用户名: 密码: 验证码:
面向电磁弹射器的永磁直线同步电机驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代海洋军事的不断发展,迫切要求航空母舰的作战能力越来越强,从而对驱动舰载机弹射起飞的航母弹射器提出了极高的要求。然而,现役的蒸汽弹射装置已难以满足对大质量舰载机的弹射。电磁弹射装置相对于蒸汽弹射装置具有质量小,体积小,效率高,维修费用低,控制精度高等特点,成为最近几年各国研究的热点。我国在电磁弹射领域的研究刚刚起步,随着我国军事力量的发展,航空母舰是我国海军必须配备的武器之一。因此,研究电磁弹射技术对于提高我国军事力量,打造尖端武器,打破国外技术封锁,缩短我国与军事强国的差距,促进国防事业的发展,维护世界和平都具有重大的意义。
     本文密切结合航母弹射器的推力大,力波动小,运行速度高等性能要求,基于自律分散体系结构,设计了电磁弹射驱动系统方案,并对其驱动系统结构、位置检测、控制技术以及容错性能等方面进行了深入研究。在此基础上,搭建了自行研制的交流永磁直线同步电机、交流伺服低压控制器和直线位移传感器组成的电磁弹射驱动系统样机平台,并通过实验证明了本文针对电磁弹射性能要求所提出方法的有效性和准确性。
     根据电磁弹射的技术要求,分析了影响电磁弹射驱动系统效率的因素,提出在低速段采用齿槽永磁直线同步电机而在高速段采用无齿槽永磁直线同步电机驱动的方法,提高了弹射过程中的系统效率。并基于模块化设计思想,设计了在三维空间采用定子模块组装的永磁直线同步电机驱动系统结构,从而提高了永磁直线同步电机的工艺性和模块故障的处理能力。为了降低驱动系统对供电电源的要求和提高控制的稳定性,提出了采用小功率模块电机组合代替大功率电机驱动的设计思想。采用有限元设计方法对永磁直线同步电机进行了深入研究,分析了极距对永磁直线同步电机功率密度的影响及结构参数对齿槽和无齿槽电机推力及推力波动的影响,为电磁弹射用永磁直线同步电机的设计提供了理论依据。
     为实现对驱动系统的高速伺服控制,在位置检测单元中,基于霍尔效应原理,采用三相六元件的信号拾取方法,并通过差分处理消除了机械装配偏差和零点漂移带来的信号误差。同时,基于查表方式的信号处理算法,采用了查表列和编码列两排磁钢的排列方法,设计了磁栅直线位移传感器。通过实验表明,该传感器可以达到较高的分辨率,为实现绝对位移的精确测量和电机的高速控制奠定了基础。
     针对传统集中式控制存在的缺点,提出自律分散控制方法,构建了自律分散系统的控制结构。推导了基于自律分散控制的永磁直线同步电机矢量控制电磁模型和电磁推力模型,为其实现提供了理论依据。在自律分散控制结构下的永磁直线同步电机控制中,为了提高电流响应特性,电流环采用引入反电动势补偿的方法,并通过仿真验证了该方法的有效性。同时,为提高速度检测精度并解决速度反馈延时导致的滞后问题,机械环采用引入状态观测器的方法,以获取实时的位置和速度反馈,提高永磁直线同步电机的速度响应频率和位置控制精度。
     为提高电磁弹射驱动系统的冗余度,以8极12槽集中绕组永磁直线同步电机为主要研究对象,推导了定子模块单相、单模块、二模块和三相交叉模块故障时总磁动势计算数学模型。在此基础上,为了保持在故障时与非故障时总磁动势不变,建立不同故障时总磁动势不变的电流补偿数学模型,实现了磁动势补偿,从而保证电机在故障前后的瞬时推力不变,进而提高电磁弹射驱动系统的可靠性及故障处理能力。
     研制了低速段齿槽和高速段无齿槽原理样机实验系统,并通过对原理样机的性能进行测试,证明了低速段采用齿槽永磁直线同步电机高速段采用无齿槽永磁直线同步电机对提高整个系统的效率的有效性,同时验证了电磁弹射驱动系统不同模块故障时电流补偿模型的正确性。本文的研究工作为电磁弹射技术应用于航母弹射器,实现高精度、高能量的弹射奠定了基础。
With the development of modern-ocean military, the carrier fighting capability of the aircraft was urgently required to be stronger and stronger. It proposed an extremely high requirement for the aircraft carrier launching device which was used in driving the carrier-based aircraft taking off, so the present steam launching device is difficult to meet the huge mass launching condition. Compared to steam launching device, the electromagnetic launching device has become the researching focus benefiting for its little mass, small volume, high efficiency, low maintain cost and high control precision character. But, at present, the research on electromagnetic launching device is a new area in our country. By the domestic military power developing, the aircraft carrier is necessary equipment for our country, so the carrying research on electromagnetic launching has great significance for enhancing our country military force, manufacturing top weapon, breaking the foreign technology blockade, shorten the distance between our country and military powerful country, boost the national defense career and safeguarding the word peace.
