, A. Lappetelainen, A. Kassler, L. Hui, D. Mandato, J. Ojala, B. Wegmann. QoS support for a all IP system beyond 3G IEEE Communications Magazine, 39(8), August, 2001, p64~72.
    [13].刘乃安,李晓辉,张联峰,王多华,何广法.无线局域网(WLAN)——原理、技术与应用.第一版.西安电子科技大学出版社.2004.
    [14].吴醒峰,刘元安,魏勇,田馨.IEEE 802.11e与WiFi联盟关键QoS技术的最新进展.现代电信科技.2006.5.
    [15].唐雄燕,李建宇,张辉,王彬.宽带无线接入技术及应用——WiMAX与WiFi.第一版.电子工业出版社.2006.
    [16]. WiMAX Forum White Paper. Mobile_WiMAX_Partl_Overview_and_Performance.pdf. Aug. 2006.
    [17]. Can WiMAX Address Your Applications?. Westech on Behalf of the WiMAX Forum, October 24, 2005.
    [18]. Eero Wallenius, Timo Hamalainen, Timo Nihtila, Jyrki Joutsensalo, Kari Luostarinen. 3G Interworking with WLAN QoS 802.11e. IEEE Vehicular Technology Conference 2003-Fall,Octorber, 2003.
    [19]. Timo Hamalainen, Eero Wallenius, Kari Luostarinen, Timo Nihtila. End-to-end QoS Issues at the Integrated WLAN and 3G Environments. APCC2003, Penang, Malaysia, 2003.
    [20]. Timo Hamalainen, Eero Wallenius, Timo Nihtila, Kari Luostarinen, Jyrki Joutsensalo. Providing QoS at the Integrated WLAN and 3G Environments. 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2003), October 2003.
    [21]. Apostolis K. Salkintzis, Gerasimos Dimitriadis, Dimitris Skyrianoglou, Nikos Passas, Niovi Pavlidou. Seamless Continuity of Real-time Video Across UMTS and WLAN Networks: Challenges and Performance Evaluation. IEEE Wireless Communications, 12(3): 8-18. June 2005
    [22]. Mi Sun Ryu, Hong-Shik Park, Sang-Chul Shin. QoS Class Mapping Over Heterogeneous Networks Using Application Service Map. Proceedings of the IEEE International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL'06). 2006.
    [23]. Xin Gang Wang, Geyong Min, John E. Mellor, Khalid A1-Begain, Lin Guan. An Adaptive QoS Framework for Integrated Cellular and WLAN Networks. Computer Networks, 2005,(47): 167-183.
    [24]. Xin Gang Wang, Geyong Min, John E. Mellor. Adaptive QoS Control in Cellular and WLAN Interworking Networks. Proceedings of the 2nd International Working Conference on Performance Modelling and Evaluation of Heterogeneous Networks(HET-NETs'04),2004.周武肠,姚顺铨,文莉.无线Internet技术.第一版.北京:人民邮电出版社.2006.
    [25]. Daehyon Kim, Aura Ganz. Architecture for 3G and 802.16 Wireless Networks Integration with QoS Support. Proceedings of the 2nd International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (IEEE QShine 2005). 2005.
    [26]. Reiner Ludwig, Hannes Ekstrom, Per Willars, Niklas Lundin. An Evolved 3GPP QoS Concept. IEEE VTC 2006-Spring. pp. 388-392.
    [27]. An IEEE 802.11e EDCF and CFB Simulation Model for ns-2, http://www.tkn.tu-berlin.de/research/802.11e_ns2/
    [28]. IEEE 802.11e HCCA simulation using the Network Simulator 2, http://info.iet.unipi.it/~cng/ns2hcca/
    [29]. Claudio Cicconetti, Luciano Lenzini, Enzo Mingozzi, Giovanni Stea. A Software Architecture for Simulating IEEE 802.11e HCCA.the 3rd Internet Performance, Simulation, Monitoring and Measurement-IPS-MoMe 2005-March 14-15, 2005.
    [30]. The Design and Implementation of WiMAX Module for ns-2 Simulator, http://ndsl.csie.cgu.edu.tw/wimax_ns2.php
    [31]. Jenhui Chen, Chih-Chieh Wang, Frank Chee-Da Tsai, et al. The Design and Implementation of WiMAX Module for ns-2 Simulator. ACM International Conference Proceeding Series, Vol. 202, Proceeding from the 2006 workshop on ns-2: the IP network simulator.
    [32].方旭明等,下一代无线因特网技术:无线Mesh 网络.第一版.人民邮电出版社.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700