用户名: 密码: 验证码:
钢筋混凝土核心筒抗震性能及其设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土核心筒已成为我国高层建筑中一种主要的抗侧力结构单元。框架-核心筒混合结构在我国地震区已有大量应用,但目前国内外对于核心筒很少进行深入研究,有关理论分析和设计方法没有形成一套考虑混凝土核心筒为空间抗侧力单元的完整抗震设计方法和构造体系,核心筒的抗震性能研究还很不足。所以,对地震区混凝土核心筒的抗震性能开展研究具有重要的理论和现实意义。本文在以往研究基础上,进行了以下几个方面的研究工作:
     混凝土核心筒破坏机理和抗震性能研究。通过5个混凝土核心筒试件在相同轴压比下的低周反复水平加载试验,研究了钢筋混凝土核心筒在地震作用下的开裂过程、损伤顺序、滞回性能、承载力、变形及延性性能,薄弱部位、刚度退化、耗能能力、截面应变和剪力滞后现象等;分析了其破坏机理、较大塑性变形区域受力情况。分析了在相同轴压比下,试件的高宽比、连梁纵筋配筋率、连梁跨高比及加载角度各项因素对核心筒抗震性能的影响。采用三维结构非线性分析与性能评估软件perform-3D对混凝土核心筒试验试件进行了静力非线性分析,计算所得pushover曲线与试验结果吻合较好,表明纤维单元对核心筒分析的有效性和准确性;同时,对核心筒试件弹塑性损伤分布与发展的分析,得到核心筒试件损伤发展顺序以及各构件屈服情况,并与试验结果进行了对比分析,符合较好;在此基础上,系统分析了更多参数如轴压比等对混凝土核心筒承载力和变形性能的影响规律,得到对理论研究和工程设计有价值的结论。
     混凝土核心筒性能指标限值研究及其抗震性能评估。本文在现行规范基础上进一步细分,将钢筋混凝土核心筒结构的性能水准划分为良好使用、暂时使用、生命安全和接近倒塌四个水平;统计分析大量钢筋混凝土连梁、剪力墙和核心筒的试验数据,提出了混凝土连梁和剪力墙构件四个性能水平的失效判别标准和参数,给出了不同破坏形态的变形性能指标限值;以层间位移角作为性能指标,给出了一般弯曲型或弯曲剪切型核心筒四个性能水平的层间位移角限值。对混凝土核心筒进行了增量动力分析,采用需求能力系数法对核心筒抗震性能进行了评估,计算得到结构满足不同设防目标的可靠水平均达到90%以上,同时给出了基于IDA分析的核心筒在正常使用、暂时使用、生命安全和接近倒塌四个性能水平极限状态的层间位移角限值。通过不同方向地震作用与单向地震作用下混凝土核心筒的地震效应对比可知,在进行结构设计时,大震作用下,斜向地震作用下的内力要明显偏大,仅考虑单向输入的水平加速度的设计结果会偏于不安全。并通过输入与Y轴45°斜向地震记录基于单条地震记录的IDA方法对核心筒进行抗震性能分析。
     混凝土核心筒基于性能的抗震设计方法研究。基于能力设计原理提出了核心筒在地震作用下合理的屈服机制和破坏模式,并通过能力设计思想对本文核心筒试件进行了相应设计。根据连梁和墙肢受力的工作特点,利用罕遇地震作用下混凝土核心筒的极限承载力计算公式,对基于能力设计原理的核心筒受力性能进行验证,结果较为吻合。在加速度反应谱和能力谱法基础上,通过引入损伤指标及能力设计方法,提出了混凝土核心筒基于位移的抗震设计方法,该方法可以通过承载力和位移延性的双控进行结构的抗震设计。
Core walls have become major lateral force structure units in high-rise building. Although the frame-core wall structures have been widely used in china earthquake region, the theoretical analysis and design methods of core walls are few intensive studied and seismic performance of this kind of structure is poor. Therefore, it is of important theoretical and practical significance to study seismic performance of core walls. The main content is presented as follows.
     The failure mechanism and seismic performance of reinforced concrete core walls are studied. The low-cycle and reverse horizontal loading test of five reinforced concrete core walls specimens are carried out. The cracking process, yielding sequence, hysteretic behavior, bearing capacity, deformation and ductility properties, weak parts, stiffness degradation, energy dissipation capacity, section strain and shear lag phenomenon are investigated. The failure mechanism and force condition of plastic deformation are also analyzed. Meanwhile, the influence of height-width ratio, reinforcement ratio of coupling beam, span-depth ratio of coupling beam and loading action direction on the seismic performance of core walls under the same axial compression ratio are analyzed systemically. The Perform-3D software is adopted to perform static pushover analysis for reinforced concrete core walls, and results from the simulation match well with those from the tests. It is shown that the fiber model is valid for numerical simulation analysis of core walls. Damage development sequence of core wall specimen and yielding condition of each member are analyzed which coincide well with the experimental results. On this basis, effects of more design parameters on bearing capacity and deformation performance are systematically analyzed, and conclusions which is valuable for theoretical research and engineering design are obtained.
