用户名: 密码: 验证码:
小光斑波形激光雷达森林LAI和单木生物量估测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林垂直结构是陆地生态系统中重要的参数,提高遥感森林垂直结构的反演精度,对于森林资源监测、全球气候变化及其区域响应研究具有重要意义。激光雷达技术是近年来国际上发展十分迅速的主动遥感技术,在森林参数的定量测量和反演上取得了成功的应用,特别是对森林高度和垂直结构的探测能力,具有传统光学遥感数据难以比拟的优势。森林叶面积指数和生物量是森林生态系统的重要参数,其精确的估算具有十分重要的意义,本文围绕上述内容,利用机载小光斑波形激光雷达数据开展了以下几个方面的研究工作:
     (1)根据激光雷达波形数据特征,建立高斯分解算法和相对辐射校正模型。
     波形数据直接使用较为不便,需要对波形数据进行进一步处理,采用了非线性最小二乘法对波形数据进行高斯拟合处理,详细描述了波形分解的工作流程和重要的处理步骤。波形数据进行数据分类是其重要的优势之一,然而使用未经标定的数据进行分类往往存在一定的问题,因此在高斯分解的基础上,对分解结果数据基于归一化的距离和能量进行相对辐射校正处理,增强波形数据间的可比性,以期提高分类结果的准确性和精度。最后对分解结果和相对辐射定标结果进行了定量分析。
     (2)使用波形能量数据反演森林叶面积指数。
     在波形数据分解基础上,利用栅格化的数据对研究区进行分类,提取研究区的森林区域。根据基于间隙率原理的比尔朗伯定律提出了利用波形数据能量反演叶面积指数的方法。详细介绍了波形数据的分类、数据的归一化、利用波形能量数据反演LAI的方法、反演最佳尺度的确定以及森林叶面积指数的制图。结果表明,利用波形数据能够有效的反演森林的叶面积指数。
     (3)结合单木分割和波形特征参数进行树种识别。
     在波形数据进行高斯分解点云化的基础上,根据高程信息生成的DEM和DSM,并生成CHM。首先对CHM进行无效值填充,再采用结合形态学控制的分水岭算法分离CHM上的单木并提取单木的相关参数。根据单木的范围提取波形高斯分解后结果参数的统计值作为该株树的特征值,结合外业调查的数据采用SVM分类器对样地的树种进行识别和精度评价。结果显示,使用定标后的数据对研究区7个树种的识别精度达到55.07%,5个树种则达到了66.15%,均要高于未定标数据的分类精度。
     (4)利用波形数据反演单木生物量
     首先对外业获取的实测树高和冠幅与实测的胸径数据进行回归分析,建立树高和冠幅估算胸径的估测模型,结合相关生物量方程构建基于树高和冠幅的二元生物量方程。结果表明使用树高和冠幅数据能够很好的反演森林的胸径信息。在树种识别的基础上,利用单木分离提取的树高和冠幅数据结合二元生物量方程反演单木生物量。
     本研究工作建立了使用波形数据反演森林叶面积指数和单木生物量的完整技术流程,结果表明高密度的机载小光斑波形激光雷达能够详细的描述森林垂直结构信息,快速准确实现森林叶面积指数和单木生物量反演。
The vertical structure of the forest is one of the most important parameter in terrestrialecosystem. It is of great significance for the monitoring forestry resources and global climatechange by improving its retrieval accuracy of the remote sensing. LiDAR (lighting detectionand ranging)is an rapidly developing active technology of the international remote sensing inin recent years. Especially for forest height and vertical structure detection, it has a specialadvantage comparing with traditional optical remote sensing data. Forest leaf area index andbiomass are two important parameters of the forestry ecosystem and their accurate estimateshave great significance. The main works and results are as follows:
     (1) Creating a Gaussian decomposition algorithm and relative radiometric calibrationmodel according to the characteristics of lidar waveform data.
