用户名: 密码: 验证码:
室温离子液体改性橡胶/填料复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温离子液体(Room temperature ionic liquid, RTIL)是一种由有机阳离子与有机或无机阴离子组成的、熔点低于100℃的熔盐,具有近零蒸气压、强极性、高耐热、宽的电化学窗口、良好的溶解性、高导电和导离子性等优点,已经开始广泛应用于绿色溶剂、高效反应介质、电解质、催化剂等领域。RTIL可以与无机填料发生各种相互作用,因而,可以对高分子/填料复合材料的界面进行改性,并有效地提高复合材料的性能。
     本文研究了以RTIL为界面改性剂制备具有新型界面和优良性能的橡胶/填料复合材料,研究了不同RTIL与多种橡胶填料之间的相互作用,研究了RTIL与橡胶之间的反应性,深入系统地研究了RTIL对橡胶/填料复合材料的微观结构与性能的影响。
     研究了1-丁基-3-甲基咪唑六氟磷酸盐(BmimPF6)与炭黑(CB)之间的相互作用及辅助微波改性对CB结构与性质的影响。BmimPF6可以通过阳离子-π相互作用强烈地吸附于CB的表面,微波辐照下,发生分解,分解过程中CB的微观形貌发生很大改变。RTIL辅助微波改性后,CB比表面积变大,石墨化程度增高,石墨微晶尺寸明显降低,介孔含量增加。采用RTIL辅助微波改性的CB用于补强橡胶,优化了改性工艺。研究了改性炭黑(m-CB)对丁苯橡胶(SBR)、顺丁橡胶(BR)、丁腈橡胶(NBR)补强效果。在低用量填料时,m-CB可以大大改善CB对橡胶的补强效果;在高用量填料时,m-CB与CB对橡胶补强的效果无明显差别。这是m-CB与橡胶相互作用增强和界面区粘滞层(Sticky Layer)分子高度取向共同作用的结果。
     设计和制备了两种具有可聚合基团的RTIL,1-甲基咪唑山梨酸盐(MimS)和1-甲基咪唑甲基丙烯酸盐(MimMa),并研究了其对SBR/白炭黑(silica)复合材料的改性效果及机理。MimS和MimMa可以与silica发生强烈的氢键相互作用。在自由基引发条件下,两者均可以与SBR分子发生接枝反应。MimS和MimMa的加入可以大大抑制silica在橡胶基体中的填料网络化,促进硫化,有效改善silica的分散,增强SBR-silica界面相互作用,有效提高SBR/silica硫化胶的力学性能。
     制备了含有巯基官能团的RTIL—1-甲基咪唑巯基丙酸盐(MimMP),并研究了其对SBR/silica复合材料的改性效果。通过巯烯反应(thiol-ene reaction), MimMP上的巯基与SBR分子发生反应,且反应的位置主要是SBR中的端双键。MimMP因与silica之间的氢键相互作用,可以削弱填料之间的相互作用,降低填料网络化效应,改善填料分散。MimMP的巯基及咪唑阳离子可以有效促进混炼胶的硫化。MimMP/silica之间的氢键相互作用和MimMP/SBR之间的巯烯反应可以大大提高SBR-silica之间的界面相互作用,显著提高硫化胶的拉伸强度、撕裂强度及耐磨性等。
     制备了具有含有巯基且具有双离子结构的RTIL—双(1-甲基咪唑)巯基琥珀酸盐(BMimMS),并研究了MimMP和BMimMS对SBR/埃洛石纳米管(HNTs)复合材料的改性。MimMP和BMimMS均可与HNTs发生氢键相互作用,但机理稍有不同。MimMP主要与HNTs上的A1OH、SiOH和A1OA1发生氢键相互作用,而BMimMS主要与HNTs上的A1OH、SiOH和SiOSi发生氢键相互作用。MimMP和BMimMS与SBR分子之间均可发生巯烯反应。不同之处在于,前者主要以高活性的端双键为主,而后者,在两个咪唑阳离子的催化下,BMimMS可以与SBR分子端双键和内双键均发生有效反应。MimMP和BMimMS的加入可有效促进硫化,改善HNTs在橡胶基体中的分散,可有效增强SBR-HNTs的界面相互作用,显著提高复合材料的力学性能。由于BMimMS可以与HNTs外表面的SiOSi发生氢键相互作用,故而其对HNTs分散、SBR-HNTs界面相互作用力以及材料的最终性能的改善均优于MimMP。
Room temperature ionic liquid (RTIL) was utilized as interfacial modifier for rubber/filler composites with novel interfacial structure and good performance. The affinities of RTIL towards various fillers and their reaction with SBR chains were studied. The influence of RTILs on the microstructure and performance was systemically investigated。
     RTIL, comprised of an organic cation and an organic or inorganic anion, is molten salt with a molten temperature lower than 100℃. For their specific characteristics such as near vapor pressure, high polarity, good thermalstability, wide potential, excellent solubility, high electric and ionic conductivity, RTILs have been widely explored as green solvent, high efficient media, electrolyte and catalysis. RTIL can be interacted with various fillers via the widely reported interactions. So, they can be potentially utilized as interfacial modifiers for polymer/filler composites and greatly improve the performance of the composites.
     One kind of common RTIL, 1-butyl-3-methylimidazolium hexafluorophosphate rate (BmimPF6) could be interacted with carbon black (CB) via cation-πinteraction. Together with microwave irradiation, CB was modified and the structure of CB was found to be substantially changed. BmimPF6 was decomposed on the CB surface. The modified carbon black was found to be with larger surface area, increased graphitization, obviously decreased microcrystalline size and higher content of mesopores. The reinforcement of m-CB towards styrene butadiene rubber (SBR), butadiene rubber (BR) and nitrile butadiene rubber (NBR) was studied. The preparing parameters were optimized. At a low loading of filler, m-CB could more effectively reinforce rubber matrix. While at a high loading of filler, there is no practical difference between m-CB and CB according to the performance of the vulcanizates. The increased interfacial interaction and the higher orientation of the segments in the sticky layer were both responsible.
     Two kinds of RTILs with polymerizable groups,1-methylimidazolium sorbate (MimS) and 1-methylimidazolium methacrylate (MimMa) were designed and prepared. The performance of the modified SBR/silica composites was characterized and the related mechanism was studied. The incorporation of MimS and MimMa could effectively restrain the filler networking in the rubber matrix, accelerate the vulcanization, obviously improve the dispersion of silica, strengthen the SBR-silica interfacial interaction and largely improve the mechanical performance of SBR/silica vulcanizates.
