用户名: 密码: 验证码:
基于卫星临边辐射的大气痕量气体含量反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
痕量气体是大气重要的组成成分,它们受各种物理的、化学的、生物的、地球过程的作用参与生物地球化学的循环,对地球生命演化、大气化学发展及全球环境变化具有重要的影响作用。紫外辐射能破坏对生命至关重要的有机高分子,而臭氧可以吸收太阳紫外辐射,从而使生物器官免于其害;陆地生命的演化也被认为与臭氧密切相关。臭氧的光化学循环对维持大气温度垂直结构起着重要的作用,而且臭氧的减少还能指示人类对环境的破坏。NO2能对平流层臭氧光化学反应起到催化作用,还与光化学烟雾、酸雨、温室效应等密切相关。同时,由于近年工业的快速发展,大气中NO2浓度增长迅速,已经成为空气污染的一个重要指标。自上世纪80年代以来,南极平流层臭氧空洞的发现和大城市光化学烟雾污染的日益加剧,推进了大气痕量气体和区域环境污染问题研究,因此对大气痕量气体,尤其是臭氧和NO2的时空分布研究成为当前大气化学领域的一个前沿和热点问题。
     痕量气体的探测,经历了地基、探空气球、火箭及当前卫星等平台的发展,相对地基和探空仪等传统平台,利用卫星能对痕量气体进行一个全球范围、高空间分辨率地观测。传统的卫星大气探测几何方式,包括垂直观测地表的天底观测模式和指向太阳、月亮或星星的掩星观测模式。天底模式探测虽然能得到高空间分辨率的全球痕量气体总量分布,但是垂直分辨率非常有限;而掩星模式虽然能得到高垂直分辨率的痕量气体廓线,但是空间覆盖又比较差。
     自1981年美国国家航空航天局(National Aeronautics and Space Administration, NASA)第一次将临边扫描技术应用于太阳中间层探测卫星(Solar Mesosphere Explorer, SME)大气观测以来,这种新的卫星探测技术,即观测地表以上一系列切高上的大气临边辐射,开始在卫星大气遥感领域广泛应用。这种临边探测技术结合了天底和掩星两种技术的优点:提供如天底模式一样高空间分辨率全球覆盖的大气痕量气体分布,且能与掩星模式相媲美的高垂直分辨率的气体廓线。搭载在2002年3月1日发射升空的欧空局(EuropeanSpace Agency, ESA)环境卫星ENVISAT (ENVIronment SA Tellite)上的大气制图扫描成像吸收光谱仪(Scanning Imaging Absorption Spectrometer for Atmospheric CHartography, SCIAMACHY)仪器即具有临边探测能力,SCIAMACHY观测位于飞行方向前方3280km处地表至92km切高范围的临边辐射,垂直方向切高增加步长约为3.3km,工作波长为214-2386nm,光谱分辨率为0.24-1.48nm。其他具有临边探测能力的仪器有搭载在Odin卫星上的光学光谱仪与红外成像系统(Optical Spectrograph and InfraRed Imaging System, OSIRIS),于2001年2月20日发射升空,实际包括光学光谱仪(Optical Spectrograph, OS)和红外成像仪(InfraRed Imaging system, IRI)两个独立部件,分别探测7-70km范围的临边紫外-可见光散射辐射和7-100km范围的氧红外波段气辉辐射,视线切高步长约为2km。目前针对临边散射数据,特别是SCIAMACHY和OSIRIS数据的痕量气体反演研究,一般均是用波长配对或差分光学吸收光谱法(Differential Optical Absorption Spectroscopy, DOAS)应用于辐射处理,结合最优估计反演痕量气体数密度廓线,并且反演高度只限于平流层范围。
     本文将一种新型反演策略,即波长配对与加权乘代数重建技术(Weighted Multiplicative Algebraic Reconstruction Technique, WMART)联合SCIATRAN (radiative TRANsfer model for SCIAMACHY)正向模型,应用于SCIAMACHY临边散射辐射数据,以臭氧和NO2为例研究了大气痕量气体垂直廓线的反演。首先将临边辐射廓线正规化到参考切高,然后将吸收波长的正规化辐射廓线与参考波长的正规化辐射廓线组合生成反演向量,最后利用WMART结合SCIATRAN进行痕量气体反演,并开发了能批量处理SCIAMACHY多轨数据获取臭氧和NO2廓线的程序包SCIA_JLU,臭氧反演每轨需时约30分钟、NO2约15分钟。经过波长配对处理后,使得云、地表反照率和气溶胶对辐射值的影响降低一个数量级,而保持或提高了待反演成分的敏感性。根据临边辐射廓线、臭氧和NO2的辐射权函数及其反演向量权函数特征,选定臭氧Hartley和Chappuis吸收波段为臭氧反演波段,其中Hartley波段将用吸收较强的267.5 nm、286.5 mm、287.5 nm及305.1nm辐射分别与吸收较弱的307.5nm波长配对,Chappuis波段将吸收峰599nm辐射与两翼525nm和668nm辐射进行三波长组合,总体反演高度范围为10-68 km; NO2反演波段为420-450nm,并选定其中3组共6个波长进行组合,每一个组由吸收峰与两翼吸收较弱的3个波长组成,反演高度均为15-40km。将WMART与SCIATRAN辐射传输模型结合,确定了WMART不同切高上权因子和不同波段权因子,综合利用臭氧Hartley和Chappuis吸收波段SCIAMACHY临边散射辐射数据,反演了平流层到中间层低层大气臭氧数密度垂直廓线;并利用420-450nm波长范围多波段SCIAMACHY临边散射数据反演了大气平流层NO2数密度垂直廓线
     为了分析加权乘代数重建反演误差来源及大小,对反演过程中一些不确定的参量进行了敏感性分析。通过正演模拟时引入参量的偏差,反演得到“不正确”的结果与没有引入偏差的“正确”反演结果进行对比,分析参量对反演结果的影响。研究中对切高定位、气溶胶、地表反照率和云这些主要误差源进行了误差分析,其中气溶胶参数包括影响较大的边界层能见度、平流层气溶胶负载和气溶胶消光系数,云参数包括敏感性较大的云高和光学厚度。结果表明,在参数可达到的最优精度条件下,整体误差最大的是切高定位偏差引起的、其次是气溶胶偏差引起误差、最小的误差是由地表反照率和云偏差导致的。然而,在平流层,不正确气溶胶引起的误差比切高定位偏差引起的误差更大,这主要由于平流层气溶胶负载和气溶胶消光系数两个参量导致,特别是平流层存在火山气溶胶时,会导致臭氧在平流层底层误差达42%左右,甚至会使NO2反演误差在15 km超过100%。臭氧和NO2反演结果受参量的影响基本随高度升高而减小,地表反照率和云的影响明显依赖太阳天顶角,而其他参量对反演结果的影响在不同天顶角下区别不大。相比之下,NO2反演结果受参量影响比臭氧更大一些。
     为了评价利用波长配对结合WMART算法反演的痕量气体廓线结果,将臭氧反演结果分别与Bremen大学提供的SCIAMACHY臭氧V2.3版本(称为BU臭氧)3天同步反演点数据、纬差±5°以内和经差±10°以内共3天Saskatchewan大学提供的OSIRIS臭氧V3.0版本和微波临边光谱仪(Microwave Limb Spectrometer, MLS)臭氧进行比较验证,同时将NO2反演结果分别与Bremen大学提供的SCIAMACHY NO2 V3.1版本(BU NO2)和Saskatchewan大学提供的OSIRIS NO2 V3.0版本进行了比较,NO2比较的时间及空间匹配条件与臭氧相同。发现臭氧反演结果与BU臭氧一致性最好,误差不超过15%,与OSIRIS对比最大偏差为20%,而与MLS比较仅在20-46km之间误差小于10%。对于N02,与BU NO2相对偏差小于10%,与OSIRIS NO2最大偏差在16%左右,且大部分高度范围内偏差均在10%以内。
     基于OSIRIS临边气辉辐射数据,尝试了中间层臭氧的反演。从层析成像反演技术在卫星临边探测中的应用出发,经过改进得到了用于卫星临边二维剖面反演的有效快速算法,利用IRI气辉辐射亮度数据反演了二维气辉体发射率垂直剖面。气辉辐射本质是激发态大气O2(a1Δg)回到基态发出光子的现象,衡量气辉辐射大小的体发射率与O2(a1Δg)浓度成正比。基于奇氧族光化学反应循环,建立了以大气连续方程为机理的O2(a1Δg)光化学模型,从而将臭氧和O2(a1Δg)定量地联系起来。通过由臭氧到体发射的正向模拟,及利用气辉基于层析成像反演的体发射相比,验证了光化学模型的正确性。基于光化学模型,最终分别结合剥洋葱和牛顿迭代法反演了50-90km高度范围的中间层臭氧二维垂直剖面。从反演结果与SCIAMACHY臭氧V2.3版本数据比较中发现,利用牛顿迭代法比剥洋葱法精度更高,平均偏差在12%以内,除个别高度外偏差基本在10%以内。臭氧剖面在高度上呈指数分布,但可惜地是,在80km附近臭氧第二峰值结构并没有明显地识别出来。
     最后受气辉辐射层析成像反演的启发,提出了一种新的临边散射探测技术与反演方案,即结合DOAS和层析成像反演技术,可同时得到沿轨道和垂直两个方向上的二维垂直剖面。根据新技术的实现要求,反演首先用DOAS技术对临边散射数据进行光谱拟合,得到痕量气体沿视线的柱量,然后以基于加权乘代数重建技术算法的层析成像技术反演大气网格中痕量气体数密度。并以N02为例进行了反演试验,结果表明,反演剖面结构和假设剖面在结构和数值大小两个方面一致性较高,剖面中的典型位置廓线差异在15%以内,且40km以下小于5%。
     通过该研究,应用波长配对与加权乘代数重建技术联合SCIATRAN这种新的反演策略从临边散射辐射中反演高垂直分辨率的痕量气体廓线,从精度、速度以及高度范围扩展等方面是可行和可靠的;利用临边气辉辐射数据通过层析成像技术能反演得到中间层臭氧剖面,且提出的DOAS-层析成像临边散射反演技术用于痕量气体二维垂直剖面反演是可行的。
The atmospheric trace gases are atmospheric constituents of great importance. They are involved in the biogeochemical cycle by the effect of physics, chemistry, biology, and the earth process. The atmospheric trace gases play major role in the evolution of life on earth, atmospheric chemistry development, and the change of the global environment. Ozone is able to protect biological organisms from harmful solar ultraviolet radiation that has the potential of damaging organic macromolecules vital to life. Evolution of life on land is thought to have become possible because of ozone formation through oxygenic photosynthesis. The photolysis cycle of ozone has some important implications for the vertical structure of the Earth's atmospheric temperature. Furthermore, ozone is a tracer for environmental pollution caused by human activities. NO2 is of great importance in the catalytic destruction of ozone in the stratosphere, and it will result in great impacts to global atmospheric and ecologic environment, such as photochemical smog, acid rain, greenhouse effect. With the huge increase of the density of atmospheric NO2 led by the recently rapid development of industry, NO2 has become one of the most important indicators of the atmospheric pollution. From 1980s, the discovery of the ozone hole of the Antarctic pole and the increasing air pollution of the photochemical smog in the city promote the investigation of atmospheric trace gases and local environmental pollution. Consequently, the research on temporal and spatial distribution of atmospheric trace gases have recently been one of the front and focused issues.