     Quantified Performance index and seismic performance evaluation of reinforced concrete core walls are researched. Based on current seismic code, four performance levels are put forward for reinforced concrete core walls which are respectively normal service, temporary service, life safety and collapse prevention. Based on statistical data of seismic performance test of core walls at home and abroad, limit states of the four seismic performance levels and dominating parameters for coupling beam and shear wall are put forward, and limit value of deformation performance for different failure modes are given. Meanwhile, story drift angle limitation for core walls under four performance levels is obtained. Seismic performance evaluation for reinforced concrete core walls based on incremental dynamic analysis (IDA) and demand-capacity factor method (DCFM) is investigated. The results indicate that the structure has excellent lateral resistant ability and reliability levels satisfying different fortification objectives are all over 90%. Comparison of the effects of one and multiple dimensional earthquake action demonstrate that the structural internal force under oblique seismic action is much stronger and the design results based on unidirectional earthquake input will be unsafe. The seismic performance of core walls based on single-record IDA method is analyzed under 45°with the Y-axis earthquake.
     Performance-based seismic design methods of reinforced concrete core walls structure are researched. Based on Capacity design theory the reasonable yield mechanism and failure mode of core walls is proposed. According to the work characteristics of coupling beams and shear walls, ultimate bearing capacity of core walls under severe earthquake are presented. The value calculated by the formula is close to the test value. According to concrete structure damage calculation model, capacity design method and capacity spectrum methods, based on the displacement of seismic design method and flow is presented. The seismic design of core walls is carried out by double controlling bearing capacity and displacement ductility.
引文
[1]张淑云.高层型钢混凝土框架—混凝土筒体混合结构地震灾变响应与分析[D].西安:西安建筑科技大学, 2009
    [2]方鄂华,钱稼茹.我国高层建筑抗震设计的若干问题[J].土木工程学报,1999,32(1):3-8.
    [3]李检保,SRC框架—核心筒高层混合结构抗震性能试验及非线性分析[D].上海:同济大学, 2006.
    [4]李俊兰.钢筋混凝土核心筒体抗震性能研究[D].上海:同济大学, 2002.
    [5]吕西林,李俊兰.钢筋混凝土核心筒体抗震性能试验研究[J].地震工程与工程振动, 2002, 22(3):42-50.
    [6]李俊兰,吕西林.钢筋混凝土筒体的非线性有限元分析模型[J].地震工程与工程振动,2003,23(5):109-116.
    [7]曹万林,张建伟,黄选明,卢智成.带暗支撑短肢剪力墙及核心筒抗震研究与应用[J].工程力学(增刊), 2005:94-106.
    [8]曹万林,黄选明,卢智成,等.钢筋混凝土带暗支撑核心筒抗震性能试验研究[J].地震工程与工程振动,2005,25 (3) :81-86.
    [9]常卫华,曹万林,张建伟,等.内藏钢桁架开洞混凝土核心筒扭转性能试验研究[J].世界地震工程,2008,24 (2) :9-14.
    [11]杜修力,贾鹏,赵均.不同连梁跨高比混凝土核心筒抗震性能试验研究.建筑结构学报(增刊),2009:5-9.
    [12]贾鹏,杜修力,赵均.不同轴压比钢筋混凝土核心筒抗震性能.北京工业大学学报,2009,35(1):63-69.
    [13]刘小胜,伍丽华.某超高层混凝土核心筒结构的振动台模拟试验研究[J].安徽建筑工业学院学报(自然科学版),2004,12(4):34-37.?
    [14]董宏英,杨信强,曹万林,等.钢管混凝土叠合柱边框内藏钢桁架核心筒抗震性能试验研究[J].地震工程与工程振动,2011,31(1):41-47.?
    [15] T. Nakachi etc., Experimental study on deformation capacity of reinforced concrete core walls after yielding[J], 11WCEE. Paper No. 1747, June 1996.
    [16] Atsushi HABASAKI etc..Multi-directional Loading Test for RC Seismic Shear Walls[J]. 12WCEE, Paper No. 454, Feb. 2000.
    [17] Makoto Maruta etc., Structural capacities of H-shaped RC core wall subjected to lateral load and torsion[J]. 12WCEE. Paper NO. 1028, Feb 2000.
    [18] Kenichi Sugaya etc. Experimental Study on Carring Shear Force Ratio of 12-Story Coupled Shear Wall[J]. 12WCEE, Paper No.2152, Feb 2000
    [19]李国强,周向明,丁翔.高层建筑钢—混凝土混合结构模型模拟地震振动台试验研究[J].建筑结构学报, 2001, 22(2):2-7.
    [20]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社, 2005.
    [21]叶列平,陆新征,马千里,等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学, 2006 ,23 ( sup.Ⅱ) :131-140.
    [22]李俊兰,吕西林.钢筋混凝土核心筒体抗震性能分析[J].地震工程与工程振动,2003,23 (5):102-108
    [23]文娲.钢筋混凝土筒体结构的非线性地震反应分析方法研究[D].南京:河海大学, 2005.