     RTIL containing thiol group,1-methylimidazolium propionate (MimMP), was prepared and investigated as interfacial modifier for SBR/silica composites. MimMP could be reacted with SBR chains via the thiol-ene reaction between the thiol group in MimMP and the double bond in SBR chains. The reactive sites in SBR were mainly the side double bonds. MimS and MimMa could be interacted with silica by hydrogen bonding, which could weaken the filler-filler interaction, restrain the filler networking of silica and improve the dispersion of silica in rubber matrix. Thiol and imidazolium cation in MimMP could accelerate the vulcanization. Both the thiol-ene reaction and the hydrogen bonding are responsible for the increased SBR-silica interfacial interaction and the improved mechanical performance of SBR/silica vulcanizates.
     A kind of RTIL with thiol group and Gemini structure, bis(1-methylimidazolium) mercaptosuccinate (BMimMS), was synthesized. Both MimMP and BMimMS were utilized as interfacial modifiers for SBR/halloysite nanotubes (HNTs) composites. MimMP and BMimMS could be hydrogen bonded with HNTs but with a subtle difference on the mechanism. MimMP could be interacted with the aluminol (A1OH), silanol (SiOH) and aluminum oxide (A1OA1) of HNTs. BMimMS could be interacted with the A1OH, SiOH and silicon oxide (SiOSi). Both MimMP and BMimMS could be grafted onto SBR chains with thiol-ene reaction. MimMP could be mainly reacted with the side double bonds in SBR. While in that of BMimMS, the active sites were almost equally originated from the side double bonds and the inside double bonds possibly due to its Gemini structure. The incorporation of MimMP and BMimMS could effectively accelerate vulcanization, improve the HNTs dispersion, strengthen the SBR-HNTs interfacial bonding and enhance the mechanical performance of the vulcanizates. Because BMimMS could be interacted with the outward surface of HNTs, BMimMS could be more effective in improving the HNTs dispersion, the interfacial bonding and the final performance of the vulcanizates in comparison with that of MimMP.
引文
[1]. Pandey S. Analytical applications of room-temperature ionic liquids:A review of recent efforts [J]. Analytica Chimica Acta,2006,556(1):38-45.
    [2]. Xia YM, Wu HP, Zhang Y, et al. Synthesis and application of ionic liquids in enzymatic catalysis [J]. Progress in Chemistry,2006,18(12):1660-1667.
    [3]. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry [J]. Chemical Society Reviews,2008,37(1):123-150.
    [4]. Zhang H, Wu J, Zhang J, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose [J]. Macromolecules,2005,38(20):8272-8277.
    [5]. Turner MB, Spear SK, Holbrey JD, et al. Production of bioactive cellulose films reconstituted from ionic liquids [J]. Biomacromolecules,2004,5(4):1379-1384.
    [6]. Kilpelainen I, Xie H, King A, et al. Dissolution of wood in ionic liquids [J]. Journal of Agricultural and Food Chemistry,2007,55(22):9142-9148.
    [7]. Biswas A, Shogren RL, Stevenson DG, et al. Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein [J]. Carbohydrate Polymers,2006,66(4):546-550.
    [8]. Swatloski RP, Spear SK, Holbrey JD, et al. Dissolution of cellose with ionic liquids [J]. Journal of the American Chemical Society,2002,124(18):4974-4975.
    [9], Fuller J, Carlin RT, Osteryoung RA. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:Electrochemical couples and physical properties [J]. Journal of the Electrochemical Society,1997,144(11):3881-3886.
    [10]. Sakaebe H, Matsumoto H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP 13-TFSI)-novel electrolyte base for Li battery [J]. Electrochemistry Communications,2003,5(7):594-598.
    [11]. Noda A, Susan AB, Kudo K, et al. Bronsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes [J]. Journal of Physical Chemistry B,2003,107(17):4024-4033.
    [12]. Galinski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes [J]. Electrochimica Acta,2006,51(26):5567-5580.
    [13]. Huang KP, Wang GR, Huang BY, et al. Preparation and application of ionic liquid-coated fused-silica capillary fibers for solid-phase microextraction [J]. Analytica Chimica Acta,2009,645(1-2):42-47.
    [14]. Liu SJ, Zhou F, Xiao XH, et al. Surface confined ionic liquid-A new stationary phase for the separation of ephedrines in high-performance liquid chromatography [J]. Chinese Chemical Letters,2004,15(9):1060-1062.
    [15]. Wang Q, Baker GA, Baker SN, et al. Surface confined ionic liquid as a stationary phase forHPLC [J]. Analyst,2006,131(9):1000-1005.
    [16]. Scheeren CW, Machado G, Dupont J, et al. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids:Synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions [J]. Inorganic Chemistry,2003,42(15):4738-4742.
    [17]. Gelesky MA, Chiaro SSX, Pavan FA, et al. Supported ionic liquid phase rhodium nanoparticle hydrogenation catalysts [J]. Dalton Transactions,2007,47):5549-5553.
    [18]. Rodriguez-Perez L, Teuma E, Falqui A, et al. Supported ionic liquid phase catalysis on functionalized carbon nanotubes [J]. Chemical Communications,2008,35):4201-4203.
    [19]. Yu P, Zhou H, Zhu NN, et al. A facile approach to construction of a stable water-miscible ionic liquid/electrolyte interface with interactions between imidazolium moiety and carbon nanotubes [J]. Electrochemistry Communications,2009,11(7):1393-1396.
    [20]. Wu BH, Hu D, Kuang YJ, et al. Functionalization of carbon nanotubes by an ionic-liquid polymer:dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol [J]. Angewandte Chemie-International Edition, 2009,48(26):4751-4754.
    [21]. Lozano P, De Diego T, Carrie D, et al. Enzymatic ester synthesis in ionic liquids [J]. Journal of Molecular Catalysis B-Enzymatic,2003,21(1-2):9-13.
    [22]. Zhou Y, Antonietti M. Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique [J]. Advanced Materials,2003,15(17):1452-1455.
    [23]. Cooper ER, Andrews CD, Wheatley PS, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues [J]. Nature,2004,430(7003): 1012-1016.
    [24]. Xu YP, Tian ZJ, Wang SJ, et al. Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves [J]. Angewandte Chemie-International Edition,2006, 45(24):3965-3970.
    [25]. Zhou Y, Antonietti M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates [J]. Journal of the American Chemical Society,2003,125(49):14960-14961.
    [26]. Cao JM, Wang J, Fang BQ, et al. Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid [J]. Chemistry Letters,2004, 33(10):1332-1333.
    [27]. Trewyn BG, Whitman CM, Lin VSY. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents [J]. Nano Letters,2004,4(11):2139-2143.
    [28]. Chen YT, Chen X, Lin ZY, et al. An electrically heated ionic-liquid/multi-wall carbon nanotube composite electrode and its application to electrochemiluminescent detection of ascorbic acid [J]. Electrochemistry Communications,2009,11(6):1142-1145.