     The observation of atmospheric trace gases has been studied from the ground, balloons, rocket, and the current satellite. In comparison with ground based spectrometer and the sonde aboard the balloon or rocket, the satellite based instrument, which traditionally involves nadir and occultation mode, is capable of observing the ozone and other trace gases at a higher spatial resolution with a significantly better global coverage. The nadir technique is capable of producing global maps of the total trace gas column with a high spatial resolution, but the retrieved profiles have very limited vertical resolution. The occultation technique can provide density profiles of trace gas with high vertical resolution, but it suffers from poor geographical coverage.
     In recent years, a new technique has been developed that measures the atmospheric limb scattered radiance at series tangent altitudes, which has been first applied in Solar Mesosphere Explorer (SME) by NASA (National Aeronautics and Space Administration) in 1981. This technique, combining the advantages of other techniques, provides vertical profiles of trace gas with high vertical resolution comparable to that of occultation measurements and with significantly better global coverage as nadir observations. One of the instruments is SCanning Imaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY) aboard the European Space Agency (ESA)'S ENVIronment SATellite (ENVISAT), launched on March 1,2002. The SCIAMACHY scans an area lying 3280 km ahead at the horizon in flight direction, from earth surface to about 92 km with a vertical step of about 3.3 km. The SCIAMACHY observes limb radiance in the wavelength range from the ultraviolet (214 nm) to the near infrared (2386 nm) with moderate resolution (0.24-1.48 nm). Another satellite instrument capable of limb observation is Optical Spectrograph and InfraRed Imaging system (OSIRIS) aboard Odin satellite, launched on February 20,2001. The OSIRIS consists of optical spectrograph (OS) and infrared imaging system (IRI), two dependent instruments. The OS and IRI measures UV-VIS limb scattered radiance between 7 and 70 km and limb airglow radiance in Oxygen InfraRed Atmospheric (OIRA) bands from 7 to 100 km with a vertical step of 2 km respectively. A number of studies on retrieval of vertical profiles of atmospheric trace gases have been carried out from limb scattered radiance, such as SCIAMACHY and OSIRIS measurements. Commonly, the wavelength pairing method or Differential Optical Absorption Spectroscopy (DOAS) technique is applied to limb radiance to obtain the retrieval vector or effective column abundances, from which the trace gas profiles are retrieved by optimal estimation limited in the stratosphere altitude ranges.
     In this thesis, a novel retrieval strategy, wavelength paring method coupling with Weighted Multiplicative Algebraic Reconstruction Technique (WMART), in which a forward model SCIATRAN (radiative TRANsfer model for SCIAMACHY) embeds, is employed to retrieve the profiles of trace gas from limb scattered radiance. Examples are presented using the SCIAMACHY limb measurements for the retrieval of vertical number density profiles of ozone and NO2. First, the limb radiance profiles are normalized with respect to a reference tangent altitude, and then the normalized radiances are combined to produce the retrieval vector, at last, the number density profiles are recovered using the WMART algorithm. A program package SCIA_JLU for batch retrieving ozone and NO2 profiles from SCIAMACHY LIB limb data has been developed, and it will cost 30 min and 15 min roughly for ozone and NO2 profiles retrieval from one orbit data respectively. It has reduced one order of magnitude of the impact of uncertain parameters, such as cloud, albedo, and aerosol, on radiance after wavelength pairing, but the sensitivity of radiance to retrieving trace gas has kept. The wavelengths suited to ozone and NO2 profiles retrieval are determined according to the features of limb radiance profile, weighting function of radiance, and weighting function of retrieval vector for ozone and NO2. The best wavelengths for ozone are in ozone Hartley bans in which the wavelengths 267.5 nm,286.5 nm,287.5 nm and 305.1 nm are paired with a weaker absorption wavelength 307.5 nm respectively, and Chappuis bands in which a triplet consisting of a strongly absorption wavelength 599 nm combined with the other two weaker absorbing wavelengths 525 nm and 668 nm on either side. Accordingly, the retrieval altitude region for ozone are decided, i.e.10-68 km. Three optimal wavelengths triplet combined similar to ozone Chappuis bands in the spectra range from 420 to 450 nm are chosen for NO2 retrieving and the corresponding retrieval altitude region is between 15 and 40 km. Furthermore, the weighting factor for each pair or triplet and for each tangent altitude for trace gas profile retrieving at every altitude are determined. The stratospheric and mesospheric number density profiles of ozone are retrieved and combined using SCIAMACHY limb radiance in ozone Hartley and Chappuis absorption bands, by the proposed scheme combined WMART and SCIATRAN which is applied to SCIAMACHY limb measurements. The stratospheric vertical profiles of NO2 are also derived from SCIAMACHY limb radiance in the wavelengths range between 435 and 451 nm by the technique just as the ozone retrieving method.