    [24]郭丰雨.钢筋混凝土核心筒非线性地震反应分析方法研究[D].中国地震局工程力学研究所, 2004.
    [25]聂建国,田淑明.大震下RC剪力墙(筒体)结构地震反应分析模型[J].建筑结构, 2009,39(2):12-16.
    [26]缪志伟,吴耀辉,马千里,等.框架-核心筒高层混合结构的三维空间弹塑性抗震分析[J].建筑结构学报, 2009, 8(4):119-129.
    [27]林旭川,陆新征,缪志伟等.基于分层壳单元RC核心筒结构有限元分析和工程应用[J].土木工程学报, 2009,3(3):51-56.
    [28]门俊,陆新征,宋二祥,陈肇元.分层壳模型在剪力墙结构计算中的应用[J].防护工程, 2006, 28(3):9-13.
    [29]陈学伟.剪力墙宏观单元开发与低周往复荷载试验数值分析[C]. 2009年全国土木工程博士生学术会议,2009:13-20
    [30]委旭.钢筋混凝土核心筒抗侧力性能的非线性数值模拟分析[D].西安:西安建筑科技大学, 2009.
    [31]王伟.钢筋混凝土核心筒的非线性分析[D].西安:西安建筑科技大学, 2009.
    [32]马志林.基于纤维模型的钢筋混凝土核心筒非线性分析[D].西安:西安建筑科技大学, 2010.
    [33]李坤.基于剪力墙三竖线模型的混凝土核心筒非线性分析[D].西安:西安建筑科技大学, 2010.
    [34] Franklin. Y. Cheng, Inelastic Analysis Of 3-D Mixed Steel And Reinforced Concrete Seismic Building Systems[J]. Computers & Structures, 1981,13(1): 189-196.
    [35]程绍革.钢—混凝土筒混合结构弹塑性反应分析及探讨.建筑结构, 1998, 28(6):11-15
    [36]李国强,姜丽人,张晓光.高层建筑钢一混凝土混合结构简化分析模型[J].建筑结构, 1999, 29(6):38~43.
    [37]周向明,李国强,丁翔.高层钢-混凝土混合结构弹塑性地震反应简化分析模型.建筑结构,2002,32(5):14-18.
    [38]国家标准.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社, 2002.
    [39]国家标准.建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社, 2001.
    [40]行业标准.高层建筑混凝土结构技术规程(JGJ 3-2002).北京:中国建筑工业出版社, 2002.
    [41]王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述.建筑结构学报,2000,21 (1) :2-4.?
    [42]李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法[J].地震工程与工程振动,2004,2(1):76-81.
    [43]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析.土木工程学报, 2004, 37(3):35~43.
    [44] F.Fajfai & M.Fischinger. Mathematical modeling of reinforced concrete structural walls for nonlinear seismic analysis. Europe Conference on Structural Dynamics, Bochum, Germany, 1990. 471-478.
    [45] Hyo-Gyoung Kwak, Do-Yeon Kim. Material nonlinear analysis of RC shear walls subject to cyclic loadings. Engineering Structures, 26 (2004) :1423-1436.
    [46] Edward Thomson, Julio Florez-lopez. A simplified damage model for shear dominated reinforced concrete walls under lateral forces. 13WCEE, Paper 844, Vancouver, BC, Aug.2004.
    [47] Kabeyasawa, Shioara T.H and Otani S.U.S. Japan Cooperative Research on RC Full-scale Building Test- Part 5: discussion on dynamic response system. Procs . 8th WCEE, 1984, Vol.6, 627-634.
    [48] Linda P, Bachmann H. Dynamic modeling and design of earthquake resistant walls. EESD, 1994, 23: p1331-1350.
    [49] SEAOC VISION 2000 Committee. Performance-based seismic engineering[S]. Sacramento, California, US, 1995.
    [50]谢礼立.抗震性态设计和基于性态的抗震设防.大型复杂结构的关键科学问题及设计理论研究论文集,大连理工大学出版社,1999:26-34.
    [51] CECS 160:2004.建筑工程性态设计通则(试用).北京:中国计划出版社, 2004.
    [52] Priestly,M.J.N. Performance Based Seismic Design.12WCEE,2000.
    [53] M.S.Medhekar, D.J.L.Kennedy.Displacement-based seismic design of buildings--theory. Engineering Structures. 2000,22(2):201-209.
    [54] Liang Xingwen etc. Displacement-based seismic design of shear wall structure in tall buildings. The Symposium of sixth International Conference on Tall Buildings, Hong Kong, China, 2005. 12.6-8.
    [55] Timothy White, Perry Adebar. Estimating rotational demands in high-rise concrete wall buildings. 13WCEE, Paper 935, Vancouver, BC,Aug.2004.
    [56] Kowalsky MJ. RC Structural Walls Designed According to UBC and Displacement-Based Methods. Journal of Structural Engineering, 2001;127:506~516.
    [57] Alois Sommer,Hugo Bachmann.Seismic behavior of asymmetric RC wall buildings:Principles and new deformation-based design method. Earthquake Engineering and Structural Dynamics,2005,34(2):101-124.