    [29].郑友全.离子液体-性质、制备与应用[M].2006,中国石化出版社.
    [30]. Appleby D, Hussey CL, Seddon KR, et al. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes [J]. Nature,1986,323(6089): 614-616.
    [31]. Bosmann A, Datsevich L, Jess A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids [J]. Chemical Communications,2001,23):2494-2495.
    [32]. Fukushima T, Kosaka A, Ishimura Y, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes [J]. Science,2003,300(5628):2072-2074.
    [33]. Liu XM, Zhou JX, Guo X, et al. SO3H-functionalized ionic liquids for selective alkylation of p-cresol with tert-butanol [J]. Industrial & Engineering Chemistry Research, 2008,47(15):5298-5303.
    [34]. Swatloski RP, Holbrey JD, Rogers RD. Ionic liquids are not always green:hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate [J]. Green Chemistry,2003,5(4): 361-363.
    [35]. Lovingood DD, Strouse GF. Microwave Induced In-Situ Active Ion Etching of Growing InP Nanocrystals [J]. Nano Letters,2008,8(10):3394-3397.
    [36]. Mehnert CP, Dispenziere NC, Cook RA. Preparation of C-9-aldehyde via aldol condensation reactions in ionic liquid media [J]. Chemical Communications,2002,15): 1610-1611.
    [37]. Abello S, Medina F, Rodriguez X, et al. Supported choline hydroxide (ionic liquid) as heterogeneous catalyst for aldol condensation reactions [J]. Chemical Communications, 2004,9):1096-1097.
    [38]. Earle MJ, McCormac PB, Seddon KR. Diels-Alder reactions in ionic liquids-A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures [J]. Green Chemistry, 1999,1(1):23-25.
    [39]. Brown RJC, Dyson PJ, Ellis DJ, et al. 1-Butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)]:a catalytically active organometallic ionic liquid [J]. Chemical Communications,2001,18):1862-1863.
    [40]. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids [J]. Journal of the American Chemical Society,2005,127(8):2398-2399.
    [41]. Huang CP, Chen BH, Zhang J, et al. Desulfurization of gasoline by extraction with new ionic liquids [J]. Energy & Fuels,2004,18(6):1862-1864.
    [42]. Chen PY, Sun IW. Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt [J]. Electrochimica Acta,1999,45(3):441-450.
    [43]. Su FY, Huang JF, Sun IW. Galvanostatic deposition of palladium-gold alloys in a lewis basic EMI-C1-BF4 ionic liquid [J]. Journal of the Electrochemical Society,2004,151(12): C811-C815.
    [44]. Tai CC, Su FY, Sun IW. Electrodeposition of palladium-silver in a Lewis basic 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid [J]. Electrochimica Acta,2005,50(28):5504-5509.
    [45]. Carter EB, Culver SL, Fox PA, et al. Sweet success:ionic liquids derived from non-nutritive sweeteners [J]. Chemical Communications,2004,6):630-631.
    [46]. Gui JZ, Cong XH, Liu D, et al. Novel Bronsted acidic ionic liquid as efficient and reusable catalyst system for esterification [J]. Catalysis Communications,2004,5(9): 473-477.
    [47]. Washiro S, Yoshizawa M, Nakajima H, et al. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids [J]. Polymer,2004, 45(5):1577-1582.
    [48]. Yoshizawa M, Ohno H. Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity [J]. Electrochimica Acta,2001,46(10-11):1723-1728.
    [49]. Li XW, Zhang J, Zheng LQ, et al. Microemulsions of N-Alkylimidazolium Ionic Liquid and Their Performance as Microreactors for the Photocycloaddition of 9-Substituted Anthracenes [J]. Langmuir,2009,25(10):5484-5490.
    [50]. Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionic liquids [J]. Journal of the American Chemical Society,2004,126(4): 994-995.
    [51]. Wu WZ, Han BX, Gao HX, et al. Desulfurization of flue gas:SO2 absorption by an ionic liquid [J]. Angewandte Chemie-International Edition,2004,43(18):2415-2417.
    [52]. Pernak J, Goc I, Mirska I. Anti-microbial activities of protic ionic liquids with lactate anion [J]. Green Chemistry,2004,6(7):323-329.
    [53]. Lozinskaya El, Shaplov AS, Vygodskii YS. Direct polycondensation in ionic liquids [J]. European Polymer Journal,2004,40(9):2065-2075.
    [54]. Yoneyama M, Matsui Y. Direct polycondensation of aromatic tetracarboxylic acids with aromatic diamines in ionic liquids [J]. High Performance Polymers,2006,18(5): 817-823.
    [55]. Strehmel V, Laschewsky A, Wetzel H, et al. Free radical polymerization of n-butyl methacrylate in ionic liquids [J]. Macromolecules,2006,39(3):923-930.
    [56]. Kokubo H, Watanabe M. Anionic polymerization of methyl methacrylate in an ionic liquid [J]. Polymers for Advanced Technologies,2008,19(10):1441-1444.
    [57]. Biedron T, Kubisa P. Chain transfer to ionic liquid in an anionic polymerization of methyl methacrylate [J]. Journal of Polymer Science Part a-Polymer Chemistry,2007, 45(17):4168-4172.
    [58]. Basko M, Biedron T, Kubisa P. Polymerization processes in ionic liquids. Cationic polymerization of styrene [J]. Macromolecular Symposia,2006,240(107-113.
    [59]. Lu JM, Yan F, Texter J. Advanced applications of ionic liquids in polymer science [J]. Progress in Polymer Science,2009,34(5):431-448.
    [60]. Kubisa P. Ionic liquids as solvents for polymerization processes-Progress and challenges [J]. Progress in Polymer Science,2009,34(12):1333-1347.
    [61]. Marcilla R, de Geus M, Mecerreyes D, et al. Enzymatic polyester synthesis in ionic liquids [J]. European Polymer Journal,2006,42(6):1215-1221.
    [62]. van Rantwijk F, Lau RM, Sheldon RA. Biocatalytic transformations in ionic liquids [J]. Trends in Biotechnology,2003,21(3):131-138.
    [63]. Antonietti M, Kuang DB, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures [J]. Angewandte Chemie-International Edition,2004,43(38):4988-4992.
    [64]. Cammarata L, Kazarian SG, Salter PA, et al. Molecular states of water in room temperature ionic liquids [J]. Physical Chemistry Chemical Physics,2001,3(23): 5192-5200.
    [65].张晟卯,张春丽,吴志申,et al.室温离子液体介质中尺寸、结构可控Ni纳米微粒的制备及结构表征[J].化学学报,2004,62(15):1443-1446.