     A comprehensive sensitivity study is presented which investigate the error of the retrieved profiles introduced by incorrect or insufficient knowledge of uncertain parameters. The incorrect retrieved profiles caused by the major error sources, such as tangent altitude pointing, boundary layer visibility, stratospheric aerosol loading, aerosol extinction coefficient, surface albedo, cloud height, as well as cloud optical depth, compare with the assumed "correct" retrieved profiles to obtain the relative percent difference between them. The results suggest that, a total error due to the tangent altitude pointing bias achieves maximum, followed by the error result from insufficient aerosol parameters, and the error led by incorrect surface albedo and cloud is minimum, when the parameters are in their perfect accuracy. Whereas, in the stratosphere, the effect of aerosol parameters bias is higher than that of pointing bias, because of the huge error result from the presence of vocalic aerosol, i.e., like the error of retrieved ozone will approach as greater as 42% , even the error of retrieved NO2 will be beyond 100% at the altitude of 15 km. What's more, the error of both ozone and NO2 decreases with the increasing altitude generally, while the error led by only surface albedo and cloud depends on the solar zenith angle. The results also show that the errors of NO2 are greater than those of ozone caused by the same incorrect parameters.
     In order to evaluate this inversion strategy, the retrieved ozone profiles have been validated with SCIAMACHY ozone V2.3 provided by University of Bremen (so-called BU ozone), OSIRIS ozone V3.0 provided by University of Saskatchewan, and Microwave Limb Spectrometer (MLS) ozone, while the retrieved NO2 profiles have been validated with SCIAMACHY NO2 V3.1 provided by University of Bremen (BU NO2) and OSIRIS NO2 V3.0 provided by University of Saskatchewan. The coincidences between retrieved profiles and BU profiles are in the same location and time during 3 days due to retrieval from the same source data, while the other coincidences also occurs during 3 days and meet the coincidence criteria which are±5°latitude,±10°longitude. Generally, there is best agreement between the retrieved and BU ozone profiles, while the differences are within 15% , while the maximal difference between the retrieved and OSIRIS ozone is up to 20% , and the agreement between the retrieved and MLS ozone is the worst, while the difference is less than 10% only between 20 and 46 km. For NO2, between 15 and 40 km, the retrieved and BU profiles agree within 10% , and the difference between retrieved and OSIRIS profiles is up to about 16% while within 10% for most altitudes.
     Another retrieval of two dimensional (2D) profiles of mesospheric ozone has been investigated from OSIRIS limb airglow radiance at 1.27μm. First, the 2D profiles of Volume Emission Rate (VER) are derived from the limb airglow radiance observed by IRI, by the developed effective tomographic technique suitable for satellite application in limb geometry; then the ozone profiles between 50 and 90 km are retrieved from the VER profiles based on both the onion peeling method and Newton iteration method coupling with odd oxygen photochemical model which connected ozone and VER quantitatively. Note that this photochemical model has been illustrated to be reliable through the comparison between the VER profiles modeled by this model and retrieved from IRI limb airglow radiance. The ozone profiles decrease exponentially with the increasing altitude; however, the second peek near 80 km hasn't been identified evidently. From the comparison of selected ozone vertical profiles between retrieved and BU, the differences by Newton iteration are less than onion peeling method whose mean difference are within 12% and are almost 10% except for several altitudes.
     At last, a novel satellite based limb scatter observing with a new retrieving technique is proposed based on the work of mesospheric ozone retrieving. This new technique, which combines the differential optical absorption spectroscopy (DOAS) method and tomographic retrieving algorithm, is able to recover the 2D trace gas profiles from ultraviolet-visible limb scattered radiance. The requirement for this technique is presented, and the two steps including retrieving of column abundances through DO AS analyzing on limb radiance and the retrieving of trace gas profiles by tomography from column abundances has been described in detail. The test retrieval of NO2 profiles shows that there is a good agreement in both structure and magnitude between the retrieved and input test profiles excluding the great edged errors, while the differences are within 15% between 25 and 65 km, and even less within 5% below 40 km.
     It is concluded that the novel wavelength paring and WMART coupling with SCIATRAN strategy present a powerful and reliable technique to retrieve trace gas profiles with high accuracy, high vertical resolution, optimal speed, extent altitude region on a global scale, from satellite based limb scattered measurements made with high performance spectrometers. The mesospheric ozone can be recovered from limb airglow radiance by tomography, furthermore, the proposed technique based on the investigation of mesospheric ozone retrieval, which combines DOAS and tomography provides a new possible method for the retrieval of trace gas that allows for the 2D structure.
引文
[1]Roth C Z. Atmospheric ozone retrieval using radiance measurements from the Chappuis and Hartley-Huggsin absorption bands[D]. Saskatoon: University of Saskatchewan,2007
    [2]von Savigny C. Retrieval of stratospheric ozone density profiles from OSIRIS scattered sunlight observations[D]. Toronto:York University,2002
    [3]齐瑾.利用SCIAMACHY/ENVISAT资料开展中国区域NO2反演研究[D].北京:中国气象科学研究院,2007
    [4]Stolarski R S, Bloomfield P, McPeters R D, et al. Total ozone trends deduced from Nimbus 7 TOMS data[J]. Geophys. Res. Lett.,1991,18(6):1015-1018.
    [5]Hollandsworth S M, McPeters R D, Flynn L E, et al. Ozone trends deduced from combined Nimbus 7 SBUV and NOAA 11 SBUV/2 data, [J]. Geophys. Res. Lett.,1995,22(8):905-908.
    [6]Burrows J P, Weber M, Buchwitz M, et al. The global ozone monitoring experiment(GOME):mission concept, and first scientific results[J]. J. Atmos. Sci,1999,56:151-175.
    [7]Wenig M, Kuhl S, Beirle S, et al. Retrieval and analysis of stratospheric NO2 from the Global Ozone Monitoring Experiment[J]. J. Geophys. Res.,2004, 109(D4):D04315.
    [8]Richter A and Burrows J P. Tropospheric NO2 from GOME measurements[J]. Adv. Space Res.,2002,29(11):1673-1683.
    [9]Velders G J, Granier C, Portmann R W, et al. Global tropospheric NO2 column distributions:Comparing three-dimensional model calculations with GOME measurements[J]. J. Geophys. Res.,2001,106(D12):12643-12660.
    [10]McCormick M P, Veiga R E, and Chu W P. Stratospheric ozone profile and total ozone trends derived from the SAGE Ⅰ and SAGE Ⅱ data[J]. Geophys. Res. Lett.,1992,19(3):269-272.
    [11]Chu W P and McCormick M P. SAGE observations of stratospheric nitrogen dioxide[J]. J. Geophys. Res.,1986,91(D5):5465-5476.
    [12]Bruhl C, Drayson S R, Russell J M, Ⅲ, et al. Halogen Occultation Experiment ozone channel validation[J]. J. Geophys. Res.,1996,101(D6): 10217-10240.
    [13]Rusch D W, Bevilacqua R M, Randall C E, et al. Validation of POAM ozone measurements with coincident MLS, HALOE, and SAGE Ⅱ observations[J]. J. Geophys. Res.,1997,102(D19):23615-23627.
    [14]Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY:Mission objectives and measurement modes[J]. J. Atmos. Sci.,1999,56(2):127-150.
    [15]Noel S, Bovensmann H, and al J P B e. Global atmospheric monitoring with SCIAMACHY[J]. Physics and Chemistry of the Earth, Part C:Solar, Terrestrial & Planetary Science,1999,24(5):427-434.
    [16]Kaiser J w, Eichmann K-u, Noel S, et al. SCIAMACHY limb spectra[J]. Advances in Space Research,2004,34(4):715-720.
    [17]K. Bogumil, J. Orphal, T. Homann. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model:instrument characterization and reference data for atmospheric remote-sensing in the 230-2380nm region[J]. Journal of Photochemistry and Photobiology A:Chemistry 2003, 157(2-3):167-184.
    [18]Cunnold D M, Gray C R, and Merritt D C. Stratospheric serosol layer detection[J]. J. Geophys. Res.,1973,78(6):920-931.
    [19]Thomas G E, Barth C A, Hansen E R, et al. Scientific objectives of the Solar Mesosphere Explorer mission[J]. Pure and Applied Geophysics,1980,118(1): 591-615.
    [20]Rusch D W, Mount G H, Barth C A, et al. Solar mesosphere explorer ultraviolet spectrometer:measurements of ozone in the 1.0-0.1 mbar region[J]. J. Geophys. Res.,1984,89(D7):11677-11687.
    [21]Mount G H, Rusch D W, Noxon J F, et al. Measurements of stratospheric NO2 from the Solar Mesosphere Explorer satellite 1. an overview of the results[J]. J. Geophys. Res.,1984,89(D1):1327-1340.
    [22]McPeters R D, Janz S J, Hilsenrath E, et al. The retrieval of O3 profiles from limb scatter measurements:Results from the Shuttle Ozone Limb Sounding Experiment[J]. Geophys. Res. Lett.,2000,27(17):2597-2600.
    [23]Llewellyn E J, Lloyd N D, Degenstein D A, et al. The OSIRIS instrument on the Odin spacecraft[J]. Can. J. Phys,2004,82:411-422.
    [24]Strong K, Joseph B M, Dosanjh R, et al. Retrieval of vertical concentration profiles from OSIRIS UV-Visible limb spectra[J]. Can. J. Phys.,2002,80: 409-434.
    [25]von Savigny C, Haley C S, Sioris C E, et al. Stratospheric ozone profiles retrieved from limb scattered sunlight radiance spectra measured by the OSIRIS instrument on the Odin satellite[J]. Geophys. Res. Lett.,2003, 30(14):1755-1758.
    [26]Degenstein D A, Bourassa A E, Roth C Z, et al. Limb scatter ozone retrieval from 10 to 60 km using a Multiplicative Algebraic Reconstruction Technique[J]. Atmos. Chem. Phys.,2009,9(17):6521-6529.
    [27]Wang Z, Chen S, Jin L, et al. Ozone profiles retrieval from SCIAMACHY Chappuis-Wulf limb scattered spectra using MART[J]. Sci. China Ser. G-Phys. Mech. Astron.,2011,54(2):273-280.
    [28]Kaiser J W. Atmospheric parameter retrieval from UV-vis-NIR limb scattering measurements[D]. Bremen:University of Bremen,2001
    [29]Haley C S, von Savigny C, Brohede S, et al. A comparison of methods for retrieving stratospheric ozone profiles from OSIRIS limb-scatter measurements[J]. Adv. Space Res.,2004,34(4):169-774.
    [30]Aruga T and Heath D F. Determination of vertical ozone distributions by spacecraft measurements using a limb-scan technique[J]. Appl. Opt.,1982, 21(16):3047-3054.
    [31]Guo X and Lu D. Feasibility study for joint retrieval of air density and ozone in the stratosphere and mesosphere with the limb-scan technique[J]. Appl. Opt.,2006,45(35):9021-9030.
    [32]Auvinen H, Oikarinen L, and Kyrola E. Inversion algorithms for recovering minor species densities from limb scatter measurements at UV-visible wavelengths[J]. J. Geophys. Res.,2002,107(D13):4172.
    [33]Rohen G J, von Savigny C, Llewellyn E J, et al. First results of ozone profiles between 35 and 65km retrieved from SCIAMACHY limb spectra and observations of ozeone depletion[J]. Advances in Space Research,2006, 37:2263-2268.
    [34]Flittner D E, Bhartia P K, and Herman B M. O3 profiles retrieved from limb scatter measurements:Theory[J]. Geophys. Res. Lett.,2000,27(17): 2601-2604.
    [35]McDade I C, Strong K, Haley C S, et al. A method for recovering stratospheric minor species densities from the Odin/OSIRIS scattered-sunlight measurements [J]. Can. J. Phys.,2002,80:395-408.
    [36]Haley C S, Brohede S M, Sioris C E, et al. Retrieval of stratospheric O3 and NO2 profiles from Odin Optical Spectrograph and Infrared Imager System (OSIRIS) limb-scattered sunlight measurements [J]. J. Geophys. Res.,2004, 109(D16303):1-19.
    [37]Rozanov A, Bovensmann H, Bracher A, et al. NO2 and BrO vertical profile retrieval from SCIAMACHY limb measurements:Sensitivity studies[J]. Advances in Space Research,2005,36(5):846-854.
    [38]Sioris C E, Haley C S, McLinden C A, et al. Stratospheric profiles of nitrogen dioxide observed by Optical Spectrograph and Infrared Imager System on the Odin satellite[J]. J. Geophys. Res.,2003,108(D7):4215.
    [39]Sonkaew T, Rozanov V V, von Savigny C, et al. Cloud sensitivity studies for stratospheric and lower mesospheric ozone profile retrievals from measurements of limb scattered solar radiation[J]. Atmos. Meas. Tech.,2009, 2(1):653-678.
    [40]Glatthor N, von Clarmann T, Fischer H, et al. Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra:a sensitivity study[J]. Atmos. Chem. Phys.,2006,6(10):2767-2781.
    [41]Fischer H, Birk M, Blom C, et al. MIPAS:an instrument for atmospheric and climate research[J]. Atmos. Chem. Phys.,2008,8(8):2151-2188.
    [42]Thomas R J, Barth C A, Rottman G J, et al. Ozone density distribution in the mesosphere (50-90 km) measured by the SME limb scanning near infrared spectrometer[J]. Geophys. Res. Lett.,1983,10(4):245-248.
    [43]Degenstein D A. Atmospheric volume emission tomography from a satellite platform[D]. Saskatoon:University of Saskatchewan,1999
    [44]Steck T, Hophfner M, von Clarmann T, et al. Tomographic retrieval of atmospheric parameters from infrared limb emission observations[J]. Appl. Opt.,2005,44(16):3291-3301.
    [45]薛庆生,王淑荣,李福田.光栅色散临边成像光谱仪的研究[J].光学学报,2010,30(5):1516-1521.
    [46]Evans W F J and Llewellyn E J. Molecular oxygen emissions in the airglow[J]. Ann. Geophys.,1970,26:167-178.
    [47]Brewer A W, McElroy C T, and Kerr J B. Nitrogen dioxide concentration in the atmosphere[J]. Nature,1973,246:129-133.
    [48]Noxon J F, Whipple E C, and Hyde R S. Stratospheric NO21. Observational method and behavior at mid-latitude[J]. J. Geophys. Res.,1979,84(C8): 5047-5065.
    [49]Noxon J F. Stratospheric NO22. Global behavior[J]. J. Geophys. Res.,1979, 84(C8):5067-5076.
    [50]Noxon J F. Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy[J]. Science,1975,189(4202): 547-549.
    [51]Solomon S and Garcia R R. On the distribution of nitrogen dioxide in the high-latitude stratosphere [J]. J. Geophys. Res.,1983,88(C9):5229-5239.
    [52]Denis L, Roscoe H K, Chipperfield M P, et al. A new software suite for NO2 vertical profile retrieval from ground-based zenith-sky spectrometers [J]. J. Quant. Spectrosc. Rad. Transfer,2005,92:321-333.
    [53]Vlemmix T, Piters A J M, Stammes P, et al. Retrieval of tropospheric NO2 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction[J]. Atmos. Meas. Tech.,2010,3: 1287-1305.
    [54]McElroy C T. Stratospheric nitrogen dioxide concentrations as determined from limb brightness measurements made on June 17,1983[J]. J. Geophys. Res.,1988,93(D6):7075-7083.
    [55]Jarisch M and Offermann D. Measurements of stratospheric trace gases by a balloon-borne infrared spectrometer in France[J]. Advances in Space Research,1994,14(9):185-188.
    [56]Evans W F J and Llewellyn E J. Measurements of mesospheric ozone from observations of the 1.27μ band[J]. Radio Sci.,1972,7(1):45-50.
    [57]McDade I C, Lloyd N D, and Llewellyn E J. A rocket tomography measurement of N2+ 3914 A emission in an Auroral Arc[J]. Planet. Space Sci., 1991,39:895-906.
    [58]Klenk K F, Bhartia P K, Kaveeshwar V G, et al. Total ozone determination from the Backscattered Ultraviolet (BUV) experiment[J]. J. Appl. Meteor., 1982,21(11):1672-1684.
    [59]Silva A A. A quarter centenary of TOMS total column ozone measurement over Brazil[J]. Journal of atmospheric and Solar-Terrestrial Physics,2007,69: 1447-1458.
    [60]Joiner J and Bhartia P K. Accurate determination of total ozone using SBUV continuous spectral scan measurements [J]. J. Geophys. Res.,1997,102(D11): 12957-12969.
    [61]Kramer H J. Meteor-3M-1. [EB/OL]. [2011-05-06]. http://events.eoportal.org/presentations/129/7469.html.
    [62]Leroy M, Deuze J L, Breon F M, et al. Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS[J]. J. Geophys. Res.,1997,102(D14):17023-17037.