    [58] Otani S. Earthquake resistant design of reinforced concrete buildings-past and future[J]. Journal of Advanced Concrete Technology, 2004,2(1):3-24.
    [59] Bertero.V.V. Performance-based seismic engineering: a critical review of proposed guidelines[J]. In: P.Fajfar and H.Krawinkler,eds. Seismic Design Methodologies for the Next Generation of Codes. Rorrerdam:AA Balkema,1997,1-32.
    [60]缪志伟.钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究[D].北京:清华大学, 2009.
    [61] T.Paulay, M.J.N.Priestley. Seismic Design Of Reinforced Concrete And Masonry Buildings[M], New York: John Wiley & Sons, Inc, 1992.
    [62]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构, 2001,31(4): 3-6.
    [63] California Office of Emergency Services. Vision 2000: Performance Based Seismic Engineering of Buildings [S]. Structural Engineering Association of California, Vision 2000 Committee, California, 1995.
    [64] ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings [S]. Applied Technology Council. Red Wood City, California, 1996
    [65] FEMA273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings [S]. Federal Emergency Management Agency, Washington, D.C. September, 1996.
    [66] FEMA274. NEHRP Guidelines for the Rehabilitation of Buildings [S]. Federal Emergency Management Agency, Washington, D.C. September, 1996.
    [67] Building Centre of Japan. Report of development of new engineering framework for building structures [R] (in Japanese). Integrated Development Project, Ministry of Construction, 1996, 1997 and 1998.
    [68] Japan Road Association. Design specifications of highway bridges, pare V seismic design,(in Japanese),1999.12. ?
    [1]方鄂华,钱稼茹.我国高层建筑抗震设计的若干问题[J].土木工程学报,1999,32(01):3-8.
    [2] Makoto Maruta etc. Structural capacities of H-shaped RC core wall subjected to lateral load and torsion[C]// 12WCEE, Auckland New Zealand, Jan., 2000.
    [3] T. Nakachi etc. Experimental study on deformation capacity of reinforced concrete core walls after yielding [C]//11WCEE, Acapulco Mexico, June 23-28, 1996.
    [4] Atsushi HABASAKI etc. Multi-directional Loading Test for RC Seismic Shear Walls[C]//12WCEE, Auckland New Zealand, Jan., 2000.
    [5]吕西林,李俊兰.钢筋混凝土核心筒体抗震性能试验研究[J].地震工程与工程振动, 2002,22(3):42-50.
    [6]曹万林,黄选明,卢智成,等.钢筋混凝土带暗支撑核心筒体抗震性能试验研究[J].地震工程与工程振动,2005,25 (3):81-86.
    [7]杜修力,贾鹏,赵均.不同连梁跨高比混凝土核心筒抗震性能试验研究[J].建筑结构学报(增刊),2009:5-9.
    [8]贾鹏,杜修力,赵均.不同轴压比钢筋混凝土核心筒抗震性能[J].北京工业大学学报, 2009, 35(1):63-69.
    [9]中华人民共和国行业标准.建筑抗震试验方法规程(JGJ 101-96),中国建筑工业出版社, 1997.
    [10]张兴虎,刘芸,刘煦.多点加载联机试验控制方法[J].西安建筑科技大学学报, 1997,29(2):173-176.
    [11]刘清山.抗震剪力墙小跨高比连梁的理论分析及试验研究[D].西安:西安建筑科技大学,2006.
    [12]汪梦甫.钢筋混凝土高层结构抗震分析与设计[M].长沙:湖南大学出版社, 1999.
    [13] James K. wight, Mete A. Sozen. Strength Decay of RC Columns under Shear Reversal[J]. Journal of the Structural Division, 1975,may:1053-1065.
    [14]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [15]吕西林,干淳洁,王威.内置钢板钢筋混凝土剪力墙抗震性能研究[J].建筑结构学报, 2009,30(5):89-96.
    [16]国家标准.《混凝土结构设计规范》(GB50010-2002)[S].北京:中国建筑工业出版社, 2002.
    [17]甘亚南.考虑剪力滞效应的薄壁梁静动力特性分析[D].哈尔滨:哈尔滨工业大学, 2009.
    [18] A.K.H.Kwan. Shear lag in shear/core walls[J]. Journal of structural engineering, 1996, 9: 1097-1104.
    [19]刘智星.钢筋混凝土框架一剪力墙结构抗震性能评估[D].北京:北京工业大学, 2008.
    [22]金仁和,魏德敏.?框筒结构剪力滞后研究现状与思考[J].建筑钢结构进展, 2008,10(2):23-27.
    [23]高雁.?筒体结构剪力滞后效应研究及其简化分析[D].重庆:重庆大学, 2006.
    [24]陈岳辉,陈荣毅,刘斌.角柱刚度对筒体结构剪力滞后效应影响的研究[J].四川建筑科学研究, 1999,01:3-5.