     The dissertation inosculate the aircraft carrier launching device requirement that large thrust, low torque fluctuation and high speed performance, designed the electromagnetic launching system driving scheme, which based on autonomous decentralized architecture. And take further researching on its driving system structure, position detection, control scheme and fault tolerance. On this basis, the prototype test platform for electromagnetic launching driving system was built independently, which is composed of AC permanent magnet linear synchronous motor (PMLSM), lower volt AC servo controller and linear displacement sensor. And, the validity and accuracy of this method for electromagnetic launching performance requirement which was proposed in the dissertation were verified through the experimental results.
     According to the electromagnetic launching technology requirement, the factors which influence the efficiency of electromagnetic launching driving system were analyzed, and the method that adopts cogging PMLSM in low speed interval and adopts slotless PMLSM in high speed interval to enhancing the system efficiency in launching process was proposed. In order to enhance the manufacturability and the modular error repair ability, the AC permanent magnet linear synchronous motor driving system structure which is composed by stator modular was proposed. As to release the driving system power supply requirement and enhance the control stability, the method that using little power motor modular combination to instead huge power motor was proposed. The finite element method to deeply research on AC permanent magnetic linear synchronous motor was adopted. And the polar distance influence on motor power density and the structure parameter influence on thrust and thrust fluctuation in cogging motor and slotless motor were analyzed to provide a reference principle for design on the AC permanent magnet linear synchronous motor that used in electromagnetic launching.
     In order to realize high speed servo control for driving system, in position detection unit, three phase and six component signal pick-up method basing on hall effect were adopted, and the signal error that induced by assembling deviation and zero-drift was eliminated by difference processing method. At the same time, based on the lookup signal processing algorithm, the two column magnetic steel arrangement which contains the lookup column and encoding column were adopted. The linear magnetic grid displacement sensor was designed. The experimental results show that the sensor could get a high resolution, and it establish the foundation for realizing absolutely displacement high precision detection and high speed motor control.
     According to the defect exist in traditional integrate control, decentralized autonomous control method was proposed, and the autonomous decentralized system control structure was constructed. The vector control electro-magnet model and electro-magnet thrust model for permanent magnet synchronous motor were derivated, and a theoretical basis for its implementation was provided. In the permanent synchronous control under decentralized autonomous structure, in order to enhance the current responding character, the back EMF compensation method was adopted, and its validity by the simulation was verified. At the same time, in order to enhance the velocity detection precision and solving the delay question result by velocity feed back, the state observer in the mechanical loop to obtain the real-time position and velocity feed back, were introduced, as to enhance the velocity responding frequency and the position control precision of the permanent magnet synchronous linear motor.
     In order to enhance the redundancy of the electromagnetic launching drive system, 8 polar 12 slot integrate winding permanent magnet synchronous linear motor was taken as the main research object. The total magneto motive mathematical model was derivated when single phase stator modulars failure, as well as single modular, double modulars, and three phase intercross modulars failure situation. On this basis, in order to maintain the total magneto motive unchanged, the current mathematical compensation model in different situation was derivated, the magneto motive compensation was realized, and instantaneous thrust the same with the normal situation was ensured, which even more enhance the reliability and the error dealing ability.
     The cogging principle prototype in low speed interval and slotless principle prototype in high speed interval for experiment system was developed, and test on its performance was taken. The experimental results proved the validity of adopting cogging PMLSM in low speed interval and slotless PMLSM in high speed interval could enhance the system efficiency, it also testified the correctness of the current compensation models when different modulars failure. These researches in the dissertation established the application foundation that using electromagnetic launching technology in aircraft carrier launching device could realize high precision, high power launching.