    [63]Anton M, Lopez M, Vilaplana J M, et al. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula[J]. J. Geophys. Res.,2009,114(D14):D14307.
    [64]Huang F, Liu N, Zhao M, et al. Vertical ozone profiles deduced from measurements of SBUS on FY-3 satellite[J]. Chinese Science Bulletin,2010, 55(10):943-948.
    [65]English S J, Renshaw R J, Dibben P C, et al. A comparison of the impact of TOVS arid ATOVS satellite sounding data on the accuracy of numerical weather forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 2000,126(569):2911-2931.
    [66]Shimoda H and Ogawa T. Interferometric Monitor for Greenhouse Gases (IMG)[J]. Adv. Space Res.,2000,25(5):937-946.
    [67]Seemann S W, Li J, Menzel W P, et al. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances[J]. J. Appl. Meteor.,2003,42(8):1072-1091.
    [68]Bremer H, Kar J, Drummond J R, et al. Spatial and temporal variation of MOPITT CO in Africa and South America:A comparison with SHADOZ ozone and MODIS aerosol[J]. J. Geophys. Res.,2004,109(D12):D12304.
    [69]Monahan K P, Pan L L, McDonald A J, et al. Validation of AIRS v4 ozone profiles in the UTLS using ozonesondes from Lauder, NZ and Boulder, USA[J]. J. Geophys. Res.,2007,112(D17):D17304.
    [70]Worden H M, Logan J A, Worden J R, et al. Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes:Methods and initial results[J]. J. Geophys. Res.,2007,112(D3):D03309.
    [71]Boynard A, Clerbaux C, Coheur P F, et al. Measurements of total and tropospheric ozone from IASI:comparison with correlative satellite, ground-based and ozonesonde observations[J]. Atmos. Chem. Phys.,2009, 9(16):6255-6271.
    [72]漆成莉.FY-3A气象卫星红外分光计透射率计算及大气参数模拟反演试验[D].北京:中国气象科学研究院,2004
    [73]Poole L R and Pitts M C. Polar stratospheric cloud climatology based on Stratospheric Aerosol Measurement Ⅱ observations from 1978 to 1989[J]. J. Geophys. Res.,1994,99(D6):13083-13089.
    [74]Newchurch M J, Cunnold D M, and Cao J. Intercomparison of Stratospheric Aerosol and Gas Experiment (SAGE) with Umkehr[64] and Umkehr[92] ozone profiles and time series:1979– 1991 [J]. J. Geophys. Res.,1998, 103(D23):31277-31292.
    [75]Shiotani M and Hasebe F. Stratospheric ozone variations in the equatorial region as seen in Stratospheric Aerosol and Gas Experiment data[J]. J. Geophys. Res.,1994,99(D7):14575-14584.
    [76]Hitchman M H, McKay M, and Trepte C R. A climatology of stratospheric aerosol[J]. J. Geophys. Res.,1994,99(D10):20689-20700.
    [77]Russell J M, III, Farmer C B, Rinsland C P, et al. Measurements of Odd Nitrogen Compounds in the Stratosphere by the ATMOS Experiment on Spacelab 3[J]. J. Geophys. Res.,1988,93(D2):1718-1736.
    [78]Lucke R.L., Korwan D.R., Bevilacqua R.M.et al. The polar ozone and aerosol measurement (POAM) III instrument and early validation results [J]. J. Geophys. Res.,1999,104(18):18785-18799.
    [79]Tanaka T, Nakajima H, Sugita T, et al. Tangent height registration method for the Version 1.4 data retrieval algorithm of the solar occultation sensor ILAS-II[J]. Appl. Opt,2007,46(29):7196-7201.
    [80]Bertaux J, Megie G, Widemann T, et al. Monitoring of ozone trend by stellar occultations:The GOMOS instrument[J]. Adv. Space Res.,1991,11(3): 237-242.
    [81]Dufour D G, Drummond J R, McElroy C T, et al. Intercomparison of simultaneously obtained Infrared (4.8 μm) and visible (515-715 μm) ozone spectra using ACE-FTS and MAESTRO[J]. The Journal of Physical Chemistry A,2005,109(39):8760-8764.
    [82]J. C. Gille, P. L. Bailey, and Russell J M. Temperature and composition measurements from the l.r.i.r. and l.i.m.s. experiments on Nimbus 6 and 7[J]. Phil. Trans. R. Soc. A,1980,296:205-218.
    [83]Roche A E, Kumer J B, Mergenthaler J L, et al. The Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS:Experiment description and performance[J]. J. Geophys. Res.,1993,98(D6):10763-10775.
    [84]Taylor F W, Rodgers C D, Whitney J G, et al. Remote sensing of atmospheric structure and composition by pressure modulator radiometry from space:The ISAMS experiment on UARS[J]. J. Geophys. Res.,1993,98(D6): 10799-10814.
    [85]Jackson D R. Assimilation of EOS MLS ozone observations in the Met Office data-assimilation system[J]. Quarterly Journal of the Royal Meteorological Society,2007,133(628):1771-1788.
    [86]Francis G L, Edwards D P, Lambert A, et al. Forward modeling and radiative transfer for the NASA EOS-Aura High Resolution Dynamics Limb Sounder (HIRDLS) instrument[J]. J. Geophys. Res.,2006,111(D13):D13301.
    [87]Kuh1 S, Pukite J, Deutschmann T, et al. SCIAMACHY limb measurements of NO2, BrO and OCIO. Retrieval of vertical profiles:Algorithm, first results, sensitivity and comparison studies[J]. Adv. Space Res.,2008,42(10): 1747-1764.
    [88]von Savigny C, Rozanov A, Bovensmann H, et al. The ozone hole breakup in September 2002 as seen by SCIAMACHY on ENVISAT[J]. J. Atmos. Sci., 2005,62:721-734.
    [89]Barth C A, Rusch D W, Thomas R J, et al. Solar Mesosphere Explorer: Scientific objectives and results[J]. Geophys. Res. Lett.,1983,10(4): 237-240.
    [90]Murtagh D, Frisk U, Merino F, et al. An overview of the Odin atmospheric mission[J]. Can. J. Phys.,2002,80:309-319.
    [91]Rault D F. Ozone profile retrieval from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements[J]. J. Geophys. Res.,2005, 110(D9):D09309.
    [92]Flynn L E, Homstein J, and Hilsenrath E. The ozone mapping and profiler suite (OMPS). The next generation of US ozone monitoring instruments [A]. Proceeding of Proceddings Quadrennial Ozone Symposium.2004 [C].
    [93]薛庆生,王淑荣,李福田等.用于大气遥感探测的临边成像光谱仪[J].光学精密工程,2010,18(4):823-830.
    [94]薛庆生.用于空间大气遥感的临边成像光谱仪研究[D].长春:中国科学院长春光学精密机械与物理研究所,2010
    [95]Khabibrakhmanov I K, Degenstein D A, and Llewenllyn E J. Mesospheric ozone:determination from orbit with the OSIRIS instrument on Odin[J]. Can. J. Phys,2002,80:493-504.
    [96]Wiensz J T. Ozone retrievals from the oxygen infrared channels of the OSIRIS infrared imager[D]. Saskatoon:University of Saskatchewan,2005
    [97]Suzuki H, Shiokawa K, Tsutsumi M, et al. Atmospheric gravity waves identified by ground-based observations of the intensity and rotational temperature of OH airglow[J]. Polar Science,2008,2:1-8.
    [98]Degenstein D A, Llewellyn E J, and Lloyd N D. Volume emission rate tomography from a statellite platform[J]. Appl. Opt.,2003,42(8):1441-1450.
    [99]Bailey J, Meadows V S, Chamberlain S, et al. The temperature of the Venus mesosphere from O2(a1△g) airglow observations[J]. ICARUS,2008,197: 247-259.
    [100]Gerard J-C, Saglam A, Piccioni G, et al. Atomic oxygen distribution in the Venus mesosphere from observations of O2 infrared airglow by VIRTIS-Venus Express[J]. ICARUS,2009,199:264-272.
    [101]Xu J, Smith A K, and Wu Q. A retrieval algorighm for satellite remote sensing of the nighttime global distribution of the sodium layer[J]. Jounal of Amospheric and Solar-Terrestrial Physics,2005,67:739-748.
    [102]秦瑜,赵春生.大气化学基础[M].北京:气象出版社,2003.