    [25]刘中辉,王全凤.框筒结构长宽比对剪力滞后的影响及其分析[J].华侨大学学报(自然科学版), 2005,26(3):331-332.
    [1]王伟.钢筋混凝土核心筒的非线性分析[D].西安:西安建筑科技大学, 2009.
    [2]缪志伟,吴耀辉,马千里,等.框架-核心筒高层混合结构的三维空间弹塑性抗震分析[J].建筑结构学报, 2009, 8(4):119-129.
    [3]林旭川,陆新征,缪志伟等.基于分层壳单元RC核心筒结构有限元分析和工程应用[J].土木工程学报, 2009,3(3):51-56.
    [4] Kabeyasawa, Shioara T.H and Otani S.U.S. Japan Cooperative Research on RC Full-scale Building Test- Part 5: discussion on dynamic response system[C]. Procs . 8th WCEE, 1984, Vol.6, 627-634.
    [5] Linda P, Bachmann H. Dynamic modeling and design of earthquake resistant walls[J]. EESD, 1994, 23: p1331-1350.
    [6] Milev J I. Two dimensional analytical model of reinforced concrete shear walls [C] . Proc. 11th of WCEE. 1996.
    [7] Vulcano A, V V Bertero. Analytical models for predicting the lateral response of RC shear walls: evaluation of their reliabiltity[R]. EERC Reprot No. UCB/EERC-87/19, Earthquake Engineering Research Center, Univ. of California.Berkeley, California:1987.
    [8] Kutay Orakcal, Lenonardo M. Massone, John W Wallance. Analytical modeling of reinforced concrete walls for predicting flexural and coupled-shear-flexural responses[R]//PEER, Berkeley, University of California, 2006.
    [9]陆新征,叶列平,缪志伟等.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社, 2009.
    [10]陈学伟,韩小雷.剪力墙宏观单元开发与低周往复荷载试验数值分析[C]. 2009年全国土木工程博士生学术会议论文集, 2009:13-20.
    [11]北京迈达斯技术有限公司.使用纤维模型做桥梁的动力弹塑性分析[J]. 2004,12.
    [12] M.F.Giberson. Two Nonlinear Beams with Definitions of Ductility[J]. Journal of Structural Division, ASCE, 1969, Vol.95,No.ST2:137-157.
    [13] Clough R W, Benuska K L, and Wilson E L. Inelastic earthquake response of tall buildings[C]. Proceeding 3rd World Conference on Earthquake Engineering,1965,Wellington, New Zealand.
    [14] Kang, Y.J. Nonlinear Geometric Material and Time-Dependent Analysis of Pestered Concrete Frames, Ph.D, Division of Structural Engineering and Civil Engineering, Department of Civil Engineering, University of California, Berkeley, 1977.
    [15] Chan E.C. Nonlinear Geometric Material and Time-Dependent Analysis of Reinforced Concrete Shells with Edge Beams[R]. Department of Civil Engineering, University of California, Berkeley, 1982.
    [16] Mahasuveraehai. M. Inelastic Analysis of Piping and Tubular Structures[R]. Earthquake Engineering Research Center, University of California, Berkeley, 1982.
    [17] Kaba S, Mahin S A. Refined Modeling of Reinforced Concrete Columns for Seismic Analysis[R]. Earthquake Engineering Research Center, University of California, Berkeley, 1984.
    [18] Perform Components and Elements, CSI, 2006
    [19]盖起磊.混凝土本构关系研究中存在问题的探讨[J].山西建筑, 2007,33(35):182.
    [20]江见鲸.关于钢筋混凝土数值分析中的本构关系[J].山西建筑, 1994,24(1):117-122.
    [21]苏志彬,林述涛.结构非线性分析与性能评价软件PERFORM-3D[J].建筑结构.技术通讯, 2007,3:25-27.
    [22]北京金土木软件技术有限公司. Pushover分析在建筑工程抗震设计中的应用[M].北京:中国建筑工业出版社,2010,4.
    [23]陈学伟,韩小雷,林生逸.基于宏观单元的结构非线性分析方法、算例及工程应用[J].工程力学,2010,27(S1):59-67.
    [24]苏志彬,李立,刘春明.结构非线性分析在PERFORM-3D中的实现方法[C].金土木结构软件全国用户大会CUC’10论文集,2010,9.
    [25] Thomas Paulay, M.J.N.Priestley. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. John Wiley & Sons, Inc, 1992, p. 142.
    [26] ASCE 41. Seismic Rehabilitation of Existing Buildings[R]. American Society of Civil Engineers, 2006.
    [27] FEMA 356. Pre- Standard and Commentary for The Seismic Rehabilitation of Buildings. Report FEMA356, Federal Emergency Management Agency, Washington DC, 2000.
    [28] Perform Components and Elements, CSI, 2006
    [29]黄小坤.剪力墙连梁纵向钢筋构造配筋率探讨[J].建筑结构, 2004,34(1):43-44.
    [1] T.Paulay, M.J.N.Priestley. Seismic Design Of Reinforced Concrete And Masonry Buildings[M], New York: John Wiley & Sons, Inc, 1992.