     Full-waveform data needs for further processing because it is relatively inconvenient todirectly use. A non-linear least-squares method with the Levenberg-Marquardt algorithm wasused to fit the return waveforms by Gaussian function and Gaussian amplitude, standarddeviation and energy were extracted. Generally, different objects response to the emitted pulsediversely, which is incarnated in the waveform data. But acquired data is influenced by severalfactors, so it cannot be directly used in wide area before calibration. A relative calibrationmethod using the range between the sensor and target based on a radar equation was applied tocalibrate the amplitude and energy, and the change of transmit pulses energy was alsoconsidered in this process, which is to enhance the comparability of waveform data and toimprove the accuracy and precision of the classification results. Finally, a quantitative analysison the decomposition and relative radiometric calibration results was applied.
     (2) The inversion of forest LAI using the decomposition energy of full-waveform LiDARdata.
     Decomposed full-waveform result data was rasterized to classify the study area and theforest area was extracted. A method based on the Bill-Lambert law was proposed by using waveform data energy to esttimation Leaf Area Index. Some detailed information weredescribed including waveform data classification, data normalization,the principle of LAIestimation using full-waveform data,the best scale of LAI inversion and LAI mapping of thestudy area. The result showed that full-waveform data could effectivly estimate forest LAI.
     (3) Combining single tree segementation and parameters extrated from full-waveform datato identify the tree species.
     DEM, DSM and CHM were generated form the point groun basingon on the Gaussianwaveform decomposition. Then the morphology-controlled watershed algorithm was adoptedto separate single tree on the CHM filled with invalid value. The individual tree positions andtree crowns were acquired. The total number of return waveforms within a beam, the pulsewidth, the calibrated amplitude and energy in single tree bounds are counted as tree features todetect seven tree species by a SVM classifier. The overall classification accuracy for this studyarea was55.07%using calibrated data for seven tree species, which is5.1%higher than that ofadopting uncalibrated data. Limiting to the five main species accuracy was improved to66.15%and to conifers and broadleaved trees accuracy was85.72%using calibrated data,which are also5.75%and3.56%higher than that of using uncalibrated data. Calibration offull-waveform data is necessary for its application in tree species classification.
     (4) Biomass estimation of individual trees using full-waveform LiDAR data.
     First,regression analysis of measured tree height and crown diameter with the diameter atbreast height (DBH) was performed. The result showed that using the linear regressionequation could fit the DBH well. The collected allometric equations relating biomass could beexpressed by the tree height and crown diameter. Then combing the single tree speciesidentification result and the tree hight and crown diameter extracted from indivudual treesegementation, the biomass could be estimated with the equation.
     In a word, the entire workflow of forest LAI and single tree biomass inversion wasestablished in this article. The results showed that the high-density small-footprintfull-waveform LiDAR data could The results show that the high-density airborne small spot waveform lidar could get the detaile forest vertical structure information and estimate forestleaf area index and single wood biomass fast and accurately.
引文
Aardt, J.A.N., Wynne, R.H., and Oderwald, R.G... Forest volume and biomass estimation usingsmall-footprint Lidar-distributional parameters on a Per-Segment Basis. Forest Science,2006,52(6):636-649.
    Ants Vain, Kaasalainen S, Ulla Pyysalo, Anssi Krooks and Paula Litkey. Use of Naturally AvailableReference Targets to Calibrate Airborne Laser Scanning Intensity Data. Sensors2009,9,2780-2796
    Anderson H., Reutebuch S.E., Schreuder G.F.. Automated Individual Tree Measurement ThroughMorphological Analysis of a LiDAR-Based Canopy Surface Model. In: Proceeding of the FirstInternational Precision Forestry Cooperative Symposium, Seattle, Washington,2001,11-22.
    Axelsson P. Processing of laser scanner data-algorithms and applications. ISPRS Journal ofPhotogrammetry and Remote Sensing,1999,54:138-147
    Blair, J. B., Rabine, D. L.,&A., H. M.. The laser vegetation imaging sensor: a medium-altitude,digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal ofPhotogrammetry Remote Sensing,1999,54,115-122.
    Brandtberg T. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar.ISPRS Journal of Photogrammetry&Remote Sensing,2007,61:325-340.
    Brandtberg T., Warner T. A., Landenberger R. E., McGraw J. B. Detection and analysis of individualleaf-offtree crowns in small footprint, high sampling density lidar data from the eastern deciduous forestin North America. Remote Sensing of Environment,2003,85:290-303.
    Campbell, G. S. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidalinclination angle distribution. Agricultural and Forest Meteorology,1986(36):317-321.
    Chen, J.M.; Chen, X.Y.; Ju, W.M.; Geng, X.Y. Distributed hydrological model for mappingevapotranspiration using remote sensing inputs. J. Hydrol.2005.305,15-39.
    Chen, B.Z., Chen, J.M., Ju, W.M. Remote sensing-based ecosystem-atmosphere simulation scheme (EASS)-Model formulation and test with multiple-year data. Ecol. Modell.2007,209,277-300.
    Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower andMODIS satellite data. Remote Sens. Environ.2007,106,285-304.
    Coops N. C., Hilker T., Wulder M. A., St-Onge B., Newnham G., Siggins A., and Trofymow A., Estimatingcanopy structure of Douglas-fir forest stands from discrete-return LiDAR, Trees-Struct. Funct,2007,21(3):295–310
    Coillie F., Verbeke L., Wulf R.. Feature selection by genetic algorithms in object-based classification ofIKONOS imagery for forest mapping in Flanders, Belgium. Remote Sensing of Environment,2007,110(4):476-487
    Zhao Dan,Pang Yong Pang, Li Zengyuan, Sun Guoqing Sun. Filling Invalid Values in a LiDAR-DerivedCanopy Height Model with Morphological Crown Control International Journal of Remote Sensing,2013,34(13):4636-4654.
    Dietz, J., H lscher, D., Leuschnerb, C., Hendrayanto. Rainfall partitioning in relation to forest structure indifferently managed montane forest stands in Central Sulawesi, Indonesia. For. Ecol. Manage.2006,237,170-178.
    Duchemin, B., Hadriab, R.., Errakib, S. et al. Monitoring wheat phenology and irrigation in Central Morocco:On the use of relationships between evapotranspiration, crops coefficients, leaf area index andremotely-sensed vegetation indices. Agric. Water Manage.2006,79,1-27.
    Disney, M. I., Kalogirou, V., Lewis, P., Prieto-Blanco, A., Hancock, S.,&Pfeifer, M.. Simulating the impactof discrete-return lidar system and survey characteristics over young conifer and broadleaf forests.Remote Sensing of Environment,2010,114,1546-1560.
    Dong, J. K., Myneni, R. K., Tucker, R. B., et al. Remote seining estimates of boreal and temperate forestwoody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment,2003,84:393-410.
    Guenther, G., Mesick, H.,1988. Analysis of airborne lidar bathymetric waveforms. In: Proc. of the9th OceanOptics. Orlando, FA, USA, SPIE,4_6April1988, pp.232_241.
    Gaveau D.L.A., Hill R.A.. Quantifying canopy height underestimation by laser pulse penetration insmall-footprint airborne laser scanning data. Canadian Journal of Remote Sensing,2003,29:650-657
    Goel, N. S. Models of vegetation canopy reflectance and their use in estimation of biophysical parametersfrom reflectance data. Remote Sensing Reviews,1988(4):1-213.
    Heinzel Johannes and Barbara Koch. Exploring full-waveform LiDAR parameters for tree speciesclassification. International Journal of Applied Earth Observation and Geoinformation,2011,13(1),152-160.
    Hofton, M., Minster, J. and Blair, J. Decomposition of Laser Altimeter Waveforms.IEEE Transactions onGeoscience and Remote Sensing,2000,38(4):1989-1996.
    Holben, B., Tucker, C., JandFan C. J. Spectral assessment of soybean leaf area and leaf biomass.Photogrammetric Engineering and Remote Sensing,1980,45:651-656.
    Hollaus, M., Mücke, W., Hofle, B., Dorigo, W., Pfeifer, N., Wagner, W., Bauerhansl, C., Regner, B. Treespecies classification based on full-waveform airborne laser scanning data. Proceedings of Silvilaser,2009,54-62.
    Holmgren J, Nilsson M, Olsson H. Estimation of tree height and stem volume on plots using airborne laserscanning. Forest Science,2003,49(3):419-428
    Hopkinson, C. The influence of flying altitude, beam divergence, and pulse repetition frequency on laserpulse return intensity and canopy frequency distribution. Canadian Journal of Remote Sensing,2007,33(4),312-324.
    H fle B, Pfeifer N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRSJournal of Photogrammetry and Remote Sensing,2007,62(6):415-433.
    Jones T.G., Coops N.C., Sharma T.. Assessing the utility of airborne hyperspectral and LiDAR data forspecies distribution mapping in the coastal Pacific Northwest, Canada. Remote Sensing of Environment,2010,114(12):2841-2852
    Jongschaap, R.E.E. Run-time calibration of simulation models by integrating remote sensing estimates ofleaf area index and canopy nitrogen. Eur. J. Agron.2006,24,316-324.
    Jutzi, B., Stilla, U. Waveform processing of laser pulses for reconstruction of surfaces in urban areas.RemoteSensing and Spatial Information Sciences36,2005(Part8/W27)(on CD-ROM)
    Kaasalainen S, Hyypp J, Litkey P, Hyypp H et al. Radiometric calibration of ALS intensity. Int. Arch.Photogramm Remote Sens.2007,36:201-205.
    Kato A., Moskal L. M., Schiess P., Swanson M. E., Calhoun D., and Stuetzle W., Capturing tree crownformation through implicit surface reconstruction using airborne lidar data, Remote Sens. Environ.,2009,133(6):1148-1162.
    Kuusk, A. A fast invertible canopy reflectance model. Remote Sensing of Environment,1995(51):342-350.
    Knabenschuh M, Petzold B. Data post-processing of laser scan data for countrywide DTM production,47thPhotogrammetric Week.1999:233-240.
    Koetz, B., Morsdorf, F., Sun, G. and al., e. Inversion of a lidar waveform model for forest biophysicalparameter estimation. IEEE Geoscience and Remote Sensing Letters,2006(3):47-51.
    Korhonen L., Korpela I.,Heiskanen J.,Maltamoa M. Airborne discrete-return LiDAR data in the estimationof vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment,2011,115(4):1065-1080.
    Kotchenova, S., Nikolay, V., Shabanov, Yuri, Knyazikhin, et al. Modeling lidar waveforms withtime-dependent stochastic radiative transfer theory for remote estimations of forest biomass. Journal ofGeophysical Research,2003(108): ACL12-1.
    Kukko A, Kaasalainen S, Litkey P. Effect of incidence angle on laser scanner intensity and surface data.Applied Optics,2007,47(7):986-992
    Lee D.S. and Shan J. Combining LIDAR elevation data and IKONOS multispectral imagery for coastalclassification mapping. Marine Geodesy.2003,26,117-127.
    Lefsky M. A. Application of lidar remote sensing to the estimation of forest canopy and standstructure.Doctoral Dissertation, University of Virginia,1997:1-10.
    Lefsky M. A., Cohen W. B., Acker S. A., Parker G. G., Spies T. A., Harding D. Lidar Remote Sensing of theCanopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. REMOTESENS. ENVIRON.,1999,70:339-361.
    Lefsky M. A., Cohen W. B., Parker G. G., Harding D. J. Lidar remote sensing for ecosystem studies.Bioscience,2002,52(1):19-30.
    Leuning, R.., Cleugh, H.A., Zegelin, S.J., Hughes, D. Carbon and water fluxes over a temperate Eucalyptusforest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remotesensing estimates. Agric. For. Meteorol.2005,129,151-173.
    Lemeur, R., Blad, B.L. A critical review of light models for estimating the shortwave radiation regime ofplant canopies. Agriculture and Forest Meteorology,1974(14):255-286.
    Lim K., Treitz P., Baldwin K., Morrison I., and Green J., Lidar remote sensing of biophysical properties oftolerant northern hardwood forests, Can. J. Remote Sens.,2003,29(5):658-678.
    Luo S.Z., Wang C., Li G.C., Xia X.H. Retrieving leaf area index (LAI) using ICESat/GLAS full-waveformdata. Remote Sensing Letters,2013,4(8).
    Lovell, J. L., Jupp, D. L. B., Newnham, G. J., Coops, N. C.,&Culvenor, D. S.(2005).Simulation study forfinding optimal lidar acquisition parameters for forest height retrieval. Forest Ecology and Management,214,398-412.
    Lucas RM, Lee A C, Bunting PJ. Retrieving forest biomass through integration of CASI and LiDAR data.International Journal of Remote Sensing.2008.29(5):1553-1577
    Mallet, C., Bretar, F. Full-waveform topographic LIDAR: state-of-the-art. ISPRS Journal of Photogrammetryand Remote Sensing,1999,64,1-16.
    Morsdorf F, Koetz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airbornelaser scanning data based on gap fraction. Remote Sensing of Environment,2006,104(1):50-61
    Maltamo M., Eerikainen K., Pitkanen J., Hyyppa J., Vehmas M. Estimation of timber volume and stemdensity based on scanning laser altimetry and expected tree size distribution functions. Remote Sensingof Environment,2004,90:319-330.
    Maltamo M., Packalen P., Yu X., Eerikainen K., Hyyppa J., Pitkanen J. Identifying and quantifying structuralcharacteristics of heterogeneous boreal forests using laser scanner data. Forest Ecology andManagement,2005,216:41-50.
    Monsi, M., Saeki, T.. On the factor light in plant communities and its importance for matter production (anEnglish translation of Monsi and Saeki (1953)). Annals of Botany,2005(95):549-567.
    Nackaerts K, Coppin P, Muys B, et al. Sampling methodology for LAI measurements with LAI-2000insmall forest stands[J]. Agricultural and Forest Meteorology,2000,101(4):247-250.
    Neuenschwander Amy L., Lori A. Magruder and Marcus Tyler. Landcover classification of small-footprint,full-waveform lidar data. Journal of Applied Remote Sensing,2009,3,033544.
    Ni-Meister, W., Jupp, D. L. B. and Dubayah, R. O. Modeling lidar waveforms in heterogeneous and discretecanopies. IEEE Transactions on Geoscience and Remote Sensing,2001(39):1943-1958.
    N sset, E. Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopymetrics and biophysical stand properties derived from small-footprint airborne laser data. RemoteSensing of Environment,2009,113,148-159.
    Pang Y., Tan B., Solberg S., et al. Forest LAI estimation comparison using LiDAR and hyperspectral data inboreal and temperate forests. In: Proceedings Vol.7454Remote Sensing and Modeling of Ecosystemsfor Sustainability VI,2009,74540Q:1-8
    Persson, A., Cement Mallet, Visualization and Analysis of Full-Waveform Airborne Laser Scanner Data.Remote Sensing and Spatial Information Sciences.2005,36(Part3/W19):103-108
    Persson, A.,Holmgren, J., Sodermann, U. and Olsson, H., Tree species classification of individual trees inSweden by combining high resolution laser data with high resolution near-infrared digital images.Remote Sensing and Spatial Information Sciences, Freiburg, Germany,2004, Vol. XXXVI,204-207.
    Petzold B, Reiss P, St ssel W. Laser Scanning-surveying and Mapping Agencies are Using a NewTechnology for Deviation of Digital Terrain Models. ISPRS Journal of Photogrammetry and RemoteSensing,1999,54(2/3):95-104
    Popescu S C, Wynne R H, Scrivani J A. Fusion of small-footprint LiDAR and multispectral data to estimateplot-level volume and biomass in deciduous and pine forests in Virginia, USA.Forest Science,2004,50(4):551-565.
    Popescu S. C. Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy,2007,31:646-655.
    Popescu S.C. Estimating Plot-Level Forest Biophysical Parameters Using Small-Footprint Airborne LidarMeasurements. Virginia: Doctoral dissertation, Virginia Tech,2002:1-29.
    Popescu S.C., Wynne R.H., Nelson R.F.. Measuring individual tree crown diameter with lidar and assessingits influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing,2003,29(5):564-577
    Popescu S.C.. Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy,2007,31:646-655
    Puttonen Eetu, Anttoni Jaakkola., Paula Litkey and Juha Hyypp. Tree Classification with Fused MobileLaser Scanning and Hyperspectral Data. Sensors,2011,11,5158-5182.
    Chen Qi, Gong Peng, Dennis Baldocchi, Tian Q Yong Q. Estimating Basal Area and Stem Volume forIndividual Trees from Lidar Data. Photogrammetric Engineering&Remote Sensing.2007.72(12):1355-1365
    Reitberger, J., Krzystek, P. and Stilla, U. Combined tree segmentation and stem detection using fullwaveform LIDAR data. International Archives of Photogrammetry, Remote Sensing and SpatialInformation Sciences36(Part3/W52),2007,332-337.
    Reitberger, J., Krzystek, P. and Stilla, U. Analysis of full waveform LIDAR data for the classification ofdeciduous and coniferous trees. International Journal of Remote Sensing,2008,29(5),1407-1431.
    Reshetyuk Y. Investigation of the Influence of Surface Reflectance on the Measurements with the TerrestrialLaser Scanner Leica HDS3000. Zeitschrift für Geodasie, Geoinformation und Landmanagement,2006,131(2):96-103.
    Richardson J. J., Moskal L. M., and S. H. Kim, Modeling approaches to estimate effective leaf area indexfrom aerial discrete-return LIDAR, Agric. Forest Meteorol.,2009,149(6/7):1152–1160.
    Roberts S. D., Dean T. J., Evans D. L., McCombs J. W., Harrington R. L., and Glass P. A, Estimatingindividual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height andcrown dimensions,” Forest Ecol. Manag.,2005,213(1-3):54-70.
    Sasaki T, Imanishi J, Ioki K, et al. Estimation of leaf area index and canopy openness in broadleaved forestusing an airborne laser scanner in comparison with high-resolution near-infrared digital photography.Landscape Ecological Engineering,2008,4(1):47-55
    Soegaard, H. Fluxes of carbon dioxide, water vapour and sensible heat in a boreal agricultural area ofSweden-scaled from canopy to landscape level. Agric. For. Meteorol.1999,98,463-478.
    Sun, G. and Ranson, K. J. Modeling lidar returns from forest canopies. IEEE Transactions on Geoscience andRemote Sensing,2000(38):2617-2626.
    Tucker, C. J., Miller, L. D, Pearson, R. L. Shortgrass prairie spectral measurements. PhotogrammetricEngineering and Remote Sensing,1975,41:1175-1183.
    Ullrich, A., Hollaus, M., Briese, C., Wagner, W. and Doneus, M.Utilization of full-waveform data in airbornelaser scanning applications. Proc. SPIE6550,2007,65500S.
    Ulaby, F.T., Moore.R.K, Fung.A.K. Microwave remote sensing Volume2: Radar Remote Sensing andSurface Scattering and Emission Theory. Addison-Wesley Publishing Company,1982.231-252.
    Vosselman G. Slope Based Filtering of Laser Altimetry Data. International Archives of Photogrammetry andRemote Sensing,2000,33(B3):935-942
    Wagner W., Ullrich A., Ducic, V. Melzer T., Studnicka N. Gaussian decomposition and calibration of a novelsmall-footprint full-waveform digitising airborne laser scanner. ISPRS Journal of Photogrammetry&Remote Sensing,2006,60(2):100-112.
    Wagner W., Ullrich A., Melzer T., Briese C., Kraus K. From single-pulse to full-waveform airborne laserscanners: potential and practical challenges. International Archives of Photogrammetry, RemoteSensing and Spatial Information Sciences,2004,35:201-206(Part B3).
    Wagner W., A. Ullrich, T. Melzer et al. From Single-Pulse to Full-Waveform Airborne Laser Scanners:Potential and Practical Challenges. Proceedings of International Society for Photogrammetry andRemote Sensing XXth Congress, Vol XXXV,2004,Part B/3:201-206
    Wagner W. Radiometric calibration of full-waveform small-footprint airborne laser scanner measurements:Basic physical concepts. ISPRS Journal of Photogrammetry and Remote Sensing,2010.
    Wagner, W. Gaussian decomposition and calibration of a novel smallfootprint full-waveform digitisingairborne laser scanner.ISPRS JPRS,2006,61:100-112
    Wang C. Biomass allometric equations for10co-occurring tree species in Chinese temperate forests. ForestEcology and Management,2006,222,9–16.
    Weiss, M., Baret, F., Smith, G. J., Jonckheere, I. and Coppin, P. Review of methods for in situ leaf area index(LAI) determination—Part II: Estimation of LAI, errors and sampling. Agricultural and ForestMeteorology,2004(121):37-53.
    Yu, X., Hyypp, J., Hyypp, H.,&Maltamo, M. Effects of flight altitude on tree height estimation usingairborne laser scanning. Proc. ISPRS WG VIII/2“Laserscanners for forestry and landscape assessment”,Vol. XXXVI, Part8/W2,3-6October2004, Freiburg, Germany
    Zhao,K., Popescu,S., Nelson,R. Lidar remote sensing of forest biomass: A scale-invariant estimationapproach using airborne lasers. Remote Sensing of Environment,2009,113:182-196.
    Zheng, D. L., Rademacher, J. Chen, J.Q. et al. Estimating aboveground biomass using Landsat7ETM+dataacross a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment,2004,93:402-411.
    Zheng, G., Chen, J. M., Tian, Q. J., et al. Combining remote sensing imagery and forest age inventory forbiomass map. Journal of Environmental Management,2006,7(15):1-7.
    Zheng G., Moskal L.M., Soo-Hyung K., Retrieval of Effective Leaf Area Index in Heterogeneous ForestsWith Terrestrial Laser Scanning,2013,51(2).
    陈传国,朱俊凤.东北主要林木生物量手册.中国林业出版社,1989.
    方精云.北半球中高纬度的森林碳库可能远小于目前的估算.植物生态学报,2000,24(5):635-638.
    何祺胜,陈尔学,曹春香等.基于LIDAR数据的森林参数反演方法研究.地球科学进展,2009,24(7):748-755.
    李奇,马洪超.基于激光雷达波形数据的点云产生.测绘学报.2008,37(3):349-354
    刘清旺,李增元,陈尔学等.机载LIDAR点云数据估测单株木生物量.高技术通讯.2010.7:765-770
    庞勇,李增元.基于机载激光雷达温带森林组分生物量反演研究.生态学杂志,2012,11:345-351.
    庞勇,李增元,陈尔学等.激光雷达技术及其在林业上的应用.林业科学,2005,41(3):129-136.
    庞勇,孙国清,李增元.林木空间格局对大光斑激光雷达波形的影响模拟.遥感学报,2006,10(1):97-103.
    庞勇,李增元, Sun Guoqing.地形对大光斑激光雷达森林回波影响研究.林业科学研究,2007,20(4):464-468.
    吴伟斌,洪添胜,王锡平.叶面积指数地面测量方法的研究进展.华中农业大学学报,2007,26(2):270-275.
    王希群.叶面积指数的研究和应用进展.生态学杂志,2005,24(5):537-5411.
    徐光彩.机载LIADR波形数据处理及分类研究.南京:南京林业大学硕士论文,2010
    徐希孺.遥感物理.北京:北京大学出版社,2005:292-382
    邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型.应用生态学报,2007,18(1):1-8.
    杨庚,黄春明.激光测高仪回波分解算法.空间科学学报,2005,25(2):125-131.
    赵峰.机载激光雷达数据和数码相机影像林木参数提取研究.中国林业科学研究院博士学位论文,2007:1-26.
    张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展,世界林业研究,2007,20(4):30-34.
    赵旦.基于激光雷达和高光谱遥感的森林单木关键参数提取.北京:中国林业科学研究院博士论文,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700