用户名: 密码: 验证码:
水泥工业协同处置生活垃圾焚烧灰渣技术及重金属离子固化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾焚烧技术由于可以对生活垃圾最大化的减容减量,已成为目前世界上发达国家处理生活垃圾的主要方式,我国一些大中型城市也正积极推行这一技术。但是,生活垃圾焚烧后仍会产生20~30%的灰渣,其中飞灰由于含有较多的重金属组分及可能含有二嗯英等有机污染物,已被界定为危险废物;炉渣虽然是一般废物,但也含有一定量的重金属等有毒有害物质。这些灰渣若处理不当将对人类生存环境及人身健康产生极其严重的危害,因此对灰渣进行安全、合理的处理尤为重要和迫切。近年来,水泥工业协同处置各种废弃物甚至危险废弃物已显示出巨大的经济和技术优势,被认为是21世纪水泥工业发展的一个重要方向。因此,开展利用水泥工业协同处置垃圾焚烧灰渣的工作,不但可以实现对灰渣的无害化消纳处理,进一步发挥水泥工业的社会服务职能,同时还能促进水泥工业走可持续发展的道路,具有重要的社会意义和经济价值。
     本研究以不改变现有水泥工业设备、工艺参数及产品性能为出发点,全面系统地研究了灰渣对水泥生产工艺、产品性能及制品的环境安全性等的影响,试图为水泥工业协同处置生活垃圾焚烧灰渣技术的应用和推广奠定理论基础和技术支撑。研究工作主要围绕以下几方面展开:1)调查分析了灰渣的物理和化学性质,并据此制定出其在水泥工业中处理的技术路线;2)研究了灰渣中的碱、氯、硫的高温挥发与低温富集过程,建立这些组分的挥发及冷凝特征模型,进而评价其对水泥窑系统安全运转的影响;3)研究灰渣对水泥生产工艺及产品性能的影响,提出保障协同处置灰渣过程及产品性能等达到国家相关标准要求的技术措施;4)研究协同处置灰渣过程中重金属元素的挥发特性及水泥制品中重金属离子的溶出情况,评价其对环境的影响;5)研究重金属离子在水泥熟料及水泥硬化体中的固化机理,为制品长期使用的安全性提供理论依据。
     对广州李坑垃圾焚烧发电厂的飞灰和炉渣调查分析结果表明:飞灰和炉渣均为非放射性物质,主要化学组成为SiO2、CaO、Al2O3和Fe2O3,可替代部分水泥原材料,但碱、氯、硫含量较高,其挥发会加剧水泥窑的结皮,生产时应加强清堵。飞灰和炉渣中大部分重金属元素含量均超出了GB15618-1995《土壤环境质量标准》Ⅲ类土壤标准限值,且主要以易迁移的可交换态、碳酸盐结合态和Fe-Mn氧化物结合态的形式存在,在酸中和能力试验中随pH下降重金属离子大量溶出;特别是,飞灰中Pb的浸出毒性超出了GB5085.3-2007《危险废物鉴别标准-浸出毒性鉴别》标准限值,属于危险废物;炉渣中重金属离子的浸出浓度也不同程度地超出了GB/T14848-93《地下水质量标准》限值,浸出液只能归入地下水V类,会对水质造成污染。生活垃圾焚烧飞灰和炉渣对环境都会构成二次污染的危害,须进行固化/稳定化处理。
     针对灰渣的组成和性质,制定出飞灰经配料计算后由水泥窑的窑头喷入,炉渣用于水泥生料配料或混合材的处理方案。窑头喷入的方案保证飞灰在使用过程中的密封性,有效防止粉尘溢出,同时水泥窑的煅烧环境符合二噁英分解所需的“3T+E”条件,可有效消除飞灰中可能存在的二噁英对环境的污染。灰渣作生料配料的技术研究表明:氯和碱的挥发率较高,对水泥窑炉的工况会产生一定的影响,通过建立挥发及冷凝特征模型,分析得出由碱、氯、硫挥发引起的结皮主要发生在水泥窑五级旋风筒附近,须加强清堵;Cd和Pb为易挥发性元素,应加强烟气中含量的跟踪监测;降低生料配料的硅率和铝率有利于降低碱、氯、硫及重金属元素的挥发率,减小对窑炉及环境的危害;灰渣的加入可改善生料的易烧性,且对熟料组成及产品性能影响不大。炉渣作混合材的技术研究表明:炉渣为非活性混合材,其掺入使水泥胶砂强度下降,不影响水泥与外加剂相容性的饱和点,但使流动性经时损失增大;胶砂干缩性能优于掺粉煤灰的水泥,不会引起钢筋锈蚀的危害。水泥工业协同处置灰渣对重金属离子有很好的固化效果:掺4.6%飞灰或5%炉渣烧制的水泥和掺15~80%炉渣作混合材的水泥,在纯水或模拟酸雨浸出条件下,其28d胶砂制品及碳化后制品的重金属离子破碎溶出及硬化体表面浸渍溶出均满足GB/T14848-93地下水Ⅲ类的要求,不会引起环境污染。上述研究结果为使用现有水泥工业设备及工艺条件协同处置垃圾焚烧灰渣奠定了理论基础及提供了技术支持。
     运用连续酸萃取法,结合离子溶出、XRD、DSC、SEM及EDS等方法,分析了协同处置灰渣后的水泥熟料及水泥硬化体中重金属离子的固化及分布情况,揭示了各种重金属离子的存在状态与水泥水化产物中Ca(OH)2、(硫)铝酸盐水化产物、C-S-H及熟料中硅酸盐矿物、铝酸盐、铁酸盐的关系:1)熟料中As、Ba、Cd、Cu、Pb和Zn主要固溶在硅酸盐矿物中,Cr和Mn在硅酸盐矿物和中间体的固溶量相当;2)硬化体中由熟料带入的重金属离子主要固化在C-S-H中且以取代Ca2+的形式存在,部分Ba和少量Cr以氢氧化盐沉淀的形式存在,部分Cd结合在Ca(OH)2中固化,部分Cr进入(硫)铝酸盐水化产物中固化;3)由混合材带入水泥硬化体的重金属离子,As、Cu、Mn、Zn和大部分的Pb主要保留在炉渣中,而较多的Ba、Cd、Cr和Pb迁移并主要固化在C-S-H中,部分Ba和少量Cr以氢氧化盐沉淀的形式存在,其中Ba和Cr主要以取代Ca2+的形式存在,Cd主要以物理吸附的形式存在,而Pb主要吸附在Si-O结构中;4)水泥硬化体对由熟料或混合材带入的重金属离子均有很好的固化效果,进入孔溶液中的重金属离子含量极少,大部分重金属离子在pH<11即硬化体遭破坏时才大量溶出;掺10%飞灰煅烧的水泥中掺入50%炉渣作混合材的情况下带入的重金属离子含量达到协同处置的最高值,但其90d硬化体在破坏前重金属离子的溶出仍可达到地下水Ⅳ类的要求。这一研究结果阐明了水泥及其水化产物对各种重金属离子的固化/稳定化机理,为水泥工业协同处置灰渣的水泥制品长期使用的安全性提供了理论依据。