    [66].张晟卯,张春丽,张经纬,et al.室温离子液体中银纳米微粒的制备与结构表征[J].物理化学学报,2004,20(5):554-556.
    [67]. Li ZH, Liu ZM, Zhang JL, et al. Synthesis of single-crystal gold nanosheets of large size in ionic liquids [J]. Journal of Physical Chemistry B,2005,109(30):14445-14448.
    [68]. Yoo K, Choi H, Dionysiou DD. Ionic liquid assisted preparation of nanostructured TiO2 particles [J]. Chemical Communications,2004,17):2000-2001.
    [69]. Nakashima T, Kimizuka N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids [J]. Journal of the American Chemical Society,2003,125(21):6386-6387.
    [70].陈利娟,张晟卯,吴志申,et al.离子液体中ZnO纳米棒的制备与表征[J].应用化学,2005,22(5):554-556.
    [71]. Yang LX, Zhu YJ, Wang WW, et al. Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid [J]. Journal of Physical Chemistry B,2006,110(13):6609-6614.
    [72].徐云鹏,田志坚,徐竹生,et al.溴化N-烷基取代咪唑中离子热合成硅磷酸铝分子 筛[J].催化学报,2005,26(446-448.
    [73].胡玥,刘彦军,余加祐,et a1.离子热合成磷铝分子筛[J].无机化学学报,2006,22(753-756.
    [74]. Zhou Y, Schattka JH, Antonietti M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique [J]. Nano Letters,2004,4(3):477-481.
    [75]. Laberty-Robert C, Valle K, Pereira F, et al. Design and properties of functional hybrid organic-inorganic membranes for fuel cells [J]. Chemical Society Reviews,2011,40(2): 961-1005.
    [76]. Le Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials [J]. Chemical Society Reviews,2011,40(2):907-925.
    [77]. Ma JC, Dougherty DA. The cation-pi interaction [J]. Chemical Reviews,1997,97(5): 1303-1324.
    [78]. Fukushima T, Asaka K, Kosaka A, et al. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel [J]. Angewandte Chemie-International Edition, 2005,44(16):2410-2413.
    [79]. Zhou XS, Wu TB, Ding KL, et al. The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid [J]. Chemical Communications,2009,14): 1897-1899.
    [80]. Wang JY, Chu HB, Li Y. Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids [J]. ACS Nano,2008,2(12):2540-2546.
    [81]. Whitten PG, Spinks GM, Wallace GG. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes [J]. Carbon,2005,43(9):1891-1896.
    [82]. Dong K, Zhou GH, Liu XM, et al. Structural Evidence for the Ordered Crystallites of Ionic Liquid in Confined Carbon Nanotubes [J]. Journal of Physical Chemistry C,2009, 113(23):10013-10020.
    [83]. Yu P, Lin YQ, Xiang L, et al. Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes:Characterization and electrochemical applications [J]. Langmuir,2005,21(20):9000-9006.
    [84]. Zhang YJ, Shen YF, Li JH, et al. Electrochemical functionalization of single-walled carbon nanotubes in large quantities at a room-temperature ionic liquid supported three-dimensional network electrode [J]. Langmuir,2005,21(11):4797-4800.
    [85]. Tu WW, Lei JP, Ju HX. Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid:direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid [J]. Chemistry-a European Journal,2009,15(3): 779-784.
    [86]. Yuan LM, Ren CX, Li L, et al. Single-walled carbon nanotubes used as stationary phase in GC [J]. Analytical Chemistry,2006,78(18):6384-6390.
    [87]. Dai Z, Xiao Y, Yu XZ, et al. Direct electrochemistry of myoglobin based on ionic liquid-clay composite films [J]. Biosensors & Bioelectronics,2009,24(6):1629-1634.
    [88]. Maleki N, Safavi A, Tajabadi F. High-performance carbon composite electrode based on an ionic liquid as a binder [J]. Analytical Chemistry,2006,78(11):3820-3826.
    [89]. Sutto TE, Trulove PC, De Long HC. Direct X-ray diffraction evidence for imidazolium intercalation into graphite from an ionic liquid [J]. Electrochemical and Solid State Letters,2003,6(3):A50-A52.
    [90]. Sutto TE, Duncan TT, Wong TC. X-ray diffraction studies of electrochemical graphite intercalation compounds of ionic liquids [J]. Electrochimica Acta,2009,54(24): 5648-5655.
    [91]. Fitchett BA, Conboy JC. Structure of the room-temperature ionic liquid/SiO2 interface studied by sum-frequency vibrational spectroscopy [J]. Journal of Physical Chemistry B, 2004,108(52):20255-20262.
    [92]. Liu Y, Zhu L, Sun X, et al. Silica Materials Doped with Bifunctional Ionic Liquid Extractant for Yttrium Extraction [J]. Industrial & Engineering Chemistry Research, 2009,48(15):7308-7313.
    [93]. Ding Y, Xiong R, Wang S, et al. Aggregative structure of the 1-octadecyl-3-methylimidazolium cation in the interlayer of montmorillonite and its effect on polypropylene melt intercalation [J]. Journal of Polymer Science Part B: Polymer Physics,2007,45(11):1252-1259.
    [94]. Byrne C, McNally T. Ionic liquid modification of layered silicates for enhanced thermal stability [J]. Macromolecular Rapid Communications,2007,28(6):780-784.
    [95]. Gorman-Lewis DJ, Fein JB. Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces [J]. Environmental Science & Technology,2004,38(8): 2491-2495.
    [96]. Watanabe M, Yamada S-I, Sanui K, et al. High ionic conductivity of new polymer electrolytes consisting of polypyridinium, pyridinium and aluminium chloride [J]. Journal of the Chemical Society, Chemical Communications,1993,11):929-931.
    [97]. Scott MP, Rahman M, Brazel CS. Application of ionic liquids as low-volatility plasticizers for PMMA[J]. European Polymer Journal,2003,39(10):1947-1953.
    [98]. Rahman M, Shoff HW, Brazel CS. Ionic Liquids as Alternative Plasticizers for Poly(vinyl chloride):Flexibility and Stability in Thermal, Leaching, and UV Environments,2005,103-118.
    [99]. Lewandowski A, Swiderska A. Electrochemical capacitors with polymer electrolytes based on ionic liquids [J]. Solid State Ionics,2003,161(3-4):243-249.
    [100]. Kubisa P. Ionic liquids in the synthesis and modification of polymers [J]. Journal of Polymer Science Part a-Polymer Chemistry,2005,43(20):4675-4683.
    [101]. Fuller J, Breda AC, Carlin RT. Ionic liquid-polymer gel electrolytes [J]. Journal of the Electrochemical Society,1997,144(4):L67-L70.