    [103]Herzberg G. Photography of the infra-red solar spectrum of wavelength 12,900 A[J]. Nature,1934,133(3368):759.
    [104]Vallance Jones A and Gattinger R L. The seasonal variation and excitation mechanism of the 1·58μ1△g-3∑g—Twilight airglow band[J]. Planetary and Space Science,1963,11(8):961-975.
    [105]Gattinger R L and Vallance Jones A. The 1△g-3∑g-O2 bands in the twilight and day airglow[J]. Planetary and Space Science,1966,14(1):1-12.
    [106]Noxon J F and Vallance Jones A. Observation of the (0,0) band of the (1△g-3∑g-) system of oxygen in the day and twilight airglow[J]. Nature, 1962,196(4850):157-158.
    [107]Noxon J F. Oxygen spectra in dayglow, twilight, and during an eclipse[J]. Nature,1967,213(5074):350-352.
    [108]Haslett J C, Megill L R, and Schiff H I. Rocket measurements of O2(1△g)[J]. Can. J. Phys.,1969,47(21):2351-2354.
    [109]Evans W F J, Hunten D M, Llewellyn E J, et al. Altitude profile of the infrared atmospheric system of oxygen in the dayglow[J]. J. Geophys. Res., 1968,73(9):2885-2896.
    [110]Thomas R J, Barth C A, Rusch D W, et al. Solar Mesosphere Explorer near-infrared spectrometer:Measurements of 1.27-μm radiances and the inference of mesospheric ozone[J]. J. Geophys. Res.,1984,89(D6): 9569-9580.
    [111]Russell III J M, Mlynczak M G, Gordley L L, et al. An overview of the SABER experiment and preliminary calibration results [A]. Proceeding. 1999[C]. Bellingham:Society of Photo-Optical Instrumentation Engineers.
    [112]Lopez-Gonzalez M J, Lopez-Moreno J J, Lopez-Valverde M A, et al. Behavior of the O2 infrared atmospheric (0-0) band in the middle atmosphere during evening twilight and at nigh[J]. Planet. Space Sci.,1989,37:61-72.
    [113]Sica R J. Inferring middle-atmospheric ozone height profiles from ground-based measurements of molecular oxygen emission rates. Ⅰ-Model description and sensitivity to inputs[J]. Can. J. Phys.,1991,69:1069-1075.
    [114]Mlynczak M G and Olander D S. On the utility of the molecular oxygen dayglow emissions as proxies for middle atmospheric ozone[J]. Geophys. Res. Lett.,1995,22(11):1377-1380.
    [115]Mlynczak M G, Solomon S, and Zaras D S. An updated model for O2(a1△g) concentrations in the mesosphere and lower thermosphere and implications for remote sensing of ozone at 1.27 μm[J]. J. Geophys. Res.,1993,98(D10): 18639-18648.
    [116]Degenstein D, Llewellyn E J, and Lloyd N D. Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager[J]. Can. J. Phys.,2004,82:501-515.
    [117]Mlynczak M G, Marshall B T, Martin-Torres F J, et al. Sounding of the atmosphere using broadband emission radiometry observations of daytime mesospheric O2(1△) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates[J]. J. Geophys. Res., 2007,112(D15):D15306.
    [118]Iwagami N and Ogawa T. An Antarctic no density profile deduced from the gamma band airglow[J]. Planet Space Sci,1980,28(8):867-873.
    [119]Gumbel J, Fan Z Y, Waldemarsson T, et al. Retrieval of global mesospheric sodium densities from the Odin satellite[J]. Geophys. Res. Lett.,2007,34(4): L04813.
    [120]Fan Z Y, Plane J M C, Gumbel J, et al. Satellite measurements of the global mesospheric sodium layer[J]. Atmos. Chem. Phys.,2007,7:4107-4115.
    [121]Casadio S, Retscher C, Lang R, et al. Retrieval of mesospheric sodium densities from SCIAMACHY daytime limb spectra[A]. Proceeding of Envisat Symposium.2007[C]. Montreux.
    [122]郭霞.紫外临边技术同时遥感中层大气密度和臭氧浓度垂直分布的可行性研究[D].北京:中国科学院大气物理研究所,2004
    [123]Sioris C E, Kurosu T P, Martin R V, et al. Stratospheric and tropospheric NO2 observed by SCIAMACHY:first results[J]. Adv. Space Res.,2004,34: 780-785.
    [124]Kokhanovsky A A and Rozanov V V. Retrieval of NO2 vertical columns under cloudy conditions:A sensitivity study based on SCIATRAN calculations[J]. Atmospheric Research,2009,93:695-699.
    [125]徐果明.反演理论及其应用[M].北京:地震出版社,2003.
    [126]McDade I C and Llewellyn E J. Satellite airglow limb tomography:Methods for recovering structured emission rates in the mesospheric airglow layer[J]. Can. J. Phys.,1993,71:552-563.
    [127]Gordonb R, Benderb R, and Hermanb G T. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. J. Theor. Biol,1970,29(3):471-481.
    [128]Thomson F S and Tyler G L. Radon and Abel transform equivalence in atmospheric radio occultation[J]. Radio Sci.,2007,42(3): RS3024.1-RS3024.6.
    [129]Shepp L A and Vardi Y. Maximum likelihood reconstruction for emission tomography[J]. IEEE Trans Med Imaging,1982,1(2):113-122.
    [130]Cormack A M. Representation of a Function by Its Line Integrals, with Some Radiological Applications [J]. J. Appl. Phys,1963,34(9):2722-2727.
    [131]Solomon S C, Hays P B, and Abreu V J. The auroral 6300 A emission: Observations and modeling[J]. J. Geophys. Res.,1988,93(A9):9867-9882.
    [132]Roble R G and Hays P B. A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data[J]. Planetary and Space Science,1972,20(10):1727-1744.
    [133]Dribinski V, Ossadtchi A, Mandelshtam V A, et al. Reconstruction of Abel-transformable images:The Gaussian basis-set expansion Abel transform method[J]. Rev. Sci. Instrum.,2002,73:2634-2642.
    [134]Cormack A M. Representation of a function by its line integrals, with some radiological applications. II[J]. J. appl. Phys.,1964,35(10):2908-2913.
    [135]Puro A. Cormack-type inversion of exponential Radon transform [J]. Inverse Problems,2001,17:179-188.
    [136]S.Frey, S.B.Mende and H.U. Frey. Satellite limb tomography applied to airglow of the 630 run emission[J]. Journal of Geophysics Research,2001, 106:21367-21380.
    [137]Pan V and Schreiber R. An improved Newton iteration for the generalized inverse of a matrix, with applications [J]. SIAM Journal on Scientific and Statistical Computing,1991,12(5):1109-1130.
    [138]Tukiainen S, Hassinen S, Seppala A, et al. Description and validation of a limb scatter retrieval method for Odin/OSIRIS[J]. J. Geophys. Res.,2008, 113(D4):D04308.
    [139]Solomon S. Stratospheric ozone depletion:A review of concepts and history[J]. Rev. Geophys.,1999,37(3):275-316.
    [140]Dobson G M B, Kimball H H, and Kidson E. Observations of the amount of ozone in the Earth's atmosphere, and Its relation to other geophysical conditions. Part IV[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1930,129(811): 411-433.
    [141]Brewer A W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere[J]. Quarterly Journal of the Royal Meteorological Society,1949,75(326):351-363.
    [142]Chapman S. A theory of upper atmospheric ozone[J]. Mem. R. Meteorol. Soc.,1930,3:103-125.
    [143]Bates D R and Nicolet M. Atmospheric hydrogen[J]. Publications of the Astronomical Society of the Pacific,1950,62(365):106-110.
    [144]Crutzen P J. The influence of nitrogen oxides on the atmospheric ozone content[J]. Quarterly Journal of the Royal Meteorological Society,1970, 96(408):320-325.
    [145]Johnston H. Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust[J]. Science,1971,173(3996):517-522.
    [146]Crutzen P J. Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere[J]. J. Geophys. Res.,1971,76(30):7311-7327.
    [147]Stolarski R S and Cicerone R J. Stratospheric chlorine:a possible sink for ozone[J]. Can. J. Chem.,1974,52:1610-1615.
    [148]Molina M J and Rowland F S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalyzed destruction of ozone[J]. Nature,1974,249:810-812.