     连续酸萃取法是对酸中和能力(ANC)试验方法的改进,本文采用该方法实现了对硅酸盐水泥及掺混合材水泥中各种熟料矿物和水化产物的分离:水化产物Ca(OH)2主要在pH≈12时分解,(硫)铝酸盐水化产物等主要在pH=12~11的阶段分解,C-S-H的分解主要发生在pH=11~7阶段;熟料中的硅酸盐矿物主要在pH>7的阶段分解,铝酸盐在高碱性条件下发生水化反应,碱性降低时水化反应不能正常进行,主要在pH=5~3.5的阶段分解,铁酸盐在pH<3.5的阶段分解。将连续酸萃取法用于分析研究水泥基材料中重金属离子的固化和分布是有效可行的,该方法对研究水泥基材料在不同服役环境中的长期耐久性和安全性提供了参考价值,也为水泥化学的研究提供了一条新的技术方法和手段。
     本研究提出的协同处置生活垃圾焚烧炉渣的两种技术方案均在广州珠江水泥厂日产5000吨的五级旋风预热干法线上进行了实施。从实际运行的情况来看,掺2.2%炉渣用作生料配料或掺5%炉渣作混合材时,对生产工艺、水泥性能及环境安全性等均影响较小,工业应用效果良好。碱和氯的挥发虽然加剧了五级旋风筒的结皮,但加强清堵后仍不影响正常生产;水泥窑排放的烟气中二噁英、Pb、Cd、Hg、SO2、NOx及粉尘浓度等的含量均低于国家相关标准限值,不会对大气环境带来危害;制品的重金属离子破碎溶出和浸渍溶出均能满足GB/T14848-93地下水Ⅲ类要求,在使用过程中均不会对环境及水源造成污染。
     本研究在不改变现有水泥工业设备、生成工艺及产品性能的前提下,采用飞灰经配料计算后由水泥窑的窑头喷入、炉渣用于水泥生料配料或混合材的协同处置方案,在保证水泥性能的基础上,使得生产、环境及产品的安全性达到国家相关标准;初步掌握了协同处置垃圾焚烧灰渣的水泥熟料及水泥硬化体中重金属离子的固化和分布情况,为制品长期使用的安全性提供了理论依据。本文的研究工作及项目计算成果的工业化实施,为利用水泥厂协同处置各种废物(特别是含有重金属等有害组分的危险废物)在规划、实施和环境保护评价方面均提供了示范框架和有益参考。
In most developed countries, municipal solid waste (MSW) is usually incinerated to reduce the volume. In recent years, MSW incineration technology has also received a rapid and positive development in the major cities of China. After the incineration,20-30% of the combustion residues such as fly ash and bottom ash are produced. Fly ash is defined as hazardous waste because it contains a large amount of heavy metals and possible organic pollutants such as dioxin. Bottom ash belongs to general waste but toxic and harmful elements are also present. Since improper treatment of MSW incineration (MSWI) ash is hazardous to human health and the surrounding environment, a safe and reasonable treatment is very urgent and desirable. In the past few decades, the use of cement based stabilization techniques is a common and cost-effective method for stabilization of a variety of wastes and even hazardous wastes. Therefore, performing the studies on the immobilization/stabilization of MSWI ash with cement is of important social significance and also economic value.
     In this study, the influence of MSWI ash addition on cement production process and product performance, as well as the impact of the final product on environment was comprehensively and systematically carried out without altering the present cement industry equipments, processing technology, hopefully providing the theoretical foundation and technical support for the application and promotion of the cement industry cooperative disposal MSWI ash technology. Research work is mainly focused on the several aspects as follows:1) analyze the physical and chemical properties of MSWI ash and propose a possible application method in cement industry; 2) investigate the volatile and condensing process of several elements including alkali, chlorine, and sulfur at high and low temperatures, respectively. On the basis of this study, a model can be developed to simulate the volatile and condensing process. Furthermore, the impact of the process on the operation of cement kiln system is assessed; 3) study the influence of MSWI ash on the cement production process and performance of final product. Besides, bring out technical measures to ensure the solidification process and product performance to meet the requirements of the national standards; 4) study the volatile characteristics of heavy metals during the MSWI ash treatment process as well as the leaching behavior of heavy metals from cement product. Besides, evaluate the impact of this process on the environment; and 5) study the solidification mechanism of heavy metals in cement clinker and hardened cement paste in order to provide a theoretical basis for the long-term utilization of these products.
     The analysis results of MSWI fly ash and bottom ash from Likeng in Guangzhou show that both ashes are non-radioactive materials and mainly composed of SiO2, CaO, Al2O3 and Fe2O3. They could partially replace raw materials for cement production. However, it is expected that the cement production process could be negatively affected due to the higher content of alkali, chlorine and sulfur in the ashes. The concentration of most heavy metals in both ashes is beyond the limit for typeⅢsoil in GB15618-1995, "Environmental quality standards for soil" and most of them are present in transferable form, carbonate and Fe-Mn oxides. Therefore, these heavy metals would be easily leached out in low-pH test. It is notable to mention that the leaching toxicity of Pb from fly ash is beyond the limit stipulated in GB5085.3-2007, "Standard for identification of hazardous waste-leaching toxicity" and thus the fly ash is classified as hazardous waste. In addition, the leaching concentration of heavy metals from bottom ash is also beyond the limit in GB/T14848-93, "Standard for underground water" and thus the leaching solution is classified as type V. These results demonstrate that the MSWI ashes would pollute the environment and even dangerous to the surroundings, thus the solidification/stabilization treatment is really desirable.
     According to the physical and chemical properties of ashes, fly ash and bottom ash are treated in different methods. Fly ash is injected from the head of the cement kiln with calculated prescription, which can not only ensure the tightness of fly ash in the process but also effectively eliminate the possible pollution of dioxin to environment, making the calcination environment of cement kiln in line with the requirement called "3T+E" for decomposition of dioxin. Bottom ash can be used as a replacement for raw materials or admixture in cement. When the bottom ash is mixed with raw materials, the results show that the high volatilization rate of chlorine and alkali will negatively affect the operation of cement kiln. Our volatilization-condensation model presents that build-up caused by alkali, chlorine, and sulfur mainly occurs near the 5th preheated cyclone and thus more frequent cleaning is needed. Since Cd and Pb are volatile elements, their content in the flue gas should be monitored in a much stricter way. Lowering the SIM and AM of raw meal can help decreasing the volatilization rate of alkali, chlorine, sulfur and heavy metals, thus reducing the harm to the kilns and environment. Results also show that the partial replacement of MSWI ash as raw materials can improved the burnability of cement raw meal while exert no large influence on the clinker composition and performance of final products. When bottom ash is used as admixture, it is found that the compressive strength of cement mortar is decreased and the compatibility with other admixture is not affect, i.e. saturation point is not changed, but loss of fluidity with time is increased. Besides, the shrinkage behavior of mortar is better than that of cement with coal fly ash and will not cause steel corrosion. The solidification of heavy metals with cement show good results. For the cement sintered from doped raw material, i.e. 4.6% of fly ash or 5% of bottom ash, and the cement with 15%-80% of bottom ash replaced as admixture, both the 28-d hardened mortar the mortar specimen after carbonation are prepared and tested in pure water or stimulated acid rain leaching. The leaching behavior of heavy metals of the two samples in either broken-mortar leaching test or surface leaching test can totally meet the requirements of typeⅢwater according to GB/T14848-93. These results provide theoretical foundation and technological supports for MSWI ash treatment in cement industry under present cement industrial equipment and production process.
     In this study, several different methods including Continuous Acid Extraction (CAE), XRD、DSC、SEM and EDS were used to analyze the solidification and distribution state of heavy metals in the co-processed cement clinker and hardened cement paste. Based on the results, the relationship between the state of heavy metals and various cement hydration products including Ca(OH)2、sulfur/aluminate、C-S-H and also silicate、aluminate, ferrite minerals in cement clinker were revealed. The main results include:(1) The elements of As, Ba, Cd, Cu, Pb, and Zn in fly ash are mainly dissolved in silicate minerals while Cr and Mn in the silicate minerals and intermediates evenly; (2) In hardened cement paste, the heavy metals carried in by clinker are mainly solidified in the C-S-H. Part of Ba and Cr are present in the form of hydroxide precipitation. Some amount of Cd is combined in Ca(OH)2 while some of Cr in the sulfur/aluminate hydrates; 3) In the heavy metals carried in by bottom ash replaced admixture, As, Cu, Mn, Zn, and most of the Pb are mainly maintained in the ash while most Ba, Cd, Cr, and Pb migrates and are solidified in C-S-H and some Ba and a small amount of Cr still exist in the form of hydroxide precipitation; and 4) Hardened cement paste can well solidify the heavy metals carried in by either ash-substituted clinker or admixture. At the age of 90d, negligible heavy metals can be detected in the pore solution. A mass of heavy metals cannot dissolve until at a pH of less than 11 and collapse of paste. When the pH is around 11 but the paste is still intact, the leaching of heavy metals can still meet the requirement for type IV underground water. The results clarify the solidification/stabilization mechanism of heavy metals by cement and its hydration products and also provide a theoretical basis for the long-term use of co-processed cement products.
     The Continuous Acid Extraction (CAE) method developed in this study improves the traditional acid neutralization capacity (ANC) test. Through CAE, separation of different minerals in clinker from hydration products in silicate cement or admixture-added cements can be realized because different materials decompose at different pH ranges:Ca(OH)2 at pH of around 12; sulfur/aluminate hydrates at pH ranging from 11 to 12; C-S-H at pH of 7 to 11; silicate minerals at pH higher than 7; aluminate hydrate at pH of 3.5 to 5; and ferrite at pH lower than 3.5. The results demonstrate that CAE method is valid for the analysis of solidification and distribution of heavy metals in cement-based materials. This method provides an alternative technical method for cement chemistry research.
     The two solutions proposed in this study to dispose MSWI ash have already been adopted in pilot scale in the Guangzhou Zhujiang cement factory with clinker production of 5000 ton/day. The actual operation results show that when 2.2% bottom ash added as raw materials or 5% as admixture, the production process has been altered significantly. Even though the volatilization of alkali and chlorine would aggravate the "build-ups" at 5th preheated cyclone, production process will not be affected after appropriate cleaning. The concentration of dioxin, Pb, Cd, Hg, SO2, NOx and dust emitted from cement kiln is under the national standard limits and thus will not bring any harm to environment. Leaching of heavy metals whether from broken sample or intact sample can meet the requirement of typeⅢunderground water in GB/T14848-93 and it will not bring any water pollution.
     In this study, the MSWI ashes were appropriately treated in cement industry:fly ash is injected into the kilns after calculation and bottom ash is used as partial replacement of cement raw material or admixture without altering the present cement industry equipments, processing technology. The results demonstrate that not only the performance of final product can be guaranteed but also the meet the national standards including production, environment and safety of product. The solidification and distribution of heavy metals in clinker and hardened cement paste doped with MSWI ashes are preliminarily studied which can serve to provide a theoretical basis for the long-term use of these products. Research of this paper and successful implementation of the pilot practice can offer cement factories a model framework and a useful reference to co-process different kinds of waste (especially the dangerous wastes) from various aspects, such as planning, implementation and environmental safety evaluation.
引文
[1]保罗·迈克思维-库克.世界水泥市场现状及展望[J].建设机械技术与管理.2006,13(03):39-40.
    [2]赵启纲,田巍,张觊.利用水泥窑处置工业废弃物及城市生活污泥技术的研究和应用[J].中国水泥.2006(11):49-52.
    [3]施惠生.城市垃圾焚烧飞灰处理技术及其在水泥生产中资源化利用[J].水泥.2007,24(10):1-4.
    [4]杨慧芬,张强.固体废物资源化[M].化学工业出版社,2003.
    [5]Kosson, van der Sloot D S, Eighmy T T. An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues[J]. Journal of Hazardous Materials.1996,47(1-3):43-75.
    [6]宋志伟,吕一波,梁洋,et al.国内外城市生活垃圾焚烧技术的发展现状[J].环境卫生工程.2007,15(01):21-24.
    [7]袁克,萧惠平,李晓东.中国城市生活垃圾焚烧处理现状及发展分析[J].能源工程.2008(05).
    [8]国家环境保护总局.生活垃圾焚烧污染控制标准[S].
    [9]Wiles C C, Shepherd P. Beneficial use and recycling of municipal waste combustion residues-a comprehensive resource document[M]. USA:National Renewable Energy Laboratory,1999:6-50.
    [10]辛化.从“疯牛病”到“污染鸡”——人类食品安全的警告[J].经济世界.1999(10):26-28.
    [11]S S, S U, H T. Leaching behavior of PCBx and PCDDs/DFx from some waste materials[J]. Waste Mangement.2000,20(2):241-247.
    [12]温飞,陶华肠,李丽群.重金属污染的研究进展[J].甘肃科技.2008,24(24):118-121.
    [13]Aubert J E, Husson B, Sarramone N. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1:Processing and characterization of MSWI fly ash[J]. Journal Of Hazardous Materials.2006,136(3):624-631.
    [14]Feng S, Wang X, Wei G, et al. Leachates of municipal solid waste incineration bottom ash from Macao:Heavy metal concentrations and genotoxicity[J]. Chemosphere.2007, 67(6):1133-1137.
    [15]张瑞娜,赵由才,许实.生活垃圾焚烧飞灰的处理处置方法[J].苏州科技学院学报(工程技术版).2003,16(01):22-29.
    [16]钱玲,侯浩波.浅谈垃圾焚烧灰渣的资源化利用[J].中国资源综合利用.2004(10):9-12.
    [17]施惠生.利用城市垃圾焚烧飞灰煅烧水泥熟料初探[J].水泥.2004,21(11):1-4.
    [18]Goh C, show Y Y, cheong H K. Municipal solid waste fly ash as a blended cement material[J]. Journal of Materials in Civil Engineering.2003,15(6):513-523.
    [20]刘新年,郭宏伟,高档妮.国内外生态水泥产业发展沿革及趋势[J].陕西科技大学学报.2005,23(01):87-90.
    [21]Cai Z, Dirch H B, Christensen T H. Leaching from solid waste incineration ashes used in cement-treated base layers for pavements [J]. WasteManagement.2004,24(6):603-612.
    [22]Kumar S, Pati C B. Estimation of resource savings due to fly ash utilization in road construction[J]. Resources,Conservations and Recycling.2006,48:125-140.
    [23]Cai Z, Jensen D L, Christensen T H, et al. Reuse of stabilized flue gas ashes from solid waste incineration in cement treated base layers for pavements[J]. Waste Management and research.2003,21(1):42-53.
    [24]Pera J, Coutaz L, Ambroise J, et al. Use of incinerator bottom ash in concrete[J]. Cement and Concrete Research.1997,27(1):1-5.
    [25]Muller U, Rubner K. The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component J]. Cement and Concrete Research.2006, 36(8):1434-1443.
    [26]Pera J, Coutaz L, Ambroise J, et al. Use of incinerator bottom ash in concrete[J]. Cement and Concrete Research.1997,27(1):1-5.
    [27]Rogoff M J, Scott S. SWANA's 2000 municipal waste combustor ash recycling & reuse survey[M]. Maryland:SWANA,2000.
    [28]Olsson S, Karrman E, Gustafsson J P. Environmental systems analysis of the use of bottom ash from incineration of municipal waste for road construction[J]. Resources, Conservation and Recycling.2006,48(1):26-40.
    [29]张江.水泥熟料固化危险工业废弃物中重金属元素的研究[D].北京工业大学,2004.
    [30]李润东,聂永丰.垃圾焚烧飞灰熔融过程二嗯英分解特性[J].化工学报.2004(4):668-672.
    [31]Vespa M, Wieland E, Dahn R, et al. Determination of the elemental distribution and chemical speciation in highly heterogeneous cementitious materials using synchrotron-based micro-spectroscopic techniques[J]. Cement and Concrete Research.2007, 37(11):1473-1482.
    [32]Laforest G, Duchesne J. Investigation of stabilization/solidification for treatment of electric arc furnace dust:Dynamic leaching of monolithic specimens[J]. Cement and Concrete Research.2007,37(12):1639-1646.
    [33]Stephan D, Maleki H, Knofel D, et al. Influence of Cr, Ni, and Zn on the properties of pure clinker phases:Part Ⅰ. C3S[J]. Cement and Concrete Research.1999,29(4):545-552.
    [34]Stephan D, Maleki H, Knofel D, et al. Influence of Cr, Ni, and Zn on the properties of pure clinker phases:Part Ⅱ. C3A and C4AF[J]. Cement and Concrete Research.1999,29(5): 651-657.
    [35]Saikia N, Kato S, Kojima T. Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash[J]. Waste Management., In Press, Corrected Proof.
    [36]Pan J R, Huang C, Kuo J J, et al. Recycling MSWI bottom and fly ash as raw materials for Portland cement[J]. Waste Management.2008,28(7):1113-1118.
    [37]马保国,黄祥,李相国,et al.城市垃圾焚烧飞灰配制水泥熟料的研究[J].武汉理工大学学报.2009,31(08):52-54.
    [38]凌永生,金宜英,王雷,et al.苏州市生活垃圾焚烧飞灰水泥窑煅烧资源化示范工程[J].环境工程.2008,26(S1):220-223.
    [39]Krammart P, Tangtermsirikul S. Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste[J]. Construction And Building Meterials.2004,18(8):579-583.
    [40]Shih P H, Chang J E, Chiang L C. Replacement of raw mix in cement production by municipal solid waste incineration ash[J]. Cement and Concrete Research.2003,33(11): 1831-1836.
    [41]Lin K L, Lin D F. Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement[J]. Cement and Concrete Composites. 2006,28(9):817-823.
    [42]Juric B, Hanzic L, Ilicacute, et al. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete[J]. Waste Management (New York, N.Y.).2006,26(12): 1436-1442.
    [43]张文生,隋同波,姚燕,et al.垃圾焚烧灰作为水泥混合材的研究[J].硅酸盐学报.2006,34(02):229-232.
    [44]袁锋,范伊,宋晨路,et al.城市生活垃圾焚烧灰渣作水泥混合材的研究[J].新型建筑材料.2004,21(06):17-19.
    [45]施惠生,袁玲.城市垃圾焚烧飞灰中重金属的化学形态分析[J].环境科学研究.2004,17(06):46-49.
    [46]何品晶,宋立群,章骅,et al.垃圾焚烧炉渣的性质及其利用前景[J].中国环境科学.2003,23(04):395-398.
    [47]Lin K L, Wang K S, Tzeng B Y, et al. The reuse of municipal solid waste incinerator fly ash slag as a cement substitute[J]. Resource Conservation and Recyaling.2003,39(4): 315-324.
    [48]施惠生,袁玲.垃圾焚烧飞灰胶凝活性和水泥对其固化效果的研究[J].硅酸盐学报.2003,31(11):1021-1025.
    [49]Polettini A, Pomi R, Carcani G. The effect of Na and Ca salts on MSWI bottom ash activation for reuse as a pozzolanic admixture[J]. Resources, Conservation and Recycling. 2005,43(4):403-418.
    [50]Smichowski P, Polla G, Gomez D. A three-step metal fractionation scheme for fly ashes collected in an Argentine thermal power plant[J]. Fuel.2008,87(7):1249-1258.
    [51]Jegadeesan G, Al-abed S R, Pinto P. Influence of trace metal distribution on its leachability from coal fly ash[J]. Fuel.2008,87(7):1258-1264.
    [52]崔素萍,兰明章,张江,et al.废弃物中重金属元素在水泥熟料形成过程中的作用及其固化机理[J].硅酸盐学报.2004,32(10):1265-1231.
    [53]Andrade F R, Maringolo V, Kihara Y. Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker[J]. Cement and Concrete Research.2003,33(1):63-71.
    [54]Osamu Y M. A method for the determination of total Cr(Ⅵ) in cement[J]. Journal of the European Ceramic Society.2006(26):785-790.
    [55]Gougar M L, Scheetz B E, Roy D M. Ettringite and C-S-H Portland cement phases for waste ion immobilization:A review[J]. Waste Management.1996,16(4):295-303.
    [56]Kumarathasan, P., Mccarthy, G. J., Hassett, D. J. And Pflughoeft-hassett D F, I1,1 (. Oxyanion substituted ettringites:synthesis and characterization; and their potential role in immobilization of As, B, Cr, Se, and V. Fly Ash and Coal Conversion By-Products: Characterization, Utilization, and Disposal[C].1990.
    [57]Bonen, D. And Sarkar S L. The present state-of-the-art of immobilization of hazardous heavy metals in cement-based materials,Advances Cem.& Concr.[C]. New York: American Society of Civil Engineers,1994.
    [58]Glasser F P. Chemistry of cement solidified waste forms,Chemistry and Microstructure of Solidified Waste Forms[M].1993:1-39.
    [59]Park C K. Hydration and solidification of hazardous wastes containing heavy metals using modified cementitious materials[J]. Cement and Concrete Research.2000,30(3): 429-435.
    [60]Park J Y, Batchelor B. Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model Part Ⅰ. Chemical representation of cementitious binders[J]. Cement and Concrete Research.1999,29(3):361-368.
    [61]k C F, g B L, Chalasani D, et al. Immobilization mechanisms in solidification/stabilization of Cd and Pb salts using Portland cement fixing agent[J]. Environ. Sci. Technol.1990,24:867-873.
    [62]施惠生.生态水泥与废弃物的资源化利用[M].2004.
    [63]Auer S, Kuzel H J, Pollmann H, et al. Investigation on MSW fly ash treatment by reactive calcium aluminates and phases formed[J]. Cement and Concrete Research.1995, 25(6):1347-1359.
    [64]Tessier A, Campbell P G, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry.1979,51(7):844-851.
    [65]Rauret G, JFLopez-sanchez, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring.1999,1(1):57~61.
    [66]张亚梅,李向东,孙伟.水泥基材固化处理含铜污泥的析出性能研究[J].硅酸盐学报.2002,30(4):537-539.
    [67]Zhang J, Liu J, Li C, et al. Comparison of the fixation of heavy metals in raw material, clinker and mortar using a BCR sequential extraction procedure and NEN7341 test[J]. Cement and Concrete Research.2008,38(5):675-680.
    [68]灰渣处理项目查新报告[J].
    [69]Chandler A J,eighmy T T, Hartlen J, Et Al. Municipal Solid Waste Incinerator Resjdues[M]. The Netherlands:Elsevier Science B.V.,1997:203~221.
    [70]曾小星.水泥与粉煤灰中有害组分的溶出及其抑制材料的研究[D].广州:华南理工大学,2006.
    [71]万晓,王伟,高兴保,et a1.垃圾焚烧飞灰中重金属的分布与性质[J].环境科学.2005,26(03):172-175.
    [72]Johnson C A, Brandenberger S, Baccini P. Acid neutralizing capacity of municipal waste incinerator bottom ash[J]. Environmental Science and Technology.1995,29(1):142.
    [73]Isenburg J, Moore M. Generalized acid neutralization capacity test[M]. Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, ASTM Special Technical Publication,1992.
    [74]朱伟,曾科林,张春雷.淤泥固化处理中有机物成分的影响[J].岩土力学.2008,29(01):33-36.
    [75]张益.我国生活垃圾焚烧技术发展与二恶英控制[J].上海绿化.2009:14-15.
    [76]陆胜勇,池涌,严建华,et a1.垃圾焚烧中重金属污染物的迁移和分布规律[J].热力发电.2003,32(03):24-29.
    [77]何品晶,章骅,曹群科,et a1.上海浦东垃圾焚烧发电厂飞灰性质研究[J].环境科学.2004,24(1):38-42.
    [78]章骅,何品晶.城市生活垃圾焚烧灰渣及其性质分析[J].上海环境科学.2002,21(06):256-261.
    [79]Klain D H, Andren A J, Center J A, et al. Pathway of 37 trace elements through coal-fired power plants[J]. Environmental Science & technology.1975,9(9):973~979.
    [80]龙腾发,柴立元,傅海洋,et al.铬渣浸出毒性试验研究[J].环境工程.2004,22(6):71-74.
    [81]任福民,汝宜红,许兆义,et al.北京市生活垃圾重金属元素调查及污染特性分析[J].北方交通大学学报.2001,25(4):67-69.
    [82]张志勇,陈述,黄宝贵.化学物相分析在环境科学中的应用进展[J].矿冶工程.2005,25(02):58-62.
    [83]李非里,刘丛强,宋照亮.土壤中重金属形态的化学分析综述[J].中国环境监测.2005,21(04):21-27.
    [84]Bruder-hubscher V, Lagarde F, Leroy M J, et al. Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash[J]. Analytica Chimica Acta.2002,451(2):285-295.
    [85]宋立杰.生活垃圾焚烧炉渣特性及其在废水处理中的应用研究[D].同济大学,2006.
    [86]党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展[J].地球科学进展.2001,16(01):86-92.
    [87]张范.废弃物焚烧系统中二噁英的形成和控制[J].工业炉.2004,26(5):34-37.
    [88]Schindler P J, Nelson L P. Municipal Waste Combustion Assessment:Technical Basis for Good Combustion Practice[M]. U.S.:Environmental Protection Agency,1989: 0-600889063.
    [89]陆胜勇,严建华,李晓东,et a1.废弃物焚烧飞灰中从头合成二嗯英的试验研究——氧、碳、催化剂的影响[J].中国电机工程学报.2003,23(11):178-183.
    [90]乔龄山.水泥厂利用废弃物的有关问题(二)——微量元素在水泥回转窑中的状态特性[J].水泥.2002,19(12):1-8.
    [91]管宗甫,陈益民,秦守婉.杂质离子对硅酸盐水泥熟料烧成影响的研究进展[J].硅酸盐学报.2003,31(08):795-800.
    [92]Katyal N K, Ahluwalia S C, Parkash R. Effect of Cr2O3 on the formation of C3S in 3CaO:1SiO2:xCr2O3 system[J]. Cement and Concrete Research.2000,30(9):1361-1365.
    [93]苏达根,林少敏.水泥窑铅镉等重金属的污染及防治[J].硅酸盐学报.2007,35(05):558-562.
    [94]刘艳霞,崔素萍,兰明章,et a1.水泥生产中微量元素的行为及环境影响[J].水泥.2002,19(05):5-8.
    [95]林少敏.水泥窑Pb等重金属的逸放污染及防治研究[D].广州:华南理工大学,2006.
    [96]兰明章.重金属在水泥熟料煅烧和水泥水化过程中的行为研究[D].
    [97]Stephan D, Mallmann R, Knofel D, et al. High intakes of Cr, Ni, and Zn in clinker:Part Ⅱ. Influence on the hydration properties[J]. Cement and Concrete Research.1999,29(12): 1959-1967.
    [98]Fernandez O I, Chacon E, Irabien A. Influence of lead, zinc, iron (Ⅲ) and chromium (Ⅲ) oxides on the setting time and strength development of Portland cement[J]. Cement and Concrete Research.2001,31(8):1213-1219.
    [99]Stephan D, Mallmann R, Knofel D, et al. High intakes of Cr,Ni and Zn in clinker part Ⅱ.Influence on the hydration properties[J]. Cement and Concrete Research.1999,29:1959-1967.
    [100]Kakali G, Tsivilis S, Tsialtas A. Hydration of ordinary portland cement made from raw mix containing transition element oxides[J]. Cement and Concrete Research.1998,28: 335-340.
    [101]Rossetti V A, Mdici F. Inertization of Toxic Metals in Cement Matrices:Effects on Hydration,Setting and Hardening[J]. Cement and Concrete Research.1995,28:1147-1152.
    [102]吴笑梅,樊粤明,简运康.用Marsh筒法研究水泥与减水剂的适应性问题[J].水泥.2002,19(12):12-14.
    [103]张德成,张鸣,肖传明.外加剂相容性及其对混凝土性能的影响[J].硅酸盐通报.2006,25(4):162-167.
    [104]Sergi G. Corrosion of steel in concrete:Cement matrix variables[D]. Aston University, 1986.
    [105]Stegemann J A, Perera A S, Cheeseman C, et al.1/8 Factorial Study of Metal Effects on Acid Neutralization by Cement[J]. Journal of Environmental Engineering.2000,126(10): 925-933.
    [106]Glass G K, Buenfeld N R. Differential acid neutralisation analysis[J]. Cement and Concrete Research.1999,29(10):1681-1684.
    [107]Mastro S L, Polettini A, Giampaolo C, et al. Acid neutralisation capacity and hydration behaviour of incineration bottom ash-Portland cement mixtures[J]. Cement and Concrete Research.2002,32(5):769-775.
    [108]Stronach S A, Glasser F P. Modelling the impact of abundant geochemical components on phase stability and solubility of the CaO-SiO2-H2O system at 25 degrees C:Na+, K+, SO42-, Cl- and CO32-[J]. ADVANCES IN CEMENT RESEARCH.1997,9(36):167-181.
    [109]Chen J J, Thomas J J, Taylor H F W, et al. Solubility and structure of calcium silicate hydrate[J]. Cement and Concrete Research.2004,34(9):1499-1519.
    [110]Taylor H F W. Cement Chemistry[M]. New York:Academic Press,1990.
    [111]Ghorab H Y, Kishar E A. The stability of the calcium sulphoaluminate hydrates in aqueous solutions[C]. Rio de Janeiro:1986.
    [112]Kumarathasan P, Mccarthy G J, Hassett D J, et al. Oxyanions substituted ettringites: Synthesis and characterization and their potential role in immobilisation of As, B, Cr, Se and V[C].1990.
    [113]Stegemann J A, Shi C, Caldwell R J. Waste Materials in Construction[M]. Amsterdam: Elsevier,1997:803-814.
    [114]邵国有.硅酸盐岩相学[M].武汉工业大学出版社,1991.
    [115]Gutterdge W A. On the Dissolution of the Interstitial phases in Portland Cement[J]. Cenent and concrete research.1979(19):319~324.
    [116]龙世宗,廖广林,赵三银.硫铝酸钡钙矿物烧成若干问题的研究[J].中国建材科技.1996,5(03):11-17.
    [117]刘桂秋,张鹤飞,赵振华.采用石灰-铁盐混凝沉淀法去除废水中的As(Ⅲ)[J].化工环保.2008,28(03):226-229.
    [118]乔龄山.水泥厂利用废弃物的有关问题(一)——国外有关法规及研究成果[J].水泥.2002(10).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700