    [102]. Fuller J, Breda AC, Carlin RT. Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids[J]. Journal of Electroanalytical Chemistry,1998,459(1): 29-34.
    [103]. Carlin RT, Fuller J. Ionic liquid-polymer gel catalytic membrane [J]. Chemical Communications,1997,15):1345-1346.
    [104]. Forsyth M, Sun JZ, MacFarlane DR. Novel high salt content polymer electrolytes based on high T-g polymers [J]. Electrochimica Acta,2000,45(8-9):1249-1254.
    [105]. Mitsushima S, Sakamoto R, Kudo K, et al. Ionic conductivity and thermal stability of room temperature molten salts perfluorosulfonic acid membranes for fuel cell application [J]. Journal of New Materials for Electrochemical Systems,2005,8(1):77-84.
    [106]. Das A, Stockelhuber KW, Jurk R, et al. Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes [J]. Carbon,2009,47(14): 3313-3321.
    [107]. Gilman JW, Awad WH, Davis RD, et al. Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorillonite [J]. Chemistry of Materials, 2002,14(9):3776-3785.
    [108]. Donato RK, Benvegnu MA, Furlan LG, et al. Imidazolium salts as liquid coupling agents for the preparation of polypropylene-silica composites [J]. Journal of Applied Polymer Science,2010,116(1):304-307.
    [109]. Thayumanasundaram S, Piga M, Lavina S, et al. Hybrid inorganic-organic proton conducting membranes based on Nafion, SiO2 and triethylammonium trifluoromethanesulfonate ionic liquid [J]. Electrochimica Acta,2010,55(4):1355-1365.
    [110]. Hjelm RP, Wampler WA, Seeger PA, et al. The microstructure and morphology of carbon black:A study using small angle neutron scattering and contrast variation [J]. Journal of Materials Research,1994,9(12):3210-3222.
    [111]. Kroto HW, Heath JR, O'Brien SC, et al. C60:Buckminsterfullerene [J]. Nature,1985, 318(6042):162-163.
    [112]. Donnet JB, Johnson MP, Norman DT, et al. Fullerenic carbon in carbon black furnaces [J]. Carbon,2000,38(13):1885-1886.
    [113]. Cataldo F. Fullerene-like structures as interaction sites between carbon black and rubber [J]. Macromolecular Symposia,2005,228(91-98.
    [114]. Cataldo F. A Raman study on radiation-damaged graphite by gamma-rays [J]. Carbon, 2000,38(4):634-636.
    [115]. Johnson MP, Locke RW, Donnet JB, et al. Carbon black and fullerenes:New discoveries in early formation mechanisms and nucleation [J]. Rubber Chemistry and Technology,2000,73(5):875-888.
    [116]. Tsubokawa N, Hosoya M, Kurumada J. Grafting reaction of surface carboxyl groups on carbon black with polymers having terminal hydroxyl or amino groups using N,N'-dicyclohexylcarbodiimide as a condensing agent [J]. Reactive and Functional Polymers,1995,27(1):75-81.
    [117]. Taniguchi Y, Ogawa M, Gang W, et al. Preparation of hyperfunctional carbon black by grafting of hyperbranched polyester onto the surface [J]. Materials Chemistry and Physics,2008,108(2-3):397-402.
    [118]. Bergemann K, Fanghanel E, Knackfu β B, et al. Modification of carbon black properties by reaction with maleic acid derivatives [J]. Carbon,2004,42(11):2338-2340.
    [119]. Zhou XJ, Li QY, Wu CF. Grafting of maleic anhydride onto carbon black surface via ultrasonic irradiation [J]. Applied Organometallic Chemistry,2008,22(2):78-81.
    [120]. Yang Q, Wang L, Xiang WD, et al. Preparation of polymer-grafted carbon black nanoparticles by surface-initiated atom transfer radical polymerization [J]. Journal of Polymer Science Part a-Polymer Chemistry,2007,45(15):3451-3459.
    [121]. Xu HY, Li BY, Wu CF. Polymer grafting onto carbon black by solid state method [J]. Polymer Journal,2006,38(8):807-813.
    [122]. Ando N, Takeuchi M. Electrical resistivity of the polymer layers with polymer grafted carbon blacks [J]. Thin Solid Films,1998,334(1-2):182-186.
    [123]. Jia DM, Zhang XL. Effect of MAH modified carbon black prepared by solid state grafting in situ on the adhesion between nylon 66 cords and natural rubber and dynamic mechanical properties of the vulcanizates [J]. Rubber Chemistry and Technology,2002, 75(4):669-681.
    [124]. Tsubokawa N, Matsumoto H, Sone Y. Grafting onto carbon black:Reaction of urethane prepolymer with carbon black surface [J]. Journal of Polymer Science:Polymer Chemistry Edition,1982,20(7):1943-1946.
    [125]. Cataldo F. The role of fullerene-like structures in carbon black and their interaction with dienic rubber [J]. Fullerene Science and Technology,2000,8(1-2):105-112.
    [126]. Rogers RD, Seddon KR. Ionic liquids-solvents of the future? [J]. Science,2003, 302(5646):792-793.
    [127]. Blanchard LA, Hancu D, Beckman EJ, et al. Green processing using ionic liquids and CO2 [J]. Nature,1999,399(6731):28-29.
    [128]. Wasserscheid P, Keim W. Ionic liquids-New "solutions" for transition metal catalysis [J]. Angewandte Chemie-International Edition,2000,39(21):3773-3789.
    [129]. Steinruck HP. Surface science goes liquid! [J]. Surface Science,2010,604(5-6): 481-484.
    [130]. Takeuchi I, Asaka K, Kiyohara K, et al. Electromechanical behavior of fully plastic actuators based on bucky gel containing various internal ionic liquids [J]. Electrochimica Acta,2009,54(6):1762-1768.
    [131]. Talaty ER, Raja S, Storhaug VJ, et al. Raman and infrared spectra and a initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids [J]. Journal of Physical Chemistry B,2004,108(35):13177-13184.
    [132]. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B,2000,61(20):14095-14107.
    [133]. Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials [J]. Carbon,1995,33(11):1561-1565.
    [134]. Robins LH, Farabaugh EN, Feldman A. Line shape analysis of the Raman spectrum of diamond films grown by hot-filament and microwave-plasma chemical vapor deposition [J]. Journal of Materials Research,1990,5(11):2456-2468.
    [135]. Barrett EP, Joyner LG, Halenda PP. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms [J]. Journal of the American Chemical Society,1951,73(1):373-380.
    [136]. Wilson JIB, Walton JS, Beamson G. Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy [J]. Journal of Electron Spectroscopy and related Phenomena,2001,121(1-3):183-201.