    [2] T.鲍雷, M.J.N.普里欺特利著,戴瑞同,陈世鸣等译.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社,1999.
    [3]王建区.基于能力原理的双肢剪力墙极限承载力分析及其弹塑性性能研究[D].广州:华南理工大学, 2005.
    [4]缪志伟.钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究[D].北京:清华大学, 2009.
    [5]黄东升.剪力墙结构的分析与设计[M].北京:中国水利水电出版社,知识产权出版社, 2006.
    [6]黄小坤.剪力墙连梁纵向钢筋构造配筋率探讨[J].建筑结构, 2004,34(1): 43-45.
    [7]刘清山,梁兴文.抗震剪力墙小跨高比连梁受剪承载力的软化拉压杆模型[J].建筑科学, .2008, 24( 7):5- 9.
    [8]国家标准.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社, 2002.
    [9]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报.1999,20(3):42-49.
    [10]包世华.新编高层建筑结构(第二版)[M].北京:中国水利水电出版社,知识产权出版社, 2005.
    [11]方鄂华,钱稼茹,叶列平.高层建筑结构设计[M].北京:中国建筑工业出版社,2003.
    [12]史庆轩,梁兴文.高层建筑结构设计[M].北京:科学出版社, 2006.
    [13]陈瑜,龚炳年.高层建筑结构分析与设计[M].北京:地震出版社, 1993.
    [14]彭飞.短肢剪力墙的受力性能和试验研究[D].南京:东南大学, 2004.
    [15]季静,李首方,王建区,等.罕遇地震作用下联肢剪力墙极限承载力分析剪力墙小跨高比连梁合理配筋的试验研究[J].昆明理工大学学报(理工版), 2007, 32, (4), 39-42.
    [16] Monhamed Hassan. Inelastic dynamic behavior and design of hybrid coupled wall systems[D]. Orlando, Florida: the University of Central Florida,2004.
    [17]彭飞,程文瀼,陆和燕.对称双肢剪力墙的拟静力试验研究[J].建筑结构学报,2008,29(l):64-69.
    [1] GJ50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001.
    [2]邓明科,梁兴文,辛力.剪力墙结构基于性能抗震设计的目标层间位移确定方法[J].工程力学,2008,11(11):141-148.
    [3] GBJ11-89.建筑抗震设计规范[S].北京:中国建筑工业出版社, 1989.
    [4] GJ50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010.
    [5] Vision 2000 Committee. Performance-based engineering of buildings[S]. Committee of the Structure Engineer Association of California. Oakland, Calf: Wiley Inc, 1995.
    [6] FEMA356. Pre-Standardand Commentary for the Seismic Rehabilitation of Buildings[S]. Report FEMA356, Federal Emergency Management Agency, Washington DC, 2000.
    [7] ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[S]. Applied Technology Council. Red Wood City, California, 1996.
    [8] European Committee for Standardization, Euro code 8: Design of Structures for Earthquake Resistance [S]. Part 1: General rules, seismic actions and rules for buildings, DRAFT NO.6. Version for Translation (Stage 49), January 2003.
    [9]周雍年.关于设防地震动水准的考虑[J].建筑结构学报, 2000, 21(1):17-20.
    [10]高孟潭,韩炜.抗震设计中的大、中、小地震的确定[R].地震工程研究文集.北京:地震工程出版社, 1992.
    [11] California Office of Emergency Services. Vision 2000: Performance Based Seismic Engineering of Buildings [S]. Structural Engineering Association of California, Vision 2000 Committee, California, 1995.
    [13] CECS160:2004,建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社,2004.
    [14]刘清山.抗震剪力墙小跨高比连梁的理论分析及试验研究[D].西安:西安建筑科技大学,2006.
    [15]皮天祥.钢筋混凝土剪力墙小跨高比连梁抗震性能试验和设计方法研究[D].重庆:重庆大学,2008.
    [16]刘志强,吴波,林少书.钢筋混凝土连梁的抗震性能研究[J].地震工程与工程振动, 2003, 23(5):117-124.
    [17]吴波,刘志强,林少书,李惠.香港现役钢筋混凝土连梁的抗震性能试验研究[J].世界地震工程, 2002, 2(6):9-16.
    [18]朱勇,周云,苏启亮.钢筋混凝土连梁抗震加固的试验研究[J].四川建筑科学研究, 2009,35(3):59-64.
    [19]张宏战,钢纤维高强混凝土构件受剪性能试验研究[D].大连:大连理工大学, 2005.
    [20]张彬彬.高层建筑剪力墙连系梁抗震性能的试验研究[D].重庆:重庆大学, 2001.
    [21]王志勤.配有500MPa级钢筋对角斜筋小跨高比连梁抗震性能对比试验研究[D].重庆:重庆大学, 2009.
    [22]徐锐昌.小跨高比洞口连梁有效配筋方式的试验研究[D].重庆:重庆大学, 2004.
    [23]魏小飞.重庆地区筒体结构中小跨高比连梁性能分析与试验研究[D].重庆:重庆大学, 2007.