    [149]Cicerone R J, Stolarski R S, and Walters S. Stratospheric ozone destruction by man-made chlorofluoromethanes[J]. Science,1974,185(4157): 1165-1167.
    [150]Rowland F S and Molina M J. Chlorofluoromethanes in the environment[J]. Rev. Geophys.,1975,13(1):1-35.
    [151]Crutzen P J. Estimates of possible future ozone reductions from continued use of fluoro-chloro-methanes (CF2Cl2, CFCl3[J]. Geophys. Res. Lett., 1974,1(5):205-208.
    [152]Solomon S, Garcia R R, Rowland F S, et al. On the depletion of Antarctic ozone[J]. Nature,1986,321(6072):755-758.
    [153]Molina L T and Molina M J. Production of Cl2O2 from the self-reaction of the ClO radical[J]. J. Phys. Chem.,1987,91:433-436.
    [154]Farman J C, Gardiner B G, and Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction[J]. Nature,1985,315(6016): 207-210.
    [155]Stolarski R S, Krueger A J, Schoeberl M R, et al. Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease[J]. Nature,1986, 322(6082):808-811.
    [156]Fahey D W, Kawa S R, Woodbridge E L, et al. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion[J]. Nature,1993,363(6429):509-514.
    [157]Hofmann D J and Solomon S. Ozone destruction through heterogeneous chemistry following the eruption of El Chich6n[J]. J. Geophys. Res.,1989, 94(D4):5029-5041.
    [158]Wayne R P. The photochemistry of ozone[J]. Atmospheric Environment, 1987,21(8):1683-1694.
    [159]汪自军.基于Limb散射的大气体发射观测模拟[D].长春:吉林大学,2008
    [160]Dobson G M B. The laminated structure of the ozone in the atmosphere[J]. Quarterly Journal of the Royal Meteorological Society,1973,99(422): 599-607.
    [161]Richter A, Burrows J P, Nusz H, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature,2005,437(7055): 129-132.
    [162]金丽华.大气limb辐射亮度模拟及其敏感性分析[D].长春:吉林大学,2009
    [163]King L V. On the complex anisotropic molecule in relation to the dispersion and scattering of light[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1923, 104(726):333-357.
    [164]Dalgarno A and Williams D A. Raman and Rayleigh scattering of Lyman a by molecular hydrogen[J]. Monthly Notices of the Royal Astronomical Society,1962,124:313-319.
    [165]Bates D R. Rayleigh scattering by air[J]. Planetary and Space Science,1984, 32(6):785-790.
    [166]Young A T. Revised depolarization corrections for atmospheric extinction[J]. Appl. Opt,1980,19(20):3427-3428.
    [167]Bengt E. The Refractive Index of Air[J]. Metrologia,1966,2(2):71.
    [168]Sander S P, Friedl R R, Ravishankara A R, et al. Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 15[M]. California:JPL Publication,2006.
    [169]Minschwaner K, Anderson G P, Hall L A, et al. Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5 cm-1 resolution[J]. J.Geophys.Res.,1992,97(D9):10103-10108.
    [170]Lewis B R, Gibson S T, Hawes F T, et al. A new model for the Schumann-Runge bands of O2[J]. Phys. Chem. Earth,2001,26(7):519-526.
    [171]Rothman L S, Jacquemart D, Barbe A, et al. The HITRAN 2004 molecular spectroscopic database[J]. J. Quant. Spectrosc. Rad. Transfer,2005,96(2): 139-204.
    [172]Buchwitz M, Rozanov V V, and Burrows J P. Development of a correlated-k distribution band model scheme for the radiative transfer program GOMETRAN/SCIATRAN for retrieval of atmospheric constituents from SCIAMACHY/ENVISAT-1 data[A]. Proceeding of Satellite Remote Sensing of Clouds and the Atmosphere III.1988[C]. Barcelona, Spain.
    [173]Hess M, Koepke P, and Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bulletin of the American Meteorological Society,1998,79(5):831-844.
    [174]Henyer L G and Greenstein J L. Diffuse radiation in the galaxy[J]. Astrophys. J,1941,93:70-83.
    [175]Nicodemus F E. Directional reflectance and emissivity of an opaque surface[J]. Appl. Opt.,1965,4(7):767-773.
    [176]Vountas M, Rozanov V V, and Burrows J P. Ring effect:Impact of rotational raman scattering on radiative trasfer in Earth's atmosphere[J]. J. Quant. Spectrosc. Rad. Transfer,1998,60(6):943-961.
    [177]Balluch M and Lary D J. Refraction and atmospheric photochemistry [J]. J. Geophys. Res.,1997,102(D7):8845-8854.
    [178]Edlen B. The refractive index of air[J]. Metrologia,1966,2(2):71.
    [179]Peck E R and Reeder K. Dispersion of air[J]. J. Opt. Soc. Am.,1972,62(8): 958-962.
    [180]杨春燕,陈圣波,汪自军.大气辐射在臭氧反演中的应用[J].安徽农业科学,2010,38(6):3305-3308.
    [181]汪自军,陈圣波,周云轩.大气臭氧遥感中光化学模型及其反应系数解算[J].吉林大学学报.地球科学版,2010,40(6):1485-1490.
    [182]王庚辰.我国大气臭氧探测技术的进展现状[J].地球科学进展,1991,6(6):31-36.
    [183]Parrish A, Connor B J, Tsou J J, et al. Ground-based microwave monitoring of stratospheric ozone[J]. J. Geophys. Res.,1992,97:2541-2546.
    [184]陈洪滨.中高层大气研究的空间探测[J].地球科学进展,2009,24(3):229-241.
    [185]Froidevaux L, Waters J W, Read W G, et al. Global ozone observations from the UARS MLS:An overview of zonal-mean results[J]. Journal of Atmospheric Sciences,1994,51(20):2846-2866.
    [186]Gottwald M, Bovensmann H, Lichtenberg G, et al. SCIAMACHY, monitoring the changing Earth's atmosphere[M]. Germany:DLR,2006.
    [187]Chen S. A new technique for atmospheric chemistry observations [A]. Proceeding of Remote Sensing and Infrared Devices and Systems.2006[C]: SPIE.
    [188]Noel S, Bovensmann H, Wuttke M W, et al. Nadir, limb, and occultation measurements with SCIAMACHY[J]. Adv. Space Res.,2002,29(11): 1819-1824.
    [189]Rozanov V V, Buchwitz M, Eichmann K-U, et al. SCIATRAN-A new radiative transfer model for geophysical applications in the 240-2400 nm spectral region:The pseudo-spherical version[J]. Adv. Space Res.,2002, 29(11):1831-1835.
    [190]Bourassa A E, Degenstein D A, and Llewellyn E J. SASKTRAN:A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight[J]. J. Quant. Spectrosc. Rad. Transfer,2008,109(1):52-73.
    [191]Loughman R P, Griffioen E, Oikarinen L, et al. Comparison of radiative transfer models for limb-viewing scattered sunlight measurements[J]. J. Geophys. Res.,2004,109(D6):D06303.
    [192]Griffioen E and Oikarinen L. LIMBTRAN:A pseudo three-dimensional radiative transfer model for the limb-viewing imager OSIRIS on the ODIN satellite[J]. J. Geophys. Res.,2000,105(D24):29717-29730.
    [193]Rozanov A, Rozanov V, and Burrows J P. A numerical radiative transfer model for a spherical planetary atmosphere:combined differential-integral approach involving the Picard iterative approximation[J]. J. Quant. Spectrosc. Rad. Transfer,2001,69:491-512.
    [194]Puckite J, Kiihl S, Deutschmann T, et al. Accounting for the effect of horizontal gradients in limb measurements of scattered sunlight[J]. Atmos. Chem. Phys.,2008,8:3045-3060.
    [195]Oikarinen L, Sihvola E, and Kyrola E. Multiple scattering radiance in limb-viewing geometry[J]. J. Geophys. Res.,1999,104(D24):31261-31274.
    [196]Oikarinen L. Polarization of light in UV-visible limb radiance measurements[J]. J. Geophys. Res.,2001,106(D2):1533-1544.
    [197]Oikarinen L. Effect of surface albedo variations on UV-visible limb-scattering measurements of the atmosphere[J]. J. Geophys. Res.,2002, 107(D19):4404.
    [198]Postylyakov O V. Radiative transfer model MCC++with evaluation of weighting functions in spherical atmosphere for use in retrieval algorithms[J]. Advances in Space Research,2004,34:721-726.
    [199]McLinden C A, McConnell J C, and Griffloen E. A vector radiative-transfer model for the Odin/OSIRIS project[J]. Can. J. Phys,2002,80:375-393.
    [200]Postylyakov O V. Linearized vector radiative transfer model MCC++for a spherical atmosphere[J]. J. Quant. Spectrosc. Rad. Transfer,2004,88(1-3): 297-317.
    [201]Rozanov A, Rozanov V, Buchwitz M, et al. SCIATRAN 2.0-A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region[J], Adv. Space Res.,2005,36:1015-1019.
    [202]Plass G N, Kattawar G W, and Catchings F E. Matrix operator theory of radiative transfer.1:Rayleigh scattering [J]. Appl. Opt.,1973,12(2):314-329.
    [203]Kattawar G W, Plass G N, and Catchings F E. Matrix operator theory of radiative transfer.2:Scattering from maritime haze[J]. Appl. Opt.,1973, 12(5):1071-1084.
    [204]Barkstrom B R. A finite difference method of solving anisotropic scattering problems[J]. J. Quant. Spectrosc. Rad. Transfer,1976,16(9):725-739.
    [205]Rozanov A V, Rozanov V V, and Burrows J P. Combined differential-integral approach for the radiation field computation in a spherical shell atmosphere: Nonlimb geometry [J]. J. Geophys. Res.,2000,105(D18):22937-22942.
    [206]Eichmann K-U, Kaiser J W, von Savigny C, et al. SCIAMACHY limb measurements in the UV/Vis spectral region:first results[J]. Adv. Space Res., 2004,34:775-779.
    [207]Brooker G, Ferguson C, Goldsmith P, et al. EnviView User Guide. [M/OL]. 2002 [2011-05-04]. http://earth.esa.int/services/download/EnviViewUserGuide v2.07.pdf.
    [208]Slijkhuis S, Wahl S, Aberle B, et al. A new tool for SCIAMACHY level 1B to 1C processing[A]. Proceeding of Atmospheric Science Conference.2006[C]. Frascati.
    [209]DLR. SCIAMACHY Command Line Tool SciaLlc Software User's Manual. [M/OL].2008 [2011-05-04]. http://envisat.esa.int/services/SciaL1C tool/SciaL1c SUM 6.0.pdf.
    [210]汪自军.太阳同步轨道理解[EB/OL]. (2009-04-08) [2011-05-03]. http://bbs.sciencenet.cn/home.php?mod=space&uid=43777&do=blog & id=22 5095.
    [211]Llewellyn E J, Degenstein D A, Lloyd N D, et al. First results from the OSIRIS instrument on-board Odin[J]. Sodankyl"a Geophysical Observatory Publications,2003,92:41-47.
    [212]Platt U. Differential optical absorption spectroscopy (DOAS)[J]. Chem. Series,1994,127:27-83.
    [213]Eisinger M, Richter A, LadstATter-WeiBEnmayer A, et al. DOAS zenith sky observations:1. BrO measurements over Bremen (53(?)) 1993-1994[J]. Journal of Atmospheric Chemistry,1997,26(1):93-108.
    [214]Petelina S V, Llewellyn E J, Degenstein D A, et al. Odin/OSIRIS limb observations of polar mesospheric clouds in 2001-2003 [J]. Journal of atmospheric and Solar-Terrestrial Physics,2006,68(1):42-55.
    [215]Petelina S V, Degenstein D A, Llewellyn E J, et al. Correlation of PMC relative brightness and altitudes observed by Odin/OSIRIS in the Northern Hemisphere in 2002-2003 [J]. Journal of atmospheric and Solar-Terrestrial Physics,2006,68(1):56-64.
    [216]Karlsson B and Gumbel J. Challenges in the limb retrieval of noctilucent cloud properties from Odin/OSIRIS [J]. Advances in Space Research,2005, 36(5):935-942.
    [217]Bourassa A E. Stratospheric aerosol retrieval from OSIRIS limb scattered sunlight spectra[D]. Saskatoon:Univeristy of Saskatchewan,2007
    [218]Evans W F J and Llewellyn E J. Atomic hydrogen concentrations in the mesosphere and the hydroxyl emissions[J]. J. Geophys. Res.,1973,78(1): 323-326.
    [219]Lloyd N. Odin-OSIRIS level 1 services reference manual. [M/OL].2009
    [220]Roth C Z, Degenstein D A, Degenstein A E, et al. The retrieval of vertical profiles of the ozone number density using Chappuis band absorption information and a multiplicative algebraic reconstruction technique[J]. Can. J. Phys,2007,85:1225-1243.
    [221]Loughman R P, Flittner D E, Herman B M, et al. Description and sensitivity analysis of a limb scattering ozone retrieval algorithm[J]. J. Geophys. Res., 2005,110(D19301):1-23.
    [222]Bracher A, Bovensmann H, Bramstedt K, et al. Cross comparisons of O3 and NO2 measured by the atmospheric ENVISAT instruments GOMOS, MIPAS, and SCIAMACHY[J]. Adv. Space Res.,2005,36(5):855-867.
    [223]Jin Y, Schaaf C B, Woodcock C E, et al. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals:2. Validation[J]. J. Geophys. Res.,2003,108(D5):4159.
    [224]Waters J W, Froidevaux L, and Harwood R S. The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite[J]. Geoscience and Remote Sensing, IEEE Transactions,2006,44(5):1075-1092.
    [225]McDade I C and Llewellyn E J. Inversion techniques for recovering two-dimensional distributions of Auroral emission rates from tomographic rocket photometer measurements [J]. Can. J. Phys.,1991,69:1059-1068.
    [226]Rottman G. Solar UV irradiance measurements:The UARS and EOS SOLSTICE[J]. Physics and Chemistry of the Earth, Part C:Solar, Terrestrial & Planetary Science,2000,25(5-6):401-404.
    [227]Thuillier G, Herse M, and Labs D. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions [J]. Solar Physics,2003,214(1):1-22.
    [228]Kurucz R L. High resolution irradiance spectrum from 300 to 1000 nm[A]. Proceeding of AFRL Transmission Meeting.2005 [C]. Lexington, Mass.
    [229]路远.斜程红外辐射大气透射率的简易计算[J].红外与激光工程,2007,(S2):423-426.
    [230]王乐.部分大气分子的红外吸收光谱研究[D].合肥:中国科学技术大学,2006
    [231]UK Solar System Data Centre. MSISE-90 (Mass Spectrometer-Incoherent Scatter) Model of the Upper Atmosphere. [EB/OL]. (2009-05-06) [2011-05-04]. http://www.ukssdc.ac.uk/wdccl/msise90.html.
    [232]Kockarts G. Penetration of solar radiation in the Schumann-Runge bands of molecular oxygen:A robust approximation[J]. Annales Geophysicae,1994, 12:1207-1217.
    [233]周围.差分吸收光谱技术在大气环境监测中的应用研究[D].天津:河北工业大学,2006
    [234]林洁丽.高分辨率(饱和)分子光谱谱线线型、线宽及其应用的研究[D].武汉:中国科学院武汉物理与数学研究所,2000
    [235]李翠娜.大气气体吸收的温度依赖性关系研究[D].南京:南京信息工程大学,2008
    [236]郭晓岚,朱伯承.大气动力学[M].南京:江苏科学技术出版社,1981.
    [237]Lamsal L N, Weber M, Tellmann S, et al. Ozone column classified climatology of ozone and temperature profiles based on ozonesonde and satellite data[J]. J. Geophys. Res.,2004,109(D20):D20304.
    [238]Dasch C J. One-dimensional tomography:a comparison of Abel, onion-peeling, and filtered backprojection methods[J]. Appl. Opt.,1992, 31(8):1146-1152.
    [239]杨春燕.大气临边散射DOAS反演臭氧廓线[D].长春:吉林大学,2010
    [240]Wang Z, Chen S, Yang C, et al. DOAS-tomography for retrieval of trace gas profiles from satellite based UV-Vis limb spectra[J]. Chinese Optics Letters, 2011,9(2):210201-10204
    [241]Wang Z, Chen S, Yang C, et al. A method for retrieving vertical ozone profiles from limb scattered measurements [J]. Acta Meteorologica Sinica, 2011,(Accepted).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700