引文
1李立毅.直线电磁发射技术的发展现状及前景.微电机. 1999, 32(2): 26~30
    2李梅武,崔英,薛飞.航母飞机起飞的最佳选择—电磁弹射系统.舰船科学技术. 2008, 30(2): 35~37
    3 W. Ying, R. A. Marshall. Physics of Electric Launch. Science Press. 2004: 11~19
    4 R. J. Kaye, B. N. Turman, S. L. Shope. Applications of Coilgun Electromagnetic Propulsion Technology. IEEE Conference Record of Power Modulator Symposium, Hollywood. 2002: 703~707
    5李勇,李立毅,程树康,等.电磁弹射技术的原理与现状.微特电机. 2001, 29(5): 3~4
    6 I. R. Mcnab. Early Electric Gun Research. IEEE Transactions on Magnetics. 1999, 35(1): 250~261
    7 M. Mirzaei, S. E. Abdollahi, A. Vahedi. Permanent Magnet DC Linear Motor for Aircraft Electromagnetic Launcher. 14th Symposium on Electromagnetic Launch Technology, Victoria, BC. 2008: 1~6
    8 Reck Bernhard. First Design Study of an Electrical Catapult for Unmanned Air vehicles in the Several Hundred Kilogram Range. IEEE Transactions on Magnetics. 2003, 39(1): 310~313
    9丁国良,胡业发,刘小静.磁悬浮电磁弹射系统结构设计与磁场分析.机械工程师. 2008, (7): 23~25
    10 Ying Wang, Shukang Cheng, Ping Zheng. Widely Developing Electric Launch Technology in China. IEEE Transactions on Magnetics. 2003, 39(1): 39~41
    11 S. A. Cherenshchikov. Secondary Emission Magnetron Injection Gun in Long Pulse Mode. Proceeding of the 1999 Particle Accelerator Conference, New York. 1999: 1973~1975
    12 M. R. Palmer, R. X. Lenard. A Revolution in Access to Space Through Spinoffs of SDI Technology. IEEE Transactions on Magnetics. 1991, 27(1): 11~20
    13 R. Dougal, T. Lovett, A. Monti, et al. A Multilanguage Environment for Interactive Simulation and Development of Controls for Power Electronics. IEEE Power Electronics Specialists Conference, Vancouver, BC. 2001: 1725~1729
    14 Bimal K. Bose. Modem Power Electronics and AC Drives. Mechanical Industry Press. 2002: 1~10
    15王宝.行波电磁发射器.电工电能新技术. 1988, (2): 28~36
    16李小鹏.重接式电磁发射技术的基础研究.哈尔滨工业大学博士论文. 2004: 1~5
    17 W. A. Jacobs. Magnetic Launch Assist-NASA’s Vision for the Future. IEEE Transaction on Magnetics. 2001, 37(1): 55~57
    18 J. G. Baker. Electromagnetic Compatibility in Europe. IEE Proceedings Science, Measurement and Technology. 1994, 141(4): 238~243
    19 A. Brooks, R. Hawke, J. Scudder, et al. Design and Fabrication of Large and Small Bore Railguns. IEEE Transsactions on Magnetics. 1982, 18(1): 68~81
    20 J. Raimbourg. Electromagnetic Compatibility Management for Fast Diagnostic Design. Review of Scientific Instruments. 2004, 75(10): 4234~4236
    21 Hansen Diethard. Update on Power Line Telecommunication (PLT) Activities in Europe. IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, MN. 2002: 17~22
    22 J. W. Jung, S H. Kim, K. S. Yang. Overview of ETC Research in Korea. IEEE Transsactions on Magnetics. 2003, 39(1): 22~23
    23 Matsuda Shinzaburo. Fusion Research by Magnetic Confinement Devices in Japan. IEEE Transactions on Plasma Science. 2004, 32(2): 749~756
    24 K. M. Slenes, L. E. Bragg. Compact Capacitor Technology for Future Electromagnetic Launch Applications. 12th Symposium on Electromagnetic Launch Technology, Snowbird. 2004: 243~247