    [24]张涛.小跨高比连梁抗震性能试验研究与分析[D].西安:西安建筑科技大学,2009.
    [25]易波.综合斜筋小跨高比剪力墙连梁的抗震性能试验研究及设计方法[D].重庆:重庆大学, 2008.
    [26] http://sitemaker.umich.edu/nees.hpfrc.project/the_tests_coupling_beams
    [27] Sergio F. Bre?a, Miguel Fernández Ruiz, Aurelio Muttoni. Applications of stress fields to assess the behavior and strength of coupling beams subjected to seismic actions[C]. 3rd fib International Congress-2010:1-10.
    [28] ASCE 41, 2006. Seismic Rehabilitation of Existing Buildings[S].
    [29]劳晓春,韩小雷,黄超.钢筋混凝土连梁的抗震性能研究[J].地震工程与工程振动, 2010, 30(4):45-50.
    [30]李兵,李宏男.不同剪跨比钢筋混凝土剪力墙拟静力试验研究[J].工业建筑,2010,40(9):32-36.
    [31]张松,吕西林.钢筋混凝土剪力墙构件极限位移的计算方法及试验研究[J].土木工程学报, 2009,42(4):10-16.
    [32]周广强,孙恒军,周德源.钢筋混凝土剪力墙抗震性能试验研究[J].山东建筑大学学报,2010,25(1):41-50.
    [33]张曰果,张隆飞,阎石.高强钢筋高强混凝土剪力墙抗震性能试验[J].沈阳建筑大学学报,2010,26(1):119-123.
    [34]邓明科,梁兴文,刘清山.横向约束钢筋新配筋方案高性能混凝土剪力墙抗震性能的试验研究[J].西安建筑科技大学学报(自然科学版),2010,26(1):538-543.
    [35]崔熙光,刘永健,郭峰,等.冷轧带肋钢筋混凝土剪力墙的试验分析[J].沈阳建筑工程学院学报(自然科学版),2004,20(2):103-106.
    [36]李兵,李宏男,曹敬党.钢筋混凝土高剪力墙拟静力试验[J].沈阳建筑大学学报,2009,25(2):230-234.
    [37]辛力.高性能剪力墙直接基于位移的抗震设计方法研究[D].西安:西安建筑科技大学, 2009.
    [38]郭子雄.高层RC结构小震下变形验算若干问题研究[J].华侨大学学报(自然科学版),1998,19(3):284-289.
    [39] FEMA273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings [S]. Federal Emergency Management Agency, Washington, D.C. September, 1996.
    [40]曹万林,黄选明,卢智成,等.钢筋混凝土带暗支撑核心筒体抗震性能试验研究.地震工程与工程振动,2005,25 (3):81-86.
    [41]常卫华,曹万林,赵长军,张建伟.内藏钢桁架混凝土核心筒抗震试验及计算分析[J].北京工业大学学报, 2008,34(4): 103-106.
    [42]曹万林,常卫华,张建伟.赵长军内藏钢桁架带洞口混凝土组合核心筒抗震试验及分析[J].东南大学学报(自然科学版),2008,38(2):283-288.
    [43]杜修力,贾鹏,赵均.不同连梁跨高比混凝土核心筒抗震性能试验研究[J].建筑结构学报(增刊),2009:5-9.
    [44]贾鹏,杜修力,赵均.不同轴压比钢筋混凝土核心筒抗震性能.北京工业大学学报, 2009,35(1):63-69.
    [45]吕西林,李俊兰.钢筋混凝土核心筒体抗震性能试验研究.地震工程与工程振动, 2002,22(3):42-50.
    [1]陆新征,叶列平,缪志伟等.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社, 2009.
    [2] Bertero V. V. Strength and deformation capacities of buildings under extreme environments [J]. Structural Engineering and Structural Mechanics, 1977: 29-79.
    [3]玉军.钢筋混凝土高层建筑结构抗震弹塑性分析方法的研究及其应用[D].长沙:湖南大学, 2007.
    [4]王秋维.型钢混凝土柱的受力性能及其结构抗震性能设计研究[D].西安:西安建筑科技大学, 2009.
    [5] CECS160:2004,建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社, 2004.
    [6]杨成.结构动力分析在基于性能的抗震工程中的应用[D].成都:西南交通大学, 2010.
    [7] FEMA. Recommended seismic evaluation and upgrade criteria for existing welded steel moment- frame Buildings [S]. Report No. FEMA-351, Emergency Management Agency, Washington, D.C., 2000.
    [8]卜一,吕西林,周颖,黄志华.采用增量动力分析方法确定高层混合结构的性能水准[J].结构工程师, 2009,25(2):77-84.
    [9]周颖,吕西林,卜一.增量动力分析法在高层混合结构性能评估中的应用[J].同济大学学报(自然科学版), 2010,38(2): 183-187.
    [10] FEMA. Recommended seismic evaluation and upgrade criteria for existing welded steel moment- frame Buildings [S]. Report No. FEMA-351, Emergency Management Agency, Washington, D.C., 2000.
    [11] FEMA. (2000a).“Recommended seismic design criteria for new steel moment frame buildings”[S] .Report No. FEMA-350. SAC joint Venture, Federal Emergency Management Agency, Washington, DC.
    [12] FEMA. (2000b).“Recommended seismic valuation and upgrade criteria for existing welded steel moment frame Buildings”[S]. Report No. FEMA-351. SAC joint Venture, Federal Emergency Management Agency, Washington, DC.
    [13]易方民,高小旺,等.高层建筑钢结构在多维地震动输入作用下的反应[J].建筑结构学报, 2003,24(3):33-43.
    [14]王朝波.既有多高层钢框架抗震鉴定指标体系及分析方法研究[D].上海:同济大学,2007. ??
    [1] S A Freeman.Development and use of capacity spectrum method [C]. Proceedings of 6th US Conference on Earthquake Engineering, Seattle, Washington, 1998.
    [2] Aschheim, M, E Black. Yield point spectra for seismic design and rehabilitation [J]. Earthquake Spectra, 2000, 16(2):317-335
    [3] T J Sullivan, G M Calvi, M J N Priestley. The limitations and performances of different displacement based design methods [J]. Journal of Earthquake Engineering, 2003, Special Issue 1:201-241
    [4] Jack Moehle, Gregory G. Deierlein. A framework methodology for performance-based earthquakeengineering [C]. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 679.
    [5] Mauro Ni?o, A. Gustavo Ayala1, Rafael Torres. Uniform hazard spectra for the performance based design of structures[C]. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 2196.
    [6]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动, 2005,25(6):53-61.
    [7] Housner G W. Behavior of structures during earthquake. Journal of the Engineering Mechanics Division,ASCE,1959,85(4):109-129.
    [8] Fajfar P. Equivalent ductility factors, taking into account low-cycle fatigue. Earthquake Engineering & Structural Dynamics,1992,21(9):837-848.
    [9]缪志伟.钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究[D].北京:清华大学, 2009.
    [10]陆新征,叶列平,缪志伟,等编著.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009.
    [11]门进杰.不规则钢筋混凝土框架结构基于性能的抗震设计理论和方法[D].西安:西安建筑科技大学, 2007.
    [12] ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings [S]. Applied Technology Council. Red Wood City, California, 1996
    [13]北京金土木软件技术有限公司. Pushover分析在建筑工程抗震设计中的应用[M].北京:中国建筑工业出版社,2010,4.
    [14]白绍良,李刚强,李英民,等.从R-μ-T关系研究成果看我国钢筋混凝土结构的抗震措施[J].地震工程与工程振动, 2006,26(5):144-151.
    [15]史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估[D].西安:西安建筑科技大学, 2004.
    [16] Park Y J,Ang A S,Wen Y. Seismic damage analysis of reinforced concrete buildings[J]. Journal of Structural Engineering, ASCE, 1985, 111(4): 740-757.
    [17] Chung Y S,Meyer C,Shinozuka M. Modeling of concrete damage[J]. ACI Structural Journal, 1989, 86(3): 259-271.
    [18] Kunnath S K,Chai Y H.Cumulative damage-based inelastic cyclic demand spectrum[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(4):499-520.
    [19] Fajfar P.Equivalent ductility factors taking into account low-cycle fatigue[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(9): 837-848.
    [20]欧进萍,何政,吴斌,等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动, 1999, 19(1):21—30.
    [21] New Mark, N.M., Hall, W.J.Earthquake Spectra and Design. Earthquake Engineering ResearchInstitute, Berkeley, Calif.1982.
    [22] Krawinkler, H., Nassar, A. A. Seismic design based on ductility and cumulative damage demands and capacities.Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, eds P. Fajfar and H. Krawinkler. New York: Elsevier Applied Science, 1992
    [23]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [24] Kiyoshi Hirao, Yukinori Sakagami, Yoshifumi Nariyuki and Tsutomu Sawada. A study on force-displacement-based seismic design of single-column RC piers[J]. Structural Engineering/Earthquake Engineering, JSCE, 2004, 21(2): 159s-174s.
    [25] T.Paulay, M.J.N.Priestley. Seismic Design Of Reinforced Concrete And Masonry Buildings[M], New York: John Wiley & Sons, Inc, 1992.
    [26]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构, 2001,31(4): 3-6.
    [27]吕文,钱稼茹,方鄂华.钢筋混凝土剪力墙延性的试验和计算[J].清华大学学报(自然科学版), 1999,39(4): 88-91.
    [28]钱稼茹,徐福江.钢筋混凝土梁基于位移的变形能力设计方法[J].四川建筑科学研究, 2007,33(2): 1-3.
    [29]钱稼茹,徐福江.钢筋混凝土柱基于位移的变形能力设计方法[J].建筑结构, 2007,37(12): 30-32.
    [30]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震性能设计[J].建筑结构学报, 1999,20(3): 42-49.
    [31]马恺泽.型钢混凝土剪力墙结构基于性能的抗震设计理论与方法[D].西安:西安建筑科技大学, 2011. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700