用户名: 密码: 验证码:
华南埃迪卡拉纪陡山沱期古海洋环境的氧化还原特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前华南埃迪卡拉系陡山沱组的海洋化学条件模型认为海水表层处于氧化状态,深部以缺氧富铁为主并穿插有楔状的硫化水体。上述模型主要依据三峡地区碳酸盐岩台地相的数据建立,而根据最近的古地理重建工作,这一地区沉积于台地内部的局限泻湖环境,与南华盆地的开阔海域之间被障壁所分隔。为了检验上述模型是否也适用于开阔海域,本文对南华盆地斜坡及盆地相剖面展开多种手段的综合研究,研究方法包括黄铁矿形态与粒度分析,碳、氧、硫稳定同位素分析,以及主量、微量元素分析等。这些工作取得的主要成果如下:
     陡山沱组内的黄铁矿可依据其形态和粒度分布特征归入四种成因类型,其中A与B类黄铁矿分别为早期成岩过程中形成的自形/不定形黄铁矿与草莓状黄铁矿;而C、D类黄铁矿的粒度分布特征和现代硫化水体中析出的同沉积草莓状黄铁矿相近,可以作为水体硫化条件发育的证据。同沉积黄铁矿在不同剖面的分布情况表明,南华盆地的开阔海域中也发育水体硫化条件,且硫化条件在下斜坡比上斜坡更为强烈和持续。这一结果得到Mo、U、V富集系数的支持。但深入盆地后的硫化情况目前仍不清楚,有待进一步研究。此外,上斜坡的FeT/Al相对下斜坡明显贫瘠,表明南华盆地可能存在类似现代黑海的铁传输模式,即铁从含氧/次氧化相区迁移到缺氧/硫化相区重新沉积。
     在各剖面纵向上,硫化段与非硫化段在厘米到分米级别的尺度上交替发育,表明化学界面的深度频繁发生变动,这在上斜坡剖面尤为明显。化石发育情况与硫化证据的对比显示,南华盆地陡山沱沉积时期真核生物的生存与分布受到硫化条件的控制。之前研究中部分化石证据与地球化学数据出现矛盾,可能是因为这些地球化学研究的分辨率不足以识别出影响生物生活和埋藏的米级以下的氧化还原条件变动。
     在碳同位素方面,斜坡相δ13Ccarb曲线的偏移与同沉积黄铁矿的发育具有一定的相关性,这支持前人关于细菌硫酸盐还原作用(BSR)导致深水相δ13Ccarb普遍负偏的观点。但研究剖面内以成岩黄铁矿为主,表明沉积物内BSR作用对于碳同位素负偏的贡献可能大于水体中的BSR,因此南华盆地相区间的δ13Ccarb差异并不只是水体中同位素梯度的反映,也需要考虑深水区成岩作用的影响。
     南华盆地陡山沱组的Δδ34S表明,陡山沱早期海水的硫酸盐含量大约在50至200μM的数量级,而期可能达到200μM以上。深水相黄铁矿的大量埋藏可能是陡山沱早期海水硫酸盐含量持续偏低的重要原因。在陡山沱沉积后期,深水缺氧环境的减少促进了硫酸盐在海水中的积累。
Recent geochemical studies of the Ediacaran Doushantuo Formation in South Chinasuggested that the ocean was strongly stratified, with an oxic surface layer above a euxinicwedge that was sandwiched within ferruginous deep waters. This ocean redox model,however, was derived largely from the data obtained from Yangtze Gorges area that,according to recent paleogeographic reconstruction, were deposited in a restricted intrashelflagoon. In order to test the previous redox model in open-ocean environments, we studied theDoushantuo Formation in slope and basin sections with multiple approaches (include pyritemorphology and size distribution, redox sensitive elements, carbon/oxygen and sulfur stableisotopes analyses). The results are showed as follows:
     Pyrites in the Doushantuo Formation can be categorized into four genetic typesaccording to their morphology and size distribution: Type A and B representeuhedral/amorphous and framboidal pyrites with early diagenetic origin. While type C and Dhave size distribution that resemble syngenetic pyrites precipitated form euxinic water inmodern environments, and are indicators of water column euxinia. The distribution ofsyngenetic pyrites in studied sections indicates that water column euxinia exist outside theplatform region. And it is more pervasive in lower slope than upper slope. This result issupported by U, Mo and V data. But the redox condition further into the basin is not clear inthis study. FeT/Al data show that Fe is depleted in upper slope and relatively enriched inlower slope, suggesting an iron re-allocation mechanism resemble the modern black sea.
     In both upper and lower slope sections, temporal changes in euxinic and non-euxinicintervals occur at centimeter to decameter scales, suggesting frequent chemocline fluctuations.Most eukaryotes fossil groups in the Doushantuo Formation are found in non-euxinicintervals, suggesting the distribution of eukaryotes life is controlled by the development ofwater column euxinia. While several opposite cases imply that the existing geochemicalstudies have not yet reached the resolution required to reveal the sub meter redox fluctuationsassociated with the living and burial conditions of the Doushantuo organisms.
     The correlation of pyrite occurrences and prominentδ13Ccarbshifts in slope sectionssupports the previous idea that the bacterial sulfur reduction (BSR) is an important cause ofwide-spreaded negativeδ13Ccarbin deep water region. The BSR in sediments may have morecontribution to the negativeδ13Ccarbin deep-water environment than those occur in watercolumn, because there are generally more diagenetic pyrites than syngenetic ones in studiedsections. This result implies that theδ13Ccarbgradient in Nanhua Basin is not cause by watercolumn gradient alone, but also strongly influenced by early diagenesis.
     Fractionation between sulfate and sulfide (Δδ34S) in Nanhua Basin indicate that thesulfate content in seawater is between 50 and 200μM during early time of the Doushantuodeposition and may surpass 200μM later. Intense pyrite burial in anoxic/euxinic region is animportant factor that keep the seawater sulfate content low. Diminishing of these pyrite burialsites during later stage of the Doushantuo deposition may lead to increasing sulfate content inseawater at that time.
引文
Ader, M., Macouin, M., Trindae, R. I. F., et al. A multilayered water column in the Ediacaran Yangtzeplatform?Insights from carbonate and organic matter pairedδ13C. Earth And Planetary ScienceLetters, 2009, 288: 213–227.
    Anbar, A. D., Konll, A. H. Proterozoic ocean chemisty and evolution: A bioinorganic bridge? Science,2002, 297: 1137–1142.
    Anbar, A. D., Ariel, D. Elements and Evolution. Science, 2008, 322: 1481–1483.
    Barfod, G. H., Albarède, F., Knoll, A. H., et al. New Lu–Hf and Pb–Pb age constraints on the earliestanimal fossils. Earth and Planetary Letters, 2002, 201: 203–212.
    Bristow, T. F., Kennedy, M. J. Carbon isotope excursions and the oxidant budget of the Ediacaranatmosphere and ocean. Geology, 2008, 36: 863–866.
    Bristow, T. F., Bonifacie, M., Derkowski, A., et al. A hydrothermal origin for isotopically anomalous capdolostone cements from south China. Nature, 2011, 474: 68–71.
    Calver, C. R. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex,Australia, and the overprint of water column stratification. Precambrian Research, 2000, 100:121–150.
    Calvert, S. E., Thode, H. G., Yeung, D., et al. A stable isotope study of pyrite formation in the LatePleistocene and Holocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 1996, 60:1261–1270.
    Canfield, D. E., Teske, A. Late Proterozoic rise in atomospheric oxygen concentration inferred fromphylogenetic and sulphur-isotope studies. Nature, 1996, 382: 127–132.
    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature, 1998, 396: 450–453.
    Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrel. Annual Review ofEarth and Planetary Letters, 2005, 33: 1–36.
    Canfield, D. E., Poulton, S. W., Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and therise of animal life. Science, 2007, 315: 92–95.
    Canfield, D. E., Poulton, S. W., Knoll, A. H., et al. Ferruginous conditions dominated later Neoproterozoicdeep-water chemistry. Science, 2008, 321: 949–952.
    Chang, H., Chu, X., Feng, L., et al. Progressive oxidation of anoxic and ferruginous deep-water duringdeposition of the terminal Ediacaran Laobao Formation in South China. Palaeogeogr PalaeoclimPalaeoecl, 2012, 321–322: 80–87.
    Chen, D., Dong, W., Qi, L., et al. Possible REE constraints on the depositional and diagenetic environmentof Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chemical Geology,2003, 201: 103–118.
    Chen, D. F., Dong, W., Zhu, B., et al. Pb–Pb ages of Neoproterozoic Doushantuo phosphorites in SouthChina: constraints on early metazoan evolution and glaciation events. Precambrian Res, 2004, 132:123-132.
    Chu, X., Zhang, Q., Zhang, T., et al. Sulfur and carbon isotopic variations in Neoproterozoic sedimentaryrocks from southern China. Progress In Natureal Science, 2003, 13: 875–880.
    Condon, D., Zhu, M., Bowring, S., et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation,China. Science, 2005, 308: 95–98.
    Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earthand Planetary Letters, 2010, 294: 152–162.
    Dong, L., Xiao, S., shen, B., et al. Silicified Horodyskia and Palaeopascichnus from upper Ediacaran chertsin South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journalof the Geological Society, 2008, 165: 367–378.
    Fairchild, I. J., Kennedy, M. J. Neoproterozoic glaciation in the Earth System. Journal of the GeologicalSociety, 2007, 164: 895–921.
    Farquhar, J., Wu, N., Canfield, D. E., et al. Connections between sulfur cycle evolution, sulfur isotopes,sediments, and base metal sulfide deposits. economic geobiology, 2010, 105: 509–533.
    Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al. Oxidation of the Ediacaran ocean. Nature, 2006, 444:744–747.
    Fike, D. Earth’s redox evolution. Nature geoscience, 2010, 3: 453–454.
    Frimmel, H. E. On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphiccorrelation. Precambrian Res, 2010, 182: 239–253.
    Gao, S., Lou, T., Zhang, B., et al. Chemical composition of the continental crust as revealed by studies inEast China. Geochimica Et Cosmochimica Acta, 1998, 62: 1959–1975.
    Goldberg, T., Poulton, S. W., Strauss, H. Sulphur and oxygen isotope signatures of late Neoproterozoic toearly Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution.Precambrian Res, 2005, 137: 223–241.
    Goldberg, T., Strauss, H., Guo, Q., et al. Reconstructing marine redox conditions for the early CambrianYangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. PalaeogeogrPalaeoclim Palaeoecl, 2007, 254: 175–193.
    Gorjan, P., R.Walter, M., Swart, R. Global Neoproterozoic (Sturtian) post-glacial sulfide-sulfur isotopeanomaly recognised in Namibia. Journal of African Earth Sciences, 2003, 36: 89–98.
    Guerroué, E. L., Cozzi, A. Veracity of Neoproterozoic negative C-isotope values: The termination of theShuram negative excursion. Gondwana Res, 2010, 17: 653–661.
    Guo, Q. J., Shield, G. A., Liu, C., et al. Trace element chemostratigraphy of two Ediacaran-Cambriansuccessions in South China: Implications for organosedimentary metal enrichment and silicification inthe early Cambrian. Palaeogeogr Palaeoclim Palaeoecl, 2007, 254: 194–216.
    Habicht, K. S., Canfield, D. E. Sulfur isotope fractionation during bacterial sulfate reduction inorganic-rich sediments. Geochimica et Cosmochimica Acta, 1997, 61: 5351–5361.
    Habicht, K. S., Canfield, D. E., Rethmeier, J. Sulfur isotope fractionation during bacterial reduction anddisproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta, 1998, 62:2585–2595.
    Habicht, K. S., Gade, M., Thamdrup, B., et al. Calibration of Sulfate Levels in the Archean Ocean. Science,2002, 298: 2372–2374.
    Halverson, G. P., Hoffman, P. F., Scharg, D. P., et al. Toward a Neoproterozoic composite carbon-isotoperecord. GSA Bulletin, 2005, 117: 1181–1207.
    Halverson, G. P., Hurtgen, M. T. Ediacaran growth of the marine sulfate reservoir. Earth And PlanetaryScience Letters, 2007, 263: 32–44.
    Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al. Neoproterozoic chemostratigraphy. PrecambrianResearch, 2010, 182: 337–350.
    Harland, W. B. Origins and assessment of snowball Earth hypotheses. Geological Magazine, 2007, 144:633–642.
    Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al. A Neoproterozoic snowball earth. Science, 1998,281: 1342.
    Hoffman, P. F., Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. TerraNova, 2002, 14: 129–155.
    Huang, J., Chu, X., Chang, H., et al. Trace element and rare earth element of cap carbonate in EdiacaranDoushantuo Formation in Yangtze Gorges. Chin Sci Bull, 2009, 54: 3295–3302.
    Hurtgen, M. T., Arthur, M. A., Suits, N. S., et al. The sulfur isotopic composition of Neoproterozoicseawater sulfate: implications for a snowball Earth? Earth and Planetary Letters, 2002, 203: 413–429.
    Hurtgen, M. T., Arthur, M. A., Halverson, G. P. Neoproterozoic sulfur isotopes, the evolution of microbialsulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology, 2005, 33: 41–44.
    Hurtgen, M. T., Halverson, G. P., Arthur, M. A., et al. Sulfur cycling in the aftermath of a 635-Masnowball glaciation: evidence for a syn-glacial sulfidic deep ocean. Earth and Planetary Letters, 2006,245: 551–570.
    Jiang, G., Kennedy, M. J., Christie-blick, N. Stable isotopic evidence for methane seeps in Neoproterozoicpostglacial cap carbonates. Nature, 2003a, 426: 822–826.
    Jiang, G., Sohl, L. E., Christie-blik, N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya(India) and Yangtze Block (south China): Paleogeographic implications. Geology, 2003b, 31:917–920.
    Jiang, G., Kaufman, A. J., Christie-blick, N., et al. Carbon isotope variability across the Ediacaran Yangtzeplatform in South China: implications for a large surface-to-deep oceanδ13C gradient. Earth AndPlanetary Science Letters, 2007, 261: 303–320.
    Jiang, G., Zhang, S., Shi, X., et al. Chemocline instability and isotope variations of the EdiacaranDoushantuo basin in south china. Science In China Series D-Earth Sciences, 2008, 51: 1560–1569.
    Jiang, G., Wang, X., Shi, X., et al. Organic carbon isotope constraints on the dissolved organic carbon(DOC) reservoir at the Cryogenian-Ediacaran transition. Earth and Planetary Science Letters, 2010,299: 159–168.
    Jiang, G., Shi, X., Zhang, S., et al. Stratigraphy and paleogeography of the Ediacaran DoushantuoFormation (ca. 635–551 Ma) in South China. Gondwana Research, 2011, 19: 831–849.
    Johnston, D. T., Poulton, S. W., Dehler, C., et al. An emerging picture of Neoproterozoic ocean chemistry:Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 2010, 209:64–73.
    Kah, L. C., Lyons, T. W., Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoicbiosphere. Nature, 2004, 431: 834–838.
    Kaufman, A. J., Knoll, A. H. Neoproterozoic variations in the C-isotopic composition of seawater:stratigraphic and biogeochemical implications. Precambrian Research, 1995, 73: 27–49.
    Kaufman, A. J., Corsetti, F. A., Varni, M. A. The effect of rising atmospheric oxygen on carbon and sulfurisotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chemical Geology,2007, 237: 47–63.
    Kennedy, M. J., Christie-Blick, N., Sohl, L. E. Are Proterozoic cap carbonates and isotopic excursions arecord of gas hydrate destabilization following Earth's coldest intervals? Geology, 2001, 29: 443–446.
    Kendall, B., Reinhard, C. T., Lyons, T. W., et al. Pervasive oxygenation along late Archaean oceanmargins. Nature Geoscience, 2010, 3: 647–652.
    Kendall, B., Gordon, G. W., Poulton, S. W., et al. Molybdenum isotope constraints on the extent of latePaleoproterozoic ocean euxinia. Earth and Planetary Letters, 2011, 307: 450–460.
    Kennedy, M., Mrofka, D., Borch, C. v. d. Snowball Earth termination by destabilization of equatorialpermafrost methane clathrate. Nature, 2008, 453: 642–645.
    Kirschvink, J. L. Late Proterozoic low-latitude global glaciation: the snowball earth. In: Schopf, J. W. andKlein, C. eds. The proterozoic Biosphere. Cambridge: Cambridge University Press, 1992. 51–52.
    Knoll, A. H., Walter, M. R., Narbonne, G. M., et al. The Ediacaran Period: A new addition to the geologictime scale. Lethaia, 2006, 39: 13–30.
    Kump, L. R. The rise of atmospheric oxygen. Nature, 2008, 451: 227–278.
    Li, C. W., Chen, J. Y., Hua, T. E. Precambiran Sponges with cellular structure. Science, 1998, 279:879–882.
    Li, R., Chen, J., Zhang, S., et al. Spatial and temporal variations in carbon and sulfur isotopic compositionsof Sinian sedimentary rocks in the Yangtze platform, South China. Precambrian Res, 1999a, 97:59–75.
    Li, Z. X., Li, X. H., Kinny, P. D., et al. The breakup of Rodinia: did it start with a mantle plume beneathSouth China? Earth and Planetary Letters, 1999b, 173: 181–181.
    Li, C., Love, G. D., Lyons, T. W., et al. A Stratified redox model for the Ediacaran ocean. Science, 2010,328: 80–83.
    Liao, W., Wang, Y., Kershaw, S., et al. Shallow-marine dysoxia across the Permian-Triassic boundary:Evidence from pyrite framboids in the microbialite in South China. Sedimentary Geology, 2010, 232:77–83.
    Liu, P., Yin, C., Gao, L., et al. New material of microfossils from the Ediacaran Doushantuo Formation inthe Zhangcunping area, Yichang, Hubei Province and its zircon SHRIMP U-Pb age. Chin Sci Bull,2009, 54: 1058–1064.
    Lyons, T. W., Werne, J. P., Hollander, D. J., et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Alratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology,2003, 195: 131–157.
    Lyons, T., Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinicmarine basins. Geochimica et Cosmochimica Acta, 2006, 70: 5698–5722.
    Lyons, T. W., Anbar, A. D., Severmann, S., et al. Tracking euxinia in the ancient ocean: A multiproxyperspective and Proterozoic case study. Earth And Planetary Science Letters, 2009, 37: 507–543.
    Macouin, M., Besse, J., Ader, M., et al. Combined paleomagnetic and isotopic data from the Doushantuocarbonates, South China: implications for the "snowball Earth" hypothesis. Earth and PlanetaryLetters, 2004, 224: 387–398.
    Marenco, P. J., Corsetti, F. A., Hammond, D. E., et al. Oxidation of pyrite during extraction of carbonateassociated sulfate. Chemical Geology, 2008, 247: 124–132.
    McFadden, K. A., Huang, J., Chu, X., et al. Pulsed oxidation and biological evolution in the EdiacaranDoushantuo Formation. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2008, 105: 3197–3202.
    McFadden, K. A., Xiao, S., Zhou, C., et al. Quantitative evaluation of the biostratigraphic distribution ofacanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, SouthChina. Precambrian Research, 2009, 173: 170–190.
    Mclennan, S. M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentaryprocesses. Reviews in MIneralogy and Geochemisty, 1989, 21: 169–200.
    Meyer, K. M., Kump, L. R. Oceanic euxinia in earth history: cause and consequences. Annual Review ofEarth and Planetary Letters, 2008, 36: 251–288.
    Neumann, T., Rausch, N., Leipe, T., et al. Intense pyrite formation under low-sulfate conditions in theAchterwasser lagoon,SW Baltic Sea. Geochimica Et Cosmochimica Acta, 2005, 69: 3619–3630.
    Newton, R., Bottrell, S. Stable isotopes of carbon and sulphur as indicators of environmental change: pastand present. Journal of Geological Society, 2007, 164: 691–708.
    Nielsen, J. K., Shen, Y. Evidence for sulfidic deep water during the Late Permian in the East GreenlandBasin. Geology, 2004, 32: 1037–1040.
    Pi, D., Liu, C., Shields-Zhou, G. A., et al. Trace and rare earth element geochemistry of black shale andkerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraintsfor redox environments and origin of metal enrichments. Precambrian Res (2011).doi:10.1016/j.precamres.2011.07.004
    Poulton, S. W., Fralick, P. W., Canfield, D. E. The transition to a sulphidic ocean ~1.84 billion years ago.Nature, 2004, 431: 173–177.
    Poulton, S. W., Canfield, D. E. Development of a sequential extraction procedure for iron: implications foriron partitioning in continentally derived particulates. Chemical Geology, 2005, 214: 209–221.
    Poulton, S. W., Canfield, D. E. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth'sHistory. Elements, 2011, 7: 107–112.
    Poulton, S. W., Fralick, P. W., Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billionyears ago. Nature Geoscience, 2010, 3: 486–490.
    Raiswell, R. Pyrite texture, isotopic composition and the availability of iron. American Journal Of Science,1982, 282: 1244–1263.
    Raiswell, R. A geochemical framework for the application of stable sulphur isotopes to fossil pyritization.Journal of Geological Society, 1997, 154: 343–356.
    Raiswell, R., Canfield, D. E. Source of iron for pyrite formation in marine sediments. American Journal OfScience, 1998, 298: 219–245.
    Raiswell, R., Newton, R., Wignall, P. B. An indicator of water-column anoxia: resolution of biofaciesvariations in the Kimmeridge clay(upper Jurassic, U.K.). Journal of Sedimentary Research, 2001, 71:286–294.
    Reinhard, C. T., Raiswell, R., Scott, C., et al. A Late Archean Sulfidic Sea Stimulated by Early OxidativeWeathering of the Continents. Science, 2009, 326: 713–716.
    Ries, J. B., Fike, D. A., Pratt, L. M., et al. Superheavy pyrite (δ34Spyr>δ34SCAS) in the terminal ProterozoicNama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life.Geology, 2009, 37: 743–746.
    Rothman, D. H., Hayes, J. M., Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. proceedingsof The Academy Of Natural Sciences,USA, 2003, 100: 8124–8129.
    Schr der, S., Grotzinger, J. P. Evidence for anoxia at the Ediacaran–Cambrian boundary: the record ofredox-sensitive trace elements and rare earth elements in Oman. Journal of Geological Society, 2007,164: 175–187.
    Scott, C., Lyons, T. W., Bekker, A., et al. Tracing the stepwise oxygenation of the Proterozoic ocean.Nature, 2008, 452: 456–459.
    Sessions, A. L., Doughty, D. M., Welander, P. B., et al. The continuing puzzle of the Great OxidationEvent. Current Biology, 2009, 19: 567–574.
    Shen, Y., Zhang, T., Chu, X. C-isotopic stratification in a Neoproterozoic postglacial ocean. PrecambrianRes, 2005, 137: 243–251.
    Shen, W., Lin, Y., Xu, L., et al. Pyrite framboids in the Permian-Triassic boundary section at Meishan,China: Evidence for dysoxic deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,253: 323–331.
    Shen, Y., Zhang, T., Hoffman, P. F. On the coevolution of Ediacaran oceans and animals. Proceedings ofthe National Academy of Sciences of the United States of America, 2008a, 105: 7376–7381.
    Shen, B., Xiao, S., Kaufman, A. J., et al. Stratification and mixing of a post-glacial Neoproterozoic ocean:Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China. Earth andPlanetary Letters, 2008b, 265: 209–228.
    Slack, J. F., Grenne, T., Bekker, A., et al. Suboxic deep seawater in the late Paleoproterozoic: Evidencefrom hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, centralArizona, USA. Earth and Planetary Letters, 2007, 225: 243–256.
    Sweeney, R. E., Kaplan, I. R. Pyrite framboid formation: Laboratory synthesis and marine sediments.Economic Geology, 1973, 68: 618–634.
    Tang, F., Yin, C., Bengtson, S., et al. Octoradiate spiral organisms in the Ediacaran of South China. ActaGeologica Sinica-English Edition, 2008, 82: 27–34.
    Taylor, S. R., Mclennan, S. M. The continental crust: its composition and evolution. Oxford: BlackwellScientific Publications , 1985.
    Tribovillard, N., Algeo, T. J., Lyons, T., et al. Trace metals as paleoredox and paleoproductivity proxies:An update. Chemical Geology, 2006, 232: 12–32.
    Vernhet, E. Paleobathymetric influence on the development of the late Ediacaran Yangtze platform (Hubei,Hunan, and Guizhou provinces, China). Sediment Geol, 2007, 197: 29-46.
    Vernhet, E., Heubeck, C., Zhu, M., et al. Stratigraphic reconstruction of the Ediacaran Yangtze Platformmargin (Hunan Province, China) using a large olistolith. Palaeogeogr Palaeoclim Palaeoecl, 2007,254: 123–139.
    Vernhet, E., Reijmer, J. J. G. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei andHunan provinces, Central China). Sediment Geol, 2010, 225: 99–115.
    Wang, J., Li, Z. X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up.Precambrian Research, 2003, 122: 141–158.
    Wang, J., Jiang, G., Xiao, S., et al. Carbon isotope evidence for widespread methane seeps in the ca. 635Ma Doushantuo cap carbonate in south China. Geology, 2008, 36: 347–350.
    Wang, X., Shi, X. Spatio-temporal carbon isotope variation duing the Ediacaran period in South China andits impact on bio-evolution. Science In China Series D-Earth Sciences, 2009, 52: 1520–1528.
    Wijsman, J. W. M., Middelburg, J. J., Herman, P. M. J., et al. Sulfur and iron speciation in surfacesediments along the northwestern margin of the Black Sea Marine Chemistry, 2001, 74: 167–180.
    Wignall, P. B., Newton, R. Pyrite framboid diameter as a measure of oxygen deficiency in ancientmudrocks. American Journal Of Science, 1998, 298: 537–552.
    Wignall, P. B., Newton, R., Brookfield, M. E. Pyrite framboid evidence for oxygen-poor deposition duringthe Permian-Triassic crisis in Kashmir. Palaeogeogr Palaeoclimat Palaeoecol, 2005, 216: 183–188.
    Wignall, P. B., Bond, D. P. G., Kuwahara, K., et al. An 80 million year oceanic redox history fromPermian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of fourmass extinctions. Global and Planetary Change, 2010, 71: 109–123.
    Wilkin, R. T., Barnes, H. L., Brantley, S. L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions. Geochimica Et Cosmochimica Acta, 1996, 60: 3897–3912.
    Wilkin, R. T., Arthur, M. A., Dean, W. E. History of water-column anoxia in the Black Sea indicated bypyrite framboid size distributions. Earth And Planetary Science Letters, 1997, 148: 517–525.
    Wilkin, R. T., Barnes, H. L. Pyrite formation by reactions of iron monosulfides with dissolved inorganicand organic sulfur species. Geochimica Et Cosmochimica Acta, 1996, 60: 4167–4179.
    Wilkin, R. T., Barnes, H. L. Formation processes of framboidal pyrite. Geochimica Et Cosmochimica Acta,1997, 61: 323–339.
    Wilkin, R. T., Arthur, M. A. Variations in pyrite texture, sulfur isotope composition, and iron systematic inthe Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition.Geochimica Et Cosmochimica Acta, 2001, 65: 1399–1416.
    Xiao, S., Zhang, Y., Knoll, A. H. Three-dimensional preservation of algae and animal embryos in aNeoproterozoic phosphorite. Nature, 1998, 391: 553–558.
    Xiao, S., Knoll, A. H. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation atWeng’An, Guizhou, South Chaina. Journal Of Paleontology, 2000, 74: 767–788.
    Xiao, S., Yuan, X., Steiner, M., et al. Macroscopic carbonaceous compressions in a terminal Proterozoicshale: A systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 2002, 76:347–376.
    Xiao, S. New multicellular algal fossils and acritarchs in Doushantuo chert nodules(Neoproterozoic;Yangtze Goreges, South China). Journal Of Paleontology, 2004, 78: 393–401.
    Xiao, S., Schiffbauer, J. D., Mcfadden, K. A., et al. Petrographic and SIMS pyrite sulfur isotope analysesof Ediacaran chert nodules: Implications for microbial processes in pyrite rim formation, silicification,and exceptional fossil preservation. Earth And Planetary Science Letters, 2010, 297: 481–495.
    Xiao, S., McFadden, K. A., Peek, S., et al. Integrated chemostratigraphy of the Doushantuo Formation atthe northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaranstratigraphic correlation and ocean redox models. Precambrian Research, 2012, 192–195: 125–141.
    Yang, J., Sun, W., Wang, Z., et al. Variations in Sr and C isotopes and Ce anomalies in successions fromChina: Evidence for the oxygenation of Neoproterozoic seawater? Precambrian Res, 1999, 93:215–233.
    Yang, B., Hu, B., Bao, Z., et al. REE geochemical characteristics and depositional environment of theblack shale-hosted Baiguoyuan Ag-V deposit in Xingshan, Hubei Province, China. Journal of RareEarth, 2011, 29: 499–506.
    Yin, C., Liu, D., Gao, L., et al. Lower boundary age of the Nanhua System and the Gucheng glacial stage:evidence from SHRIMP II dating. Chin. Sci. Bull, 2003, 48: 1657–1662.
    Yin, C., Tang, F., Liu, Y., et al. New U-Pb zircon ages from the Ediacaran (Sinian) System in the YangtzeGorges: constraint on the age of Miaoe biota and Marinoan glaciation. Geological Bulletin of China,2005, 24: 393–400.
    Yin, L., Zhu, M., Knoll, A. H., et al. Doushantuo embryos preserved inside diapause egg cysts. Nature,2007, 446: 661–663.
    Yin, C., Liu, P., Awramik, S. M., et al. Acanthomorph biostratigraphic succession of the EdiacaranDoushantuo Formation in the East Yangtze Gorges, South Chuna. Acta Geologica Sinica-EnglishEdition, 2011, 85: 283–259.
    Yin, Z., Zhu, M., Tafforeau, P., et al. Early embryogenesis of potential bilaterian animals with polar lobeformation from the Ediacaran Weng'an Biota, South China. Precambrian Res(2011).doi:10.1016/j.precamres.2011.08.011
    Yuan, X., Chen, Z., Xiao, S., et al. An early Ediacaran assemblage of macroscopic and morphologicallydifferentiated eukaryotes. Nature, 2011, 470: 390–393.
    Zaback, D. A., Pratt, L. M., Hayes, J. M. Transport and reduction of sulfate and immobilization of sulfidein marine black shales. Geology, 1993, 21: 141–144.
    Zhang, T., Chu, X., Zhang, Q., et al. Variations of sulfur and carbon isotopes in seawater during theDoushantuo stage in late Neoproterozoic. Chin Sci Bull, 2003, 48: 1375–1380.
    Zhang, S., Jiang, G., Zhang, J., et al. U-Pb sensitive high-resolution ion microprobe ages from theDoushantuo Formation in south China: constraints on late Neoproterozoic galciations. Geology, 2005,33: 473–476.
    Zhao, Y., Chen, M. e., Peng, J., et al. Discovery of a Miaohe-type biota from the NeoproterozoicDoushantuo formation in Jiangkou county, Guizhou province, China. Chin Sci Bull, 2004, 49:2224–2226.
    Zhao, Y., Zheng, Y., Chen, F. Trace element and strontium isotope constraints on sedimentaryenvironment of Ediacaran carbonates in southern Anhui, South China. Chemical Geology, 2009, 265:345–362.
    Zhou, C., Tucker, R., Xiao, S., et al. New constraints on the ages of Neoproterozoic glaciations in southChina. Geology, 2004, 32: 437–440.
    Zhou, C., Xiao, S. Ediacaranδ13C chemostratigraphy of South China.Chemical. Chemical Geology, 2007,237: 89–108.
    Zhou, C., Xie, W., Mcfadden, K. A., et al. The diversification and extinction of Doushantuo-Pertatatakaacritarchs in South China: causes and biostratigraphic significance. Geological Journal, 2007, 43:229–262.
    Zhou, C., Jiang, S. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation inSouth China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biotaoccurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271: 279–286.
    Zhu, M., Zhang, J., Steiner, M., et al. Sinian-Cambrian stratigraphic framework for shallow- to deep- waterenvironments of the Yangtze Platform: an integrated approach. Progress In Natureal Science, 2003,13: 951–960.
    Zhu, M., Zhang, J., Yang, A. Integrated Ediacaran (Sinian) chronostratigraphy of South China.Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254: 7–61.
    Zhu, M., Gehling, J. G., Xiao, S., et al. Eight-armed Ediacara fossil preserved in contrasting taphonomicwindows from China and Australia. Geology, 2008, 36: 867–870.
    Zhu, M., Lu, M., Zhang, J., et al. Carbon isotope chemostratigraphy and sedimentary facies evolution ofthe Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Research (2011).doi:10.1016/j.precamres.2011.07.019
    Zhu, B., Becker, H., Jiang, S., et al. Re–Os geochronology of black shales from the NeoproterozoicDoushantuo Formation, Yangtze platform, South China. Precambrian Res (2012).doi:10.1016/j.precamres.2012.02.002
    常华进,储雪蕾,黄晶,等.沉积环境细菌作用下的硫同位素分馏.地质论评, 2007, 53: 807–813.
    常华进,储雪蕾,冯连君,等.湖南安化留茶坡硅质岩的REE地球化学特征及意义.中国地质, 2008,35: 879–887.
    常华进,储雪蕾,冯连君,等.华南老堡组硅质岩中草莓状黄铁矿——埃迪卡拉末期深海缺氧的证据.岩石学报, 2009a, 25: 1000–1007.
    常华进,储雪蕾,冯连君,等.氧化还原敏感元素对古海洋沉积环境的知识意义.地质论评, 2009b,55: 91–99.
    常华进,储雪蕾,冯连君,等.桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示.沉积学报, 2010, 28: 1098–1107.
    陈寿铭,尹崇玉,刘鹏举,等.峡东地区埃迪卡拉系陡山沱组碳同位素特征研究进展与国内外对比.地球学报, 2009, 30: 475–486.
    陈孝红,汪啸风,毛晓东.湘西地区震旦世黑色岩系地层层序、沉积环境与成因.地球学报, 1999,20: 87–95.
    储雪蕾,李任伟,张同钢,等.大塘坡期锰矿层中黄铁矿异常高的δ34S值的意义.矿物岩石地球化学通报, 2001, 20: 320–322.
    郭庆军,刘丛强, Strauss, H.,等.贵州瓮安陡山沱组剖面碳同位素生物地球化学研究.矿物岩石,2005, 25: 75–80.
    黄永健,王成善.古海洋活性铁循环研究进展及对白垩纪缺氧-富氧沉积转变的启示.地学前沿,2009, 16: 172–180.
    姜立君,张卫华,高慧,等贵州新元古代陡山沱期碳酸盐岩帽沉积地球化学特征.地球学报, 2004,25: 170–176.
    蒋干清,史晓颖,张世红.甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩.科学通报, 2006, 51: 1121–1138.
    李勇,张兴亮,郭俊峰,等贵州瓮安新元古代陡山沱组磷酸盐化管柱状微体化石新材料.古生物学报, 2003, 42: 200–207.
    刘鹏举,尹崇玉,陈寿铭,等华南埃迪卡拉纪陡山沱期管状微体化石分布、生物属性及其地层学意义.古生物学报, 2010, 49: 308–324.
    马国干,李华芹,张自超.华南地区震旦纪时限范围的研究.中国地质科学院宜昌地质矿产研究所所刊, 1984: 1–29.
    彭花明,郭福生,严兆彬,等浙江江山震旦系碳同位素异常及其地质意义.地球化学, 2006, 35:577–585.
    唐烽,尹崇玉,柳永清,等峡东震旦系陡山沱组宏体化石的新发现.科学通报, 2005, 50: 2632–2637.
    唐烽,宋学良,尹崇玉,等华南滇东地区震旦(Ediacaran)系顶部Longfengshaniaceae藻类化石的发现及意义.地质学报, 2006, 80: 1643–1649.
    唐烽,高林志,王自强.华南伊迪卡拉纪宏体生物群的古地理分布及意义.古地理学报, 2009, 11:524–533.
    王家生,甘华阳,魏清,等三峡“盖帽”白云岩的碳、硫稳定同位素研究及其成因探讨.现代地质,2005, 19: 14–20.
    王约,王训练.黔东北新元古代陡山沱期宏体藻类的固着器特征及其沉积环境意义.微体古生物学报, 2006, 23: 154–164.
    王约,王训练,黄禹铭.黔东北伊迪卡拉纪陡山沱组的宏体藻类.地球科学, 2007, 32: 828–844.
    王约.黔–渝地区新元古代伊迪卡拉纪陡山沱期宏体生物群: [博士学位论文].北京:中国地质大学(北京), 2010.
    王自强,高林志,尹崇玉.峡东地区震旦系层型剖面的界定与层序划分.地质论评, 2001, 47:449–458.
    吴凯,马东升,潘家永,等贵州瓮安磷矿陡山沱组地层元素地球化学特征.华东理工学院学报,2006, 29: 108–114.
    殷勇,张玲华,范小林,等湘西北上震旦统碳酸盐层序地层.西北地质科学, 1997, 18: 33–42.
    尹崇玉,唐烽,刘鹏举,等华南埃迪卡拉(震旦)系陡山沱组生物地层学研究的新进展.地球学报,2009, 30: 421–432.
    尹磊明,周传明,袁训来.湖北宜昌埃迪卡拉系陡山沱组天柱山卵囊胞——Tianzhushania的新认识.古生物学报, 2008, 47: 129–140.
    喻羑艺,何明华,王约,等贵州江口震旦系陡山沱组沉积层序和沉积环境分析.地质科技情报,2005, 24: 38–42.
    袁训来.新元古代陡山沱期瓮安生物群研究概况.古生物学报, 1999, 16: 281–286.
    袁训来,王丹,肖书海.新元古代陡山沱期的动物.古生物学报, 2009, 48: 375–389.
    张海,甘凤伟,魏宁.贵州东南区埃迪卡拉系层序地层格架.现代地质, 2010, 24: 221–227.
    赵元龙,伍孟银,彭进,等贵州江口桃映埃迪卡拉系陡山沱组中的三叶脊化石.微体古生物学报,2010, 27: 305–314.
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社, 2000.
    周传明.贵州瓮安地区上震旦统碳同位素特征.地层学杂志, 1997, 21: 124–129.
    周传明,袁训来,肖书海.扬子地台新元古代陡山沱期磷酸盐化生物群.科学通报, 2002, 47:1734–1739.
    周雁,陈洪德,王成善,等中扬子地区上震旦统层序地层研究.成都理工大学学报(自然科学版),2004, 31: 53–58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700