    [137]. Ramm M, Ata M, Brzezinka KW, et al. Studies of amorphous carbon using X-ray photoelectron spectroscopy, near-edge X-ray-absorption fine structure and Raman spectroscopy [J]. Thin Solid Films,1999,354(1-2):106-110.
    [138]. Figueiredo JL, Pereira MFR, Freitas MMA, et al. Modification of the surface chemistry of activated carbons [J]. Carbon,1999,37(9):1379-1389.
    [139]. Zielke U, Huttinger KJ, Hoffman WP. Surface-oxidized carbon fibers:I. Surface structure and chemistry [J]. Carbon,1996,34(8):983-998.
    [140]. Cudzilo S, Huczko A, Pakula M, et al. Surface properties of carbons obtained from hexachlorobenzene and hexachloroethane by combustion synthesis [J]. Carbon,2007, 45(1):103-109.
    [141]. Yue ZR, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers [J]. Carbon,1999,37(11):1785-1796.
    [142]. Ohtani H, Ishimura S, Kumai M. Thermal Decomposition Behaviors of Imidazolium-type Ionic Liquids Studied by Pyrolysis-Gas Chromatography [J]. Analytical Sciences,2008,24(10):1335-1340.
    [143]. Awad WH, Gilman JW, Nyden M, et al. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites [J]. Thermochimica Acta,2004,409(1):3-11.
    [144]. Tuinstra F, Koenig JL. Raman spectrum of graphite [J]. Journal of Chemical Physics, 1970,53(3):1126-1130.
    [145]. Matthews MJ, Pimenta MA, Dresselhaus G, et al. Origin of dispersive effects of the Raman D band in carbon materials [J]. Physical Review B,1999,59(10):R6585-R6588.
    [146]. Ferrari AC, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J]. Physical Review B,2001,64(7):075414.
    [147]. Vegh J. The Shirley background revised [J]. Journal of Electron Spectroscopy and related Phenomena,2006,151(3):159-164.
    [148]. Figueiredo JL, Pereira MFR, Freitas MMA, et al. Modification of the surface chemistry of activated carbons [J]. Carbon,1999,37(9):1379-1389.
    [149]. Kapinos LE, Song B, Sigel H. Metal ion-coordinating properties of imidazole and derivatives in aqueous solution, interrelation between complex stability and ligand basicity [J]. Inorganica Chimica Acta,1998,280(1-2):50-56.
    [150]. Lee KJ, Joo KC, Kim E-J, et al. A new type of carboxypeptidase a inhibitors designed using an imidazole as a zinc coordinating ligand [J]. Bioorganic & Medicinal Chemistry, 1997,5(10):1989-1998.
    [151]. Damen R, Nieuwenhuizen PJ, Haasnoorr JG, et al. Homogeneous zinc (II) catalysis in accelerated vulcanization:V. The prevailing mechanism of crosslink formation in mercaptobenzothiazole systems [J]. Rubber Chemistry and Technology,2003,76(1): 82-100.
    [152]. Bandyopadhyay PK. Role of secondary accelerator on vulcanization of rubber [J]. Rubber new,1980,19(6):33-38.
    [153]. Gradwell MHS, McGill WJ. Sulfur vulcanization of polyisoprene accelerated by benzothiazole derivatives. IV. The reaction of polyisoprene with N-cyclohexylbenzothiazole sulfenamide, sulfur, and zinc oxide. [J]. Journal of Applied Polymer Science,1996,61(9):1515-1523.
    [154]. Dupont J, Suarez PAZ. Physico-chemical processes in imidazolium ionic liquids [J]. Physical Chemistry Chemical Physics,2006,8(21):2441-2452.
    [155]. Marwanta E, Mizumo T, Nakamura N, et al. Improved ionic conductivity of nitrile rubber/ionic liquid composites [J]. Polymer,2005,46(11):3795-3800.
    [156]. Winterton N. Solubilization of polymers by ionic liquids [J]. Journal of Materials Chemistry,2006,16(44):4281-4293.
    [157]. Xie QA, Dong GY, Yu YM, et al. Tris(2-ethyl-1H-imidazole-kappa N3)(terephthalato-[kappa]O)zinc(Ⅱ) [J]. Acta Crystallographica Section E-Structure Reports Online,2009,65(5):m576.
    [158]. Lei YD, Guo BC, Liu XL, et al. Structure evolution of carbon black under ionic-liquid-assisted microwave irradiation [J]. Applied Surface Science,2009,255(20): 8488-8493.
    [159]. Gerspacher M, O'Farrell CP. Tire compound materials interactions [J]. Kautschuk Gummi Kunststoffe,2001,54(4):153-158.
    [160]. Schroder A, Kluppel M, Schuster RH, et al. Surface energy distribution of carbon black measured by static gas adsorption [J]. Carbon,2002,40(2):207-210.
    [161]. Fukahori Y. The mechanics and mechanism of the carbon black reinforcement of elastomers [J]. Rubber Chemistry and Technology,2003,76(2):548-565.
    [162]. Fukahori Y. Generalized concept of the reinforcement of elastomers. Part 1:Carbon black reinforcement of rubbers [J]. Rubber Chemistry and Technology,2007,80(4): 701-725.
    [163]. Boonstra BB. Mixing of carbon black and polymer:interaction and reinforcement [J]. Journal of Applied Polymer Science,1967,11(3):389-406.
    [164]. Payne AR, Whittaker RE. Low strain dynamic properties of filled rubbers [J]. Rubber Chemistry and Technology,1971,44(2):440-478.
    [165]. Wang MJ. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates [J]. Rubber Chemistry and Technology,1998,71(3):520-589.
    [166]. Wang MJ, Wolff S. Filler-elastomer interactions. Part Ⅴ:Investigation of the surface energies of silane-modified silicas [J]. Rubber Chemistry and Technology,1992,65(4): 715-735.
    [167]. Wang MJ, Morris MD, Kutsovsky Y. Effect of fumed silica surface area on silicone rubber reinforcement [J]. Kautschuk Gummi Kunststoffe,2008,61(3):107-117.
    [168]. Zhuravlev LT. The surface chemistry of amorphous silica. Zhuravlev model [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2000,173(1-3): 1-38.
    [169]. Jesionowski T, Krysztafkiewicz A. Influence of silane coupling agents on surface properties of precipitated silicas [J]. Applied Surface Science,2001,172(1-2):18-32.
    [170]. Liu YH, Lin HP, Mou CY. Direct method for surface silyl functionalization of mesoporous silica [J]. Langmuir,2004,20(8):3231-3239.
    [171]. Rao AV, Kulkarni MM, Amalnerkar DP, et al. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes [J]. Applied Surface Science,2003, 206(1-4):262-270.
    [172]. Reuvekamp LAEM, Ten Brinke JW, Van Swaaij PJ, et al. Effects of time and temperature on the reaction of TESPT silane coupling agent during mixing with silica filler and tire rubber [J]. Rubber Chemistry and Technology,2002,75(2):187-198.
    [173]. Choi SS, Kim IS, Woo CS. Influence of TESPT content on crosslink types and rheological behaviors of natural rubber compounds reinforced with silica [J]. Journal of Applied Polymer Science,2007,106(4):2753-2758.
    [174]. Kim KJ. Ethylene-propylene-diene terpolymer/silica compound modification with organosilane bis(triethoxysilylpropyl)disulfide and Improved processability and mechanical properties [J]. Journal of Applied Polymer Science,2010,116(1):237-244.
    [175]. Cheng X-H, Bai T. Preparation and characterization of lanthanum-based thin films on sulfonated self-assembled monolayer of 3-mercaptopropyl trimethoxysilane [J]. Thin Solid Films,2006,515(4):2262-2267.
    [176]. Sae-Oui P, Thepsuwan U, Hatthapanit K. Effect of curing system on reinforcing efficiency of silane coupling agent [J]. Polymer Testing,2004,23(4):397-403.
    [177]. Park SJ, Cho KS. Filler-elastomer interactions:influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites [J]. Journal of Colloid and Interface Science,2003,267(1):86-91.
    [178]. Smith EA, Chen W. How To Prevent the Loss of Surface Functionality Derived from Aminosilanes [J]. Langmuir,2008,24(21):12405-12409.
    [179]. Liu YS, Wu GZ, Fu HY, et al. Immobilization and melting point depression of imidazolium ionic liquids on the surface of nano-SiOx particles [J]. Dalton Transactions, 2010,39(13):3190-3194.
    [180]. Belieres JP, Angell CA. Protic ionic liquids:preparation, characterization, and proton free energy level representation [J]. Journal of Physical Chemistry B,2007,111(18): 4926-4937.
    [181]. Nakamoto H, Watanabe M. Bronsted acid-base ionic liquids for fuel cell electrolytes [J]. Chemical Communications,2007,24):2539-2541.
    [182]. Johansson KM, Izgorodina El, Forsyth M, et al. Protic ionic liquids based on the dimeric and oligomeric anions:(AcO)(x)Hx-1(-) [J]. Physical Chemistry Chemical Physics, 2008,10(20):2972-2978.
    [183]. Fernicola A, Panero S, Scrosati B. Proton-conducting membranes based on protic ionic liquids [J]. Journal of Power Sources,2008,178(2):591-595.
    [184]. Baca SG, Filippova IQ Gherco OA, et al. Nickel(II)-, cobalt(II)-, copper(II)-, and zinc(II)-phthalate and 1-methylimidazole coordination compounds:synthesis, crystal structures and magnetic properties [J]. Inorganica Chimica Acta,2004,357(12): 3419-3429.
    [185]. Chu SD, Hawes JW, Lorigan GA. Solid-state NMR spectroscopic studies on the interaction of sorbic acid with phospholipid membranes at different pH levels [J]. Magnetic Resonance in Chemistry,2009,47(8):651-657.
    [186]. Nakamoto H, Noda A, Hayamizu K, et al. Proton-conducting properties of a bronsted acid-base ionic liquid and ionic melts consisting of bis(trifluoromethanesulfonyl)imide and benzimidazole for fuel cell electrolytes [J]. Journal of Physical Chemistry C,2007, 111(3):1541-1548.
    [187]. Rajkumar T, Rao GR. Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid [J]. Materials Chemistry and Physics, 2008,112(3):853-857.
    [188]. Jerman I, Jovanovski V, Vuk AS, et al. Ionic conductivity, infrared and Raman spectroscopic studies of 1-methyl-3-propylimidazolium iodide ionic liquid with added iodine [J]. Electrochimica Acta,2008,53(5):2281-2288.
    [189]. Vuk AS, Jovanovski V, Pollet-Villard A, et al. Imidazolium-based ionic liquid derivatives for application in electrochromic devices [J]. Solar Energy Materials and Solar Cells,2008,92(2):126-135.
    [190]. Yu JJ, Ryu SH. Ultraviolet-initiated photografting of glycidyl methacrylate onto styrene-butadiene rubber [J]. Journal of Applied Polymer Science,1999,73(9): 1733-1739.
    [191]. Flory PJ, Rehner J. Statistical mechanics of crosslinked polymer networks Ⅰ rubberlike elasticity [J]. The journal of chemical physics,1943,11(11):512-520.
    [192]. Flory PJ, Rehner J. Statistical mechanics of crosslinked polymer networks Ⅱ. swelling [J]. The journal of chemical physics,1943,11(11):521-526.
    [193]. Paparazzo E. On the XPS analysis of Si-OH groups at the surface of silica [J]. Surface and Interface Analysis,1996,24(10):729-730.
    [194]. Romero-Sanchez MD, Pastor-Blas MM, Martin-Martinez JM. Adhesion improvement of SBR rubber by treatment with trichloroisocyanuric acid solutions in different esters [J]. International Journal of Adhesion and Adhesives,2001,21(4):325-337.
    [195]. Weng YM, Chen MJ, Chen W. Antimicrobial food packaging materials from poly(ethylene-co-methacrylic acid) [J]. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie,1999,32(4):191-195.
    [196]. Payne AR. The dynamic properties of carbon black-loaded natural rubber vulcanizates Ⅰ [J]. Journal of Applied Polymer Science,1962,6(19):57-63.
    [197]. Wang MJ. Effect of filler-elastomer interaction on tire tread performance part Ⅲ [J]. Kautschuk Gummi Kunststoffe,2008,61(4):159-165.
    [198]. Guo BC, Chen F, Lei YD, et al. Significantly improved performance of rubber/silica composites by addition of sorbic acid [J]. Polymer Journal,2010,42(4):319-326.
    [199]. Sato K. Ionic crosslinking of carboxylated SBR [J]. Rubber Chemistry and Technology, 1983,56(5):942-958.
    [200]. Ayala JA, Hess WM, Dotson AO, et al. New studies on the surface properties of carbon blacks [J]. Rubber Chemistry and Technology,1990,63(5):747-778.
    [201]. Ayala JA, Hess WM, Kistler FD, et al. Carbon-black-elastomer interaction [J]. Rubber Chemistry and Technology,1991,64(1):19-39.
    [202]. Zhang HM, Datta RN, Talma AG, et al. Modification of EPDM with alkylphenol polysulfide for use in tire sidewalls,2-mechanistic and morphological characterizations [J]. Macromolecular Materials and Engineering,2010,295(1):76-83.
    [203]. Cai JJ, Salovey R. Model filled rubber-Part V-Mechanical properties of rubbery composites [J]. Journal of Materials Science,2001,36(16):3947-3953.
    [204]. Litvinov VM, Steeman PAM. EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution H-1 NMR [J]. Macromolecules,1999,32(25): 8476-8490.
    [205]. Lei YD, Tang ZH, Guo BC, et al. Synthesis of novel functional liquid and its application as a modifier in SBR/silica composites [J]. Express polymer letters,2010, 4(11):692-703.
    [206]. Lei YD, Guo BC, Tang ZH, et al. SBR/silica composites modified by a polymerizable protic ionic liquid [J]. Polymer Journal,2010,42(7):555-561.
    [207]. Dondoni A. The Emergence of Thiol-Ene Coupling as a Click Process for Materials and Bioorganic Chemistry [J]. Angewandte Chemie-International Edition,2008,47(47): 8995-8997.
    [208]. Hoyle CE, Bowman CN. Thiol-Ene Click Chemistry [J]. Angewandte Chemie-International Edition,2010,49(9):1540-1573.
    [209]. Hoyle CE, Lee TY, Roper T. Thiol-enes:Chemistry of the past with promise for the future [J]. Journal of Polymer Science Part a-Polymer Chemistry,2004,42(21): 5301-5338.
    [210]. Hensarling RM, Doughty VA, Chan JW, et al. "Clicking" Polymer Brushes with Thiol-yne Chemistry:Indoors and Out [J]. Journal of the American Chemical Society, 2009,131(41):14673-14675.
    [211]. Killops KL, Campos LM, Hawker CJ. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "Click" chemistry [J]. Journal of the American Chemical Society,2008,130(15):5062-5064.
    [212]. Cramer NB, Davies T, O'Brien AK, et al. Mechanism and modeling of a thiol-ene photopolymerization [J]. Macromolecules,2003,36(12):4631-4636.
    [213]. Shin J, Nazarenko S, Phillips JP, et al. Physical and chemical modifications of thiol-ene networks to control activation energy of enthalpy relaxation [J]. Polymer,2009,50(26): 6281-6286.
    [214]. Decker C, Viet TNT. Photocrosslinking of functionalized rubbers,8 The thiol-polybutadiene system [J]. Macromolecular Chemistry and Physics,1999,200(8): 1965-1974.
    [215]. Rim C, Lahey LJ, Patel VG, et al. Thiol-ene reactions of 1,3,5-triacryloylhexahydro-1,3,5-triazine (TAT):facile access to functional tripodal thioethers [J]. Tetrahedron Letters,2009,50(7):745-747.
    [216]. Mansur HS, Orefice RL, Vasconcelos WL, et al. Biomaterial with chemically engineered surface for protein immobilization [J]. Journal of Materials Science-Materials in Medicine,2005,16(4):333-340.
    [217]. Justynska J, Hordyjewicz Z, Schlaad H. Toward a toolbox of functional block copolymers via free-radical addition of mercaptans [J]. Polymer,2005,46(26): 12057-12064.
    [218]. Ide Y, Fukuoka A, Ogawa M. Preparation of Au nanoparticles in the interlayer space of a layered alkali silicate modified with alkylthiol groups [J]. Chemistry of Materials,2007, 19(5):964-966.
    [219]. Uygun M, Tasdelen MA, Yagci Y. Influence of Type of Initiation on Thiol-Ene "Click" Chemistry [J]. Macromolecular Chemistry and Physics,2010,211(1):103-110.
    [220]. Choi SS, Nah C, Byung-Wook J. Properties of natural rubber composites reinforced with silica or carbon black:influence of cure accelerator content and filler dispersion [J]. Polymer International,2003,52(8):1382-1389.
    [221]. Poh BT, Ng CC. Effect of silane coupling agents on the Mooney scorch time of silica-filled natural rubber compound [J]. European Polymer Journal,1998,34(7): 975-979.
    [222]. Dohi H, Horiuchi S. Locating a silane coupling agent in silica-filled rubber composites by EFTEM [J]. Langmuir,2007,23(24):12344-12349.
    [223]. Du ML, Guo BC, Jia DM. Newly emerging applications of halloysite nanotubes:a review [J]. Polymer International,2010,59(5):574-582.
    [224]. Du ML, Guo BH, Liu MX, et al. Thermal decomposition and oxidation ageing behaviour of polypropylene/halloysite nanotube nanocomposites [J]. Polymers & Polymer Composites,2007,15(4):321-328.
    [225]. Du ML, Guo BC, Lei YD, et al. Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites:Interfacial interaction and performance [J]. Polymer,2008, 49(22):4871-4876.
    [226]. Liu MX, Guo BC, Lei YD, et al. Benzothiazole sulfide compatibilized polypropylene/halloysite nanotubes composites [J]. Applied Surface Science,2009, 255(9):4961-4969.
    [227]. Guo BC, Chen F, Lei YD, et al. Tubular clay composites with high strength and transparency [J]. Journal of Macromolecular Science Part B-Physics,2010,49(1): 111-121.
    [228]. Guo BC, Liu XL, Zhou WY, et al. Adsorption of ionic liquid onto halloysite nanotubes: mechanism and reinforcement of the modified clay to rubber [J]. Journal of Macromolecular Science Part B-Physics,2010,49(5):1029-1043.
    [229]. Mrozik W, Jungnickel C, Skup M, et al. Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite:implications for their fate and transport in the soil environment [J]. Environmental Chemistry,2008,5(4):299-306.
    [230]. Liu MX, Guo BC, Du ML, et al. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems [J]. Nanotechnology,2007,18(45):455703.
    [231]. Lassiaz S, Galarneau A, Trens P, et al. Organo-lined alumina surface from covalent attachment of alkylphosphonate chains in aqueous solution [J]. New Journal of Chemistry,2010,34(7):1424-1435.
    [232]. Kornmann X, Lindberg H, Berglund LA. Synthesis of epoxy-clay nanocomposites. Influence of the nature of the curing agent on structure [J]. Polymer,2001,42(10): 4493.4499.
    [233]. Du ML, Guo BC, Jia DM. Newly emerging applications of halloysite nanotubes:a review [J]. Polymer International,2010,
    [234]. Yuan P, Southon PD, Liu ZW, et al. Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane [J]. Journal of Physical Chemistry C, 2008,112(40):15742-15751.
    [235]. Hashima K, Nishitsuji S, Inoue T. Structure-properties of super-tough PLA alloy with excellent heat resistance [J]. Polymer,2010,51(17):3934-3939.
    [236]. Thomas R, Yumei D, Yuelong H, et al. Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber [J]. Polymer,2008,49(1):278-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700