    25 T. H. G. G. Weise, J. Maag, G. Zimmermann, et al. National Overview of the German ETC program. IEEE Transactions on Magnetics. 2003, 39(1): 35~38
    26 P. Lehmann. Overview of the electric launch activeties at the French German Research Institute of Saint-louis(ISL). IEEE Transactions on Magnetics, 2003, 39(1): 24~28
    27王静.电磁发射技术的发展及其军事应用.火力与指挥控制. 2001, 26(1): 5~7
    28庄国臣.电磁发射器及其应用.电工技术杂志. 1997, 19(6): 20~22
    29崔鹏.新型电磁发射技术的研究.国防科学技术大学硕士论文. 2005: 1~2
    30 Zhengwei Du, Chengli Ruan. Comment on“Electromagnetic Missile Launched From a Uniform Current Sheet of Arbitrary Shape”. IEEE Transactions on Electromagnetic Compatibility. 1994, 36(2): 155~156
    31 Jun Lin, Jiyan Zou, Ying Wang. Overview of the Electric Launch Technology Program in China. IEEE Transactions on Magnetics. 2001, 37(1): 37~38
    32高顺受. 60mm口径电磁感应线圈炮的试验研究.高压物理学报. 1996, 10(3): 190~198
    33曹鸿钧.线圈炮电枢(圆柱壳)的屈曲分析.应用力学学报. 1998, 15(4): 37~42
    34刘平.电磁同轴发射器的磁场分析和结构分析.西安电子科技大学硕士论文. 1997: 4~8
    35王德满,王跃进,谢慧才.线圈炮—电磁同轴发射器及其系统分析.宇航学报. 1996, 17(4): 79~90
    36 Wen Xun Zhang. A Review of Computational Electromagnetics In China. IEEE Antennas and Propagation Magazine. 1997, 39(3): 44~50
    37 F. C. Beach, I. R. McNab. Present and Future Naval Applications for Pulsed Power. IEEE Pulsed Power Conference, Monterey, CA. 2005: 1~7
    38 J. Grando, G. Labaune, J. C. Alliot Comparison of Experimental and Numerical Results for Transient Electromagnetic Fields Induced on a Scale Model Aircraft by Current-Injection Technique . Antennas and Propagation Society International Symposium, San Jose, CA. 1989: 1751~1754
    39 D. Patterson, A. Monti, C. Brice. Design and Simulation of an Electromagnetic Aircraft Launch System. 37th Annual Industry Applications Conference, Columbia. 2002: 1475~1480
    40 Gorazd Stuberger, Damir Zarko, Mehmet Timur Aydemir. Design and Comparison of Linear Synchronous Motor and Linear Induction Motor for Electromagnetic Aircraft Launch System. IEEE International Electric Machines and Drives Conference. 2003, 1(6): 494~498
    41 G. Stumberger, M. T. Aydemir, D. Zarko, et al. Design of a Linear Bulk Superconductor Magnet Synchronous Motor for Electromagnetic Aircraft Launch Systems. IEEE Transactions on Applied Superconductivity. 2004, 14(1): 54~62
    42 Javier Rios Quesada, Jean-Frederic Charpentier. Finite Difference Study of Unconventional Structures of PM Linear Machines for Electromagnetic AircraftLaunch System. 12th Symposium on Electromagnetic Launch Technology, Snowbird. 2004: 477~482
    43 D. Hall, J. Kapinski, M. Krefta. Transient Electromechanical Modeling for Short Secondary Linear Induction Machines. IEEE Transactions on Energy Conversion. 2008, 23(3): 789~795
    44潘开林.永磁直线电机的驱动特性理论及推力波动优化设计研究.浙江大学博士论文. 2003: 1~2
    45罗宏浩,吴俊,常文森.新型电磁弹射器的动态性能仿真.系统仿真学报. 2006, 18(8): 2285~2288
    46 M. R. Doyle, D. J. Samuel, T. Conway. Electromagnetic Aircraft Launch System– EMALS. IEEE Transactions on Magnetics. 1995, 31(1): 528~533
    47卢国纲.从CIMT2005看世界位移测量技术及其产业的发展.世界制造技术与装备市场. 2005, (4): 48~50
    48 S. L. Devore. Simulation of Grating Interferometers and Optical Encoders Using Hybrid Ray-Trace/Wave Front Methods. Proceedings of SPIE The International Society for Optical Engineering, Seattle. 2002: 1~12
    49梁长垠.单片机在光栅位移检测中的应用.计算机自动测量与控制. 2001, 9(5): 1~6
    50 J. N. Lygouras, K. A. Lalakos, P. G. Ysalides. High-Performance Position Detection and Velocity Adaptive Measurement for Close Loop Position Control. IEEE Transactions on Instrumentation and Measurement. 1998, 47(4): 978~985
    51王海成,王立锦,冯春,等.高分辨率磁旋转编码器磁鼓材料的研制.北京科技大学学报. 2005, 27(3): 325~327
    52曲家骐,王季秩.伺服控制系统中的传感器.机械工业出版社. 2001: 10~15
    53倪争技,王国华.光栅线性位移传感器误差分析.光学仪器. 1989, 11(6): 11~17
    54 K. P. Birch. Optical Fringe Subdivision with Nanometric Accuracy. Precision Engineering. 1990, 12(4): 195~198
    55 L. Rovati, M. Bonaiuti, P. Pavan. Design of a High-Performance Optical System for Angular Position Measurement: Optical and Electronic Strategies for Uncertainty Reduction. IEEE Transactions on Instrumentation and Measurement. 2005, 54(5): 2075~2081
    56 I. Alejandre, M. Artes. Thermal non-linear Behaviour in Optical Linear Encoders. International Journal of Tools and Manufacture. 2006, 46(12-13): 1319~1325
    57 Kai Engelhardt, Peter Seitz. High-resolution Optical Position Encoder with Large Mounting Tolerances. Applied Optics. 1997, 36(13): 2912~2916
    58 I. Alejandre, M. Artes. Method for the evaluation of Optical Encoders Performance under Vibration. Precision Engineering. 2007, 31(2): 114~121
    59羊彦,李辉,景占荣.永磁交流伺服系统中新型光学旋转编码器的应用.微特电机. 2005, 33(10): 33~34
    60 W. Israel, I. Tiemann, G. Metz, et al. An International Length Comparison at an Industrial Level Using a Photoelectric Incremental Encoder as Transfer Standard. Precision Engineering. 2003, 27(2): 151~156
    61 M. A. Morsy, K. M. Hassan. A. H. Morshed. Analysis of Optical Code Division Multiple Access Passive Networks for Different Encoder Delay Elements . The 2006 International Conference on Computer Engineering and Systems, Cairo. 2006: 294~299
    62 S. Wekhande, V. Agarwal. High Resolution Absolute Position Vernier Shaft Encoder Suitable for High Performance PMSM Servo Drives. Power Electronics Specialists Conference, Fukuoka. 1998: 119~124
    63卢国纲.现代光栅测量技术.世界制造技术与装备市场. 2002, (5): 10~13
    64沈燕,周静,刘大禾.平面变栅距位相光栅位移传感器的测量精度极限.北京师范大学学报(自然科学版). 2007, 443(2): 166~169
    65田跃,和文国.低成本高分辨率磁电编码器的研制.传感器世界. 2002, (9): 10~12
    66卢国纲.直线位移传感器发展的回顾和当今产品.世界制造技术与装备市场. 2005, (1): 78
    67杨广,刘芳.磁栅尺的结构、特点及应用.传感器技术. 1999, 18(2): 53~55
    68龚宁博,于殿泓,郑毅.一种高分辨率数字细分方法的研究.西安理工大学学报. 2008, 24(1): 114~118
    69白恩远.现代数控机床伺服及检测技术.国防工业出版社. 2005: 134~138
    70石玉,刘颖力,张怀武.磁阻传感器的多相滤波模型.压电与声光. 2005, 27(1): 74~76
    71王葛.高精度磁尺基本原理简介.鞍钢技术. 2002, (1): 65~68
    72段丽华,林海燕,庞文华.提高磁栅传感速度的研究.机械工程师. 1996, (4): 7~8
    73陶晓春,高桓.磁栅位置检测系统工作原理及结构特点.煤矿机械. 1998, (3): 33~35
    74 Liu Weizhong, Xu Chongyang, Ren Zhiyuan. Research of the Surface Magnetic Field of Multi-Pole Magnetic Drum of Magnetic Encoder. Proceedings of SPIE The International Society for Optical Engineering. 2000, (6): 407~415
    75马净,王峰,李晓光.等.编码器原理及应用.中国仪器仪表. 2002,(5): 43~45
    76李敏.精密光栅角位移传感器的设计.中央民族大学学报(自然科学版). 2003, 12(2): 145~150
    77任志远,李佐宜.磁旋转编码器原理及应用.传感器世界. 1996, (10): 6~9
    78 M. Schramm, W. Hofmann. Novel Magnetic Displacement Sensor for Mechatronical Systems. The 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan. 2007: 2219~2224
    79 J. A. Brandao Faria. A new magnetic displacement sensor and linear actuator device. Journal of Applied Physics. 2000, 87(9): 7076~7078
    80卢国纲.广泛用于机床行业的SONY位移测量系统.金属加工:冷加工. 2008, (6): 18~19
    81藤飏.磁栅产品在数控机床中的应用.数控机床市场. 2009, (12): 33~34
    82司海立,程武山,孙鑫,等.磁栅位移传感器在步进电机控制系统中的应用.工业仪表与自动化装置. 2009, (2): 55~57
    83王旭,付亚平.传感器放大器零点漂移的分析及电路设计.煤矿机械. 2009, 30(1): 36~38
    84罗安.计算机控制系统体系结构的发展.自动化博览. 2003, (S1): 38~41
    85 W. D. Barritt. Centralized Control System for Appliances. IEEE Transactions on Industry Applications. 1988, 24(2): 328~331
    86 D. L. Martin, A. J. Cheyer. The Open Agent Architecture:a Framework for Building Distributed Software Systems. Applied Artificial Intelligence. 1999, 13(1): 91~128
    87 Xiaodong Lu, Yi Zhou, H. Arfaoui, et al. Autonomous Integration and Provision of Heterogeneous Information Services in Distributed Information Systems . The Sixth International Symposium on Autonomous Decentralized Systems, Tokyo. 2003: 225~231
    88 Tu Xuyan, Tang Tao. Intelligent Autonomous Decentralized System(IADS). The 2nd International Workshop on Autonomous Decentralized System, Beijing. 2002: 10~15
    89 M. Yabushita, S. Miyamoto, M. Nohmi. Autonomous Decentralization Concept and Its Application to Railway Control Systems. Vehicular Technology Conference. 1984, 34(5): 255~260
    90 R. Tanaka, S. Shin, N. Sebe. Controllability of Autonomous Decentralized System. IEEE Symposium on Emerging Technologies & Factory Automation, Tokyo. 1994: 265~272
    91 R. Tanaka, S. Iwata, S. Shin. Structural Analysis of Fault-Tolerance for Homogeneous Systems. Proceedings of the IEEE Conference on Decision and Control, Kobe. 1996: 1920~1921
    92 Y. Fujimoto, T. Yakoh, K. Ohnishi. Dynamic Model of Decentralized Systems With Informational Connection. IEEE Transactions on Industrial Electronics. 2002, 49(3): 707~715
    93 Wang Hongbo, Zeng Guangping, Tu Xuyan, et al. Digital Gas Fields Produce Real Time Scheduling Based on Intelligent Autonomous Decentralized System. Proceedings International Symposium on Autonomous Decentralized Systems, Chengdu. 2005: 630~635
    94 Xuan Ping, Lesser Victor. Multi-agent Policies: From Centralized Ones to Decentralized Ones. Proceedings of the International Conference on Autonomous Agents, Bologna. 2002: 1098~1105
    95杨书席,李鹏,吕很厚.青藏铁路分散自律调度集中特点的研究.铁路通信信号工程技术. 2005, (5): 3~6
    96谭永东,钱清泉.角色自律分散系统概念及体系结构.中国铁道科学. 2007, 28(l): 99~105
    97马光同,王家素,王素玉.高温超导磁悬浮车发射用驱动系统研究.微电机. 2008, 41(11): 54~57
    98 D. L. Trumper, Won-Jong Kim, M. E. Williams. Design and Analysis Framework for Linear Permanent-Magnet Machines .IEEE Transactions on Industry Applications. 1996, 32(2): 371~379
    99李兴,董力军,李旷.高压大功率同步电机的控制策略与应用研究.变频器世界. 2009, (6): 76~78
    100刘瑞英,崔建明,朱善俊,等.垂直提升用永磁同步直线电动机分段设计研究.微特电机. 2008, 36(11): 12~14
    101王淑红,王琳,张海啸.分段式永磁直线同步电机垂直驱动系统建模和仿真.微电机. 2009, 42(12): 50~55
    102刘伟,乔明锋,成兵.大型复杂通指系统装备可靠性指标的验证.电子产品可靠性与环境试验. 2007, 25(2): 10~13
    103黄文培,黄洪钟.系统可靠性冗余最优分配问题的神经网络解法.机械设计. 1997, 14(6): 4~7
    104 A. Monti, K. Patel, D. Patterson. Modular Control for Electromagnetic Aircraft Launching System. IEEE 34th Annual Conference on Power Electronics Specialist, Acapulco, NM, United states. 2003: 1877~1882
    105 Jr. Sung Chan Ahn, Jung Ho Lee, Dong Seok Hyun. Dynamic Characteristic Analysis of LIM Using Coupled FEM and Control Algorithm. IEEE Transactions on Magnetics. 2000, 36(4): 1876~1880
    106 M. Mirzaei, S. E. Abdollahi. Design Optimization of Reluctance-Synchronous Linear Machines for Electromagnetic Aircraft Launch System. IEEE Transactions on Magnetics.2009, 45(1): 389~395
    107 Kok Kiong Tan, Tong Heng Lee, Hui Fang Dou. Precision Motion Control With Disturbance Observer for Pulsewidth Modulated Driven Permanent Magnet Linear Motors. IEEE Transaction on Magnetics. 2003, 39(3): 1813~1818
    108 Youguang Guo, Jiaxin Chen, Jianguo Zhu, et al. Development of a PM Linear Motor for Driving HTS Maglev Vehicle. Proceeding of International Conference on Electrical Machines and Systems, Seoul, Korea. 2007: 824~827
    109冯尚明,杨波.用于电磁飞机弹射系统的直线电机设计综述.舰船科学技术. 2008, 30(3): 36~41
    110莫会成.分数槽绕组与永磁无刷电动机.微电机. 2007, 40(11): 39~42
    111 J. F. Cui, H. M. wang, J. Z. Wan. Thrust Force Control of Permanent Magnet Linear Synchronous Motor Based on Sliding Mode Variable Structure. IEEE International Conference on Control and Automation, Guangzhou. 2007: 1698~1700
    112 Can Fei Wang, Jian Xin Shen, Yu Wang. A New Method for Reduction of Detent Force in Permanent Magnet Flux-Switching Linear Motors. IEEE Transactions on Magnetics. 2009, 45(6): 2843~2846
    113 K. K. Tan, H. X. Zhou, Tong Heng Lee. New Interpolation Method for Quadrature Encoder Signals. IEEE Transactions on Instrumentation and Measurement. 2002, 51(5): 1073~1079
    114 Adarsh Sandhu, Yoshimichi Kumagai, Adam Lapicki. High Efficiency Hall Effect Micro-Biosensor Platform for Detection of Magnetically Labeled Biomolecules. Biosensors & Bioelectronics. 2007, 22(9): 2115~2120
    115 M. Takagi, K. Mohri, M. Katoh. Magnet Displacement Sensor Using Magneto-Inductive Elements for Sensing Eyelid Movement. IEEE Transactions Journal on Magnetics in Japan. 1994, 9(2): 78~83
    116 K. Mori, Hitachi Ltd. Autonomous decentralized systems: Concept, Data Field Architecture and Future Trends. International Symposium on Autonomous Decentralized Systems, Kawasaki. 1993: 28~24
    117 Yongdong Tan, Qingquan Qian, K. Mori. Role Autonomous Decentralized System Architecture Towards System Evolution. International Symposium on Autonomous Decentralized Systems, Athens. 2009: 1~7
    118 Shan Li Hu, Chun Yi Shi. A Dynamic Model of Multi-Agent System. International Conference on Machine Learning and Cybernetics. 2004, 1(8): 183~187
    119 S. Mishra, Lan Fei, Xiao Lin. On Group Communication Support in Corba. IEEE Transactions on Parallel and Distributed Systems. 2001, 12(2): 193~208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700