用户名: 密码: 验证码:
城市污水污泥电动脱水机理试验研究及多场耦合作用理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来伴随着我国城市污水排放量与污水处理率的高速增长,产生了大量城市污水污泥,给环境造成了巨大压力。污泥含水率高,脱水减量是其处理处置的关键环节,能显著降低后端处置技术难度及处理费用。寻找一种高效的污泥脱水减量处理技术是解决污泥处理处置难题的关键。污泥电动脱水处理是一种利用电渗原理、能够快速有效脱除污泥中水分的技术。电动脱水处理过程中,试样内渗流场、化学浓度场与电场均发生变化且相互影响,电动脱水效率会发生衰减。深入认识电动处理中水分脱除机理及多场相互作用规律、掌握影响脱水效能的主要因素,有助于优化电动脱水操作条件优化及技术改进。本文通过模型试验、数值模拟等手段研究开展了城市污水污泥电动脱水机理及多场耦合作用理论分析的研究,主要研究内容和研究成果包括:
     (1)通过污泥电动脱水处理的模型试验,考查了处理过程中电渗流量与脱水效果在不同加载电压梯度、电极间距、处理时间下的变化规律。试验结果表明处理过程中,脱水效果由阳极发展至阴极,试样可分为已脱水污泥与未脱水污泥,电渗流量与脱水效果由未脱水污泥的电压梯度决定,随着已脱水污泥电阻增加、消耗电压上升,未脱水污泥内的电压梯度逐渐衰减,造成了处理过程中电渗流量及脱水效果逐渐衰减、污泥的剩余含水率由阳极至阴极逐渐增加。已脱水污泥的高能低效是电动脱水处理效能下降的原因。
     (2)基于模型试验的得到的结论,对电动处理过程中的渗流场变化作出简化,结合电动作用下电场、浓度场的变化及三场的相互作用规律,建立了污泥电动脱水的多场耦合作用理论分析模型,通过编程对电动脱水处理过程进行了模拟。模拟分析可较好的模拟不同加载电压、电极间距、处理时间下电渗流、电流、电压分布变化及离子运移情况,分析表明试样内离子在电场与渗流场作用下迁移,已脱水污泥内离子浓度显著下降,含水率降低与离子浓度衰减的共同影响下,已脱水污泥电阻上升、分得的电压增加,进一步加速其内的离子迁移从而加剧离子浓度的衰减,促使电压集中于已脱水污泥、电压分布不均。
     (3)试验与模拟分析结果表明电动脱水处理时选用较小的电极间距可以节约能耗,相同电极间距下,能耗与脱水效果均随加载电压的提高而增加,通过比较不同操作条件下的电动脱水处理能耗与脱水效果,以及对应的处理费用和污泥减量后可节约的后续处置费用,可从经济角度优化选择加载电压。分析表明,1cm电极间距下,对于填埋处置污泥,使用2-3V电压进行电动脱水处理,处置每百方污泥可节约750元,对于焚烧处置污泥,选择4.5-5.5V电压时,处理每百方污泥节约费用可达2300元。
     (4)为解决已脱水污泥高能低效、导致脱水效率衰减的问题,发明了一种使用移动电极进行污泥电动脱水处理的方法,通过在处理过程中调节电压加载区域,使电压集中作用于未脱水污泥,避免了脱水效率的衰减。对比试验及计算分析表明,相比传统的固定电极法,移动电极法的处理效果更好,能耗更低。
     (5)对淤泥及赤泥两种废弃泥进行了电动脱水试验,结果表明电动脱水处理对淤泥有较好效果、而该方法并不适用于赤泥处理,对不同对象应通过试验确定试样的电渗性能、考查其电动处理的可行性。
There is a tremendous output of sewage sludge in China which seriously threatens the environment, accompanied by the rise in the output of domestic sewage as well as the disposal rate of sewage. Dewatering is key points of treatment and disposition of sludge, which can significantly reduce the difficulty in techniques of sludge disposition and treatment fee. Developping an efficient dewatering technology is the key to the problems about the treatment and disposal of sludge. Electrokinetic dewatering is a method utilizing electroosmosis to dewater the sludge, which has been proven to be fast and efficient. Seepage field, chemical concentration field and electric field interactions during the process of electrokinetic dewatering, causing attenuation in dewatering efficiency. Based on laboratory experiments and numerical simulations, the study on electrokinetic dewatering mechanism of sewage sludge and theoretical analyses of multi-field coupled phenomenon were carried out. The main research works and conclusions are as follows:
     (1) The mechanism and process of dewatering were obtained based on experimental results of electrokinetic dewatering of sludge under different applied voltage gradients, electrode distances and treating times. It is found that, as the dewatering extended from the anode to cathode, the electrical resistance of the dewatered section and the corresponding voltage consumption gradually increased, and hence the voltage left for the undewatered section decreased. The phenomenon resulted in a significant attenuation in electroosmotic flow, dewatering effect and treating efficiency over time. Non-uniform distribution of residual water content was observed along the dewatering direction. It turns out that the increasing energy consumption by the dewatered section is the fundamental reason for the attenuation in the treating efficiency of EKD with fixed-space electrodes.
     (2) Based on analyses of testing results, the change regularity of seepage field was simplified and a multi-field coupled model of electrokinetic dewatering of sludge was proposed. This model is able to analyze the change of electroosmotic flow rate and voltage distribution, as well as ion transport during the electrokinetic treatment under different applied voltage gradients, electrode distances and treating times. The analyzed results indicate that the ions in sludge migrated under the action of electric field and seepage field, causing reduction in concentration of ions and rise of the electrical resistance as well as the voltage in dewatered section of the sludge. The increasing voltage further accelerated the migration of ions and intensified the reduction of ions concentration in dewatered sludge. Consequently the applied voltage was concentrating in dewatered sludge and unequally distributed between the electrodes.
     (3) Based on simulation and testing results, it is found that shorter electrode distance was more suitable for energy conservation. Both the energy consumption and the dewatering effect increased with the rise of the voltage under the condition of certain electrode distance. Optimization selection of the voltage could be made through comparing the treatment fee and the cost saved through dewatering. The analyzed results indicate that 750 RMB Yuan/hundred tons could be saved through electrokinetic dewatering with voltage ranging from 2~3V and 1cm electrode distance for sludge using landfill disposition method,2300 RMB Yuan/hundred tons could be saved through electrokinetic dewatering with voltage ranging from 4.5~5.5V and 1cm electrode distance for sludge using incineration disposition method.
     (4) A new electrokinetic dewatering method using movable electrode was invented, through using of which the voltage could be concentrated on undewatered sludge and the dewatering efficiency could be maintained. The comparison tests and analyzed results show that the movable electrode method achieved better dewatering effect with lower energy consumption comparing with traditional electrokinetic dewatering method using fixed-spacing electrodes.
     (5) Tests of electrokinetic dewatering of silt and red mud were carried out to analyze the applicability of electrokinetic treating method in different subjects. Results show that electrokinetic dewatering was efficient for silt. However, it was invalid for red mud.
引文
[1]Acar, Y.B., Alshawabkeh, A.N.. Principles of electrokinetic remediation. Environmental Science and Technology,1993,27 (13),2638-2647.
    [2]Acar, Y.B., Zappi, M.. Infrastructural needs in waste containment and environmental restoration. Journal of Infrastructural Systems-ASCE,1995,1 (2),82-91.
    [3]Al-Asheh, S., Jumah, R., Banat, F., Al-Zou'bi, K.. Direct current electroosmosis dewatering of tomato paste suspension. Food and Bioproducts Processing,2004,82 (C3),193-200.
    [4]Alshawabkeh, A.N., Acar, Y.B.. Electrokinetic remediation. Ⅱ:theoretical model. Journal of Geotechnical and Geoenvironmental Engineering,1996,122 (3),186-196.
    [5]Aziz, A.A.A., Dixon, D.R., Usher, S.P., Scales, P.J.. Electrically enhanced dewatering (EED) of particulate suspensions. Colloids and surface A:Physicochemical and Engineering Aspects, 2006,290(1-3),194-205.
    [6]Barton, W.A., Miller, S.A., Veal, C.J.. The electrodewatering of sewage sludges. Drying Technology,1999,17 (3),497-522.
    [7]Bekker, M.C., Meyer, J.P., Pretorius, L., Van Der Merwe, D.F.. Separation of solid-liquid suspensions with ultrasonic acoustic energy. Water Research,1997,31 (10),2543-2549.
    [8]Bhatt, K.H., Velev, O., Grego, S. An Ac electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir,2005,21 (14), 6603-6612.
    [9]Brendan C.O.. Geotechnical properties of municipal sewage sludge. Geotechnical and Geological Engineering,2006,24:833-850.
    [10]Buijs, P.J., Van Diemen, A.J.G., Stein, H.N.. Efficient dewatering of waterworks sludge by electroosmosis. Colloids and Surfaces A:Physiochemical and Engineering Aspects,1994,85, 29-36.
    [11]Burnotte, F., Lefebvre, G., Grondin, G. A case record of electroosmotic consolidation of soft clay with improved soil-electrode contact. Canadian Geotechnical Journal,2004,41 (6), 1038-1053.
    [12]Casagrande, L.. Electro-osmosis in soils. Geotechnique,1949,1 (3),159-177.
    [13]Casagrande, L.. Stabilization of soils by means of electroosmosis—State of-the-art. Journal of the Boston Society of Civil Engineers,1983,69 (2),255-302.
    [14]Chen, H., Mujumdar, A.S., Raghavan, G.S.V.. Laboratory experiments on electroosmotic dewatering of vegetable sludge and mine tailings. Drying Technology,1996,14 (10),435-445.
    [15]Chew, S.H., Karunaratne, G.B., Kuma, V.M., Lim, L.H., Toh, M.L., Hee, A.M.. A field trial for soft clay consolidation using electric vertical drains. Geotextiles and Geomembranes,2004, 22,17-35.
    [16]Chu, C.P., Lee, D.J., Liu, Z., Jin, W.H.. Morphology of sludge cake at electroosmosis dewatering. Separation Science and Technology,2004,39 (6),1331-1346.
    [17]Citeau, M., Larue, O., Vorobieu, E.. Influence of salt, pH and polyelectrolyte on the pressure electro-dewatering of sewage sludge. Water Research,2011,45 (6),2167-2180.
    [18]Clayton, S.A., Scholes, O.N., Hoadley, A.F.A., Wheeler, R.A., Mcintosh, M.J., Huynh, D.Q.. Dewatering of biomaterials by mechanical thermal expression. Drying Technology,2006,24 (7),819-834.
    [19]Creighton, H.J.. Principles and Applications of Electrochemistry, fourth ed., vol.1. Chapman and Hall, London,1943, pp.143-165.
    [20]Curvers, D., Maes, K.C., Saveyn, H., De Baets, B., Miller, S., Van der Meeren, P.. Modelling the electro-osmotically enhanced pressure dewatering of activated sludge. Chemical Engineering Science,2007,62 (8),2267-2276.
    [21]Dewil, R., Baeyens, J., Goutvrind, R.. Ultrasonic treatment of waste activated sludge. Environmental Progress,2006,25 (2),121-128.
    [22]De Clercq, J., Jacobs, F., Kinnear, D.J., Nopens, I., Dierckx, R.A., Defrancq, J., Vanrolleghem, P.A.. Detailed spatiotemproral solids concentration profiling during batch settling of activated sludge using a radiotracer. Water Research,2005,39 (10),2125-2135.
    [23]Delage, P., Sultan, N., and Cui, Y.J.. On the thermal consolidation of Boom clay. Canadian Geotechnical Journal,2000,37,343-354.
    [24]Esrig M.I.. Application of electro-osmosis to a foundation problem in a norwegian quick clay. Geotechnique,1968,18 (2),276-289.
    [25]Esrig M.I.. Pore pressure, consolidation, and electrokinetics. Journal of the Soil Mechanics and Foundations Division,1968,899-921.
    [26]Eykholt, G.R.. Driving and complicating features of the electrokinetic treatment of contaminated soils. PhD Dissertation, Dept. of Civil Engineering, University of Texas at Austin,1992.
    [27]Eykholt, G.R., Daniel, D.E.. Impact of system chemistry on electroosmosis in contaminated soil. J.Geotech. Eng.,1994,120 (5),797-815.
    [28]Eykholt, G.R.. Development of pore pressures by nonuniform electroosmosis in clays. Journal of Hazardous Materials,1997,55,171-186.
    [29]Fetzer, C.A.. Electro osmotic stabilization of west branch dam. Journal of Soil Mechanics and Foundation Division, ASCE,93 (4),85-106.
    [30]Fourie, A.B., Jones, D.G., Jones, C.J.F.P.. Dewatering of mine tailings using electrokinetic geosynthetics. Canadian Geotechnical Journal,2007,44 (2),160-172.
    [31]Friehmelt, V., Gidarakos, E., Laser, U.. Dewatering of sludges using electrokinetic effects. Aufbereitungs-Technik,1995,36 (6),267-276.
    [32]Fuchs, B., Stolkarski, M., Stahl, W., Nirschi, H.. Magnetic field enhanced cake filtration. Filtration,2006,6 (4),333-339.
    [33]Gazbar, S., Abadie, J.M., Colin, F.. Combined action of electro-osmotic drainage and mechanical compression on sludge dewatering. Water Science Technology,1994,30 (8), 169-175.
    [34]Genc, A., Tosun, I.. Analysis of the electrofiltration mechanism based on multiphase filtration theory. Chemical Engineering Communications,2004,191 (1),125-136.
    [35]Gingerich, I., Neufeld, R.D., Thomas, T.A.. Electroosmotically enhanced sludge pressure filtration. Water Environment Research,1999,71 (3),267-276.
    [36]Glendinning, S., Lamont-Black, J., Jones, C.J.F.P.. Treatment of sewage sludge using electrokinetic geosynthetics. Journal of Hazardous Materials,2007,139 (3),491-499.
    [37]Gopalakrishnan, S., Mujumdar, A.S., Weber, M.E.. Optimal off-time in interrupted electroosmotic dewatering. Separation Technology,1996,6(3),197-200.
    [38]Gray, D.H., Mitchell, J.K.. Fundamental aspects of electro-osmosis in soils. Journal of the Soil Mechanics and Foundations Division,1967,209-236.
    [39]Gu, Y., Li, D.. The z-potential of glass surface in contact with aqueous solutions. Journal of Colloid and Interface Science,2000,226 (2),328-339.
    [40]Hall J.E.. Sewage-Sludge production, treatment and disposal in the European Union. Journal of the Chartered Institution of Water and Environmental Management,1995,9 (4):335-343.
    [41]Hamir, R.B., Jones, C.J.F.P., Clarke, B.G.. Electrically conductive geosynthetics for consolidation and reinforced soil. Geotextiles and Geomembranes,2001,19 (8),455-482.
    [42]Hofmann, R., Ka" ppler, T., Posten, C. Pilot-scale press electrofiltration of biopolymers. Separation and Purification Technology,2006,51 (3),303-309.
    [43]Huang, J., Elektorowics, M., Oleszkiewics, J.A.. Dewatering and disinfection of aerobic and anaerobic sludge using an electrokinetic (EK) system. Water Science and Technology,2008, 57(2),231-236.
    [44]Hunter, R.J.. Zeta Potential in Colloid Science:Principles and Applications. Academic Press., 1981, London.
    [45]Hwang, S., Min, K.S.. Improved sludge dewatering by addition of electro-osmosis to belt filter press. Journal of Environmental Engineering and Science,2003,2 (2),149-153.
    [46]Iwata, M., Igami, H., Murase, T., Yoshida, H.. Combined operation of electroosmotic dewatering and mechanical expression. Journal of Chemical Engineering of Japan,1991,24 (3),399-401.
    [47]Iwata, M.. Final moisture distribution in materials after electro-osmotic dewatering. Journal of Chemical Engineering of Japan,2000,33 (2),308-312.
    [48]Iwata, M., Jami, M.S., Sato, M.. Analysis of constant-current electro-osmotic dewatering of various solid-liquid Systems by consideration the creep deformation. Separation and Purification Technology,2007,58 (2),274-281.
    [49]Jacobs, R.A., Sengun, M.Z., Hicks, R.E., Probstein, R.F.. Model and experiments on soil remediation by electric fields. Journal of Environmental Science and Health Part A-Environmental Science and Engineering & Toxic and Hazardous Substance Control,1994, 29(9),1933-1955.
    [50]Jami, M.S., Iwata, M.. Effect of operating parameters on the effectiveness of electric field enhanced separations. Drying Technology,2008,26 (8),1068-1078.
    [51]Ko, S., Schlautman, M.A., Carraway, E.R.. Cyclodextrin enhanced electrokinetic removal of phenanthrene from a model clay soil. Environ. Sci. Technol.,2000,34 (8),1535-1541.
    [52]Kobayashi, K., Hakoda, M., Hosoda, Y., Iwata, M., Yukawa, H.. Fundamental study of electroosmotic flow through perforated membrane. Journal of Chemical Engineering of Japan, 1979,12(6),466-471.
    [53]Kobayashi, K., Hakoda, M., Hosoda, Y., Iwata, M., Yukawa, H.. Electroosmotic flow through particle beds and electroosmotic pressure distribution. Journal of Chemical Engineering of Japan,1979,12 (6),492-494.
    [54]Kondoh, S., Hiraoka, M.. Studies on the improving dewatering method of sewage sludge by the pressurized electro-osmotic dehydrator with injection of polyaluminum chloride.6th World Filtration Congress, Nagoya,1993,765-769.
    [55]Krishnaswamy, P., Bahnii, J.R.. Electrically coupled flow through fine particle cakes. Filtration and Separation,1986,23 (5),289-293.
    [56]Lageman, R., Pool, W., Seffinga, G. Electro-Reclamation—Theory and Practice. Chemistry & Industry,1989,18,585-590.
    [57]Laursen, S., Jensen, J.B.. Electroosmosis in filter cakes of activated-sludge. Water Research, 1993,27(5),777-783.
    [58]Lee, J.E., Lee, J.K., Choi, H.K.. Filter Press for electrodewatering of waterworks sludge. Drying Technology,2007,25 (10),1649-1657.
    [59]Lefebvre, G., Burnotte, F.. Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes. Canadian Geotechnical Journal,2002,39,399-408.
    [60]Lewis, W.R., Humpheson, C. Numerical analysis of electroosmotic flow in soils. Journal of the Soil Mechanics and Foundations Division, ASCE,1973,99 (8),603-616.
    [61]Li, Z.M., Yu, J.W.. Neretnieks I. Electroremediation:Removal of heavy metals from soil by using cation selective membrance. Environ. Sci. Technol.,1998,32,394-397.
    [62]Lo, K.Y., Ho, H.S., Inculet,I.I.. Field test of elctroosmotic strengthening of soft sensitive clay. Canadian Geotechnical Journal,1991,28,74-83.
    [63]Lockhart, N.C.. Electroosmotic dewatering of clays. I. Influence of voltage. Colloids and Surfaces,1983,6 (3),229-238.
    [64]Mahmoud, A., Olivier, J., Vaxelaire, J., Hoadley, A.. Electrical field:A historical review of its application and contributions in wastewater sludge dewatering. Water Research,2010,44 (8), 2381-2407.
    [65]Mahmoud, A., Olivier, J., Vaxelaire, J., Hoadley, A.. Electro-dewatering of wastewater sludge: Influence of the operating conditions and their interactions effects. Water Research,2011,45 (9),2795-2810.
    [66]Micic, S., Shang, J.Q., Lo, K.Y.. Electrokinetic strengthening of a nlarine sediment using intermittent current. Canadian Geotechical Journal,2001,38(2),287-302.
    [67]Milligan, V.. First application of electro-osmosis to improve friction pile capacity—three decades later. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 1995,113,112-117.
    [68]Mitchell, J.K.. Fundamentals of soil behavior.2nd ed. John Wiley & Sons, New York,1993.
    [69]Nettleton, I.M., Jones, C.J.F., Clark, B.G., Hamir, R.. Electrokinetic geosynthetics and their applications. The Sixth International Conference on Geosynthetics,1998,871-875.
    [70]Olivier, J., Vaxelaire, J., Ginisty, P.. Gravity drainage of activated sludge:from laboratory experiments to industrial process. Journal of Chemical Technology and Biotechnology,2004, 79(5),461-467.
    [71]Ottosen, L.M., Hasen, H.K., Laursen, S., et al. Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environ. Sci. Technol.,1997,31(6),1711-1715.
    [72]Perry, W.. Electro-osmosis dewaters large foundation excavation. Construction Methods and Equipment,1963,45 (9),116-119.
    [73]Puppala, S.K., Alshawabkeh, A.N., Acar, Y.B., et al. Enhanced electrokinetic remediation of high sorption capacity soil. Journal of Hazardous Materials,1997,55,203-220.
    [74]Raats, M.H.M., Van Diemen, A.J.G., Laven, J., Stein, H.N.. Full scale electrokinetic dewatering of waste sludge. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2002,210 (2-3),231-241.
    [75]Rocher M, Goma G, Begue A.P.. Towards a reduction in excess sludge production in activated sludge processes:biomass physicochemical treatment and biodegradation. Applied Microbiology and Biotechnology,1999,51 (6),883-890.
    [76]Saveyn, H., Pauwels, G., Timmerman, R., Meeren, P.V.. Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase. Water Research,2005,39 (13),3012-3020.
    [77]Saveyn, H., Meeren, P.V., Pauwels, G., Timmerman, R.. Bench-and pilot-scale sludge electrodewatering in a diaphragm filter press. Water Science and Technology,2006,54 (9), 53-60.
    [78]Shang, J.Q. Electroosmosis-enhanced preloading consolidation via vertical drains. Canadian Geotechical Journal,1998,35 (3),491-499.
    [79]Shapiro, A.P., Probstein, P.R.F.. Removal of contaminants from saturated clay by electroosmosis. Environmental Science and Technology,1993,27 (2),283-291.
    [80]She, P., Liu, Z., Ding, F.X., et al. Surfactant enhanced electroremediation of phenanthrene. Chinese J. Chem. Eng.,2003,11,73-78.
    [81]Smollen, M., Kafaar, A.. Electroosmotically enhanced sludge dewatering:pilot-plant study. Water Science and Technology,1994,30 (8),159-168.
    [82]Smythe, M.C., Wakeman, R.J.. The use of acoustic fields as a filtration and dewatering aid. Ultrasonics,2000,38 (1),657-661.
    [83]Snyman, H.G., Forssman, P., Kafaar, A.. The feasibility of electro-osmotic belt filter dewatering technology at pilot scale. Water Science and Technology,2000,41 (8),137-144.
    [84]Sprute, R.H., Kelsh, D.J.. Dewatering fine-particle suspensions with direct current-field applications. World Congress I of Chemical Engineering 4,1981,142.
    [85]Thompson, J.C., Hatfield, J.H., Reed, B.E.. Electrokinetic(EK) soil flushing on a saturated silt clay loam.26th Conference on Harzardous Industrial Wastes,1994,436-445.
    [86]Tsang, K.R., Vesilind, P.A.. Moisture distribution in sludge. Water Science and Technolology, 1990,22(12),135-142.
    [87]Tuan, P.A., Jurate, V., Mika, S.. Electro-dewatering of sludge under pressure and non-pressure conditions. Environmental Technology,2008,29 (10),1075-1084.
    [88]Tuan, P.A., Sillanpaa, M.. Migration of ions and organic matter during electro-dewatering of anaerobic sludge. Journal of Hazardous Materials,2010,173 (1-3),54-61.
    [89]Vane, L.M., Zang, G.M.. Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability:Implications for electro-kinetic soil remediation processes. Journal of Hazardous Materials,1997,55 (1-3),1-22.
    [90]Wade, M.H.. Slope stability by electro-osmosis. In Proceedings of the 29th Canadian Geotechnical Conference, Vancouver, B.C. Canadian Geotechnical Society, Alliston, Ont, 1976 Section X,44-66.
    [91]Wan, T.Y., Mitchell, J.K.. Electro-osmotic consolidation of soils. Journal of the Geotechnical Engineering Division.1976,473-491.
    [92]Wang, W.S., Vey, E.. Stress in a saturated soil mass during electro-osmosis. Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering (ICOSOMFE). Switzerland,16th-27th August 1953, Vol.Ⅰ,76-79.
    [93]Weber, K., Stahl, W.. Improvement of filtration kinetics by pressure electrofiltration. Separation and Purification Technology,2002,26,69-80.
    [94]Wong, S.H., Hicks, R.E., Probstein, R.F.. EDTA-enhanced electroremediation of metal contaminated soils. Journal of Hazardous Materials,1997,55,61-79.
    [95]Yang, C.C., Long, Y.W.. Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process. Journal of Hazardous Materials,1999, B69,259-271.
    [96]Yang, C.C., Chen, M.C., Yeh, C.F.. Dewatering of a biological industrial sludge by electrokinetics-assisted filter press. Separation and Purification Technology,2011,79, 177-182.
    [97]Yang, L., Nakhla, G., Bassi, A.. Electro-kinetic dewatering of oily sludges. Journal of Hazardous Materials,2005,25 (1-3),130-140.
    [98]Yoshida, H., Shinkawa, T., Yukawa, H.. Water-content and electric-potential distributions in gelatinous bentonite sludge with electroosmotic dewatering. Journal of Chemical Engineering of Japan,1985,18 (4),337-342.
    [99]Yuan, C., Weng, C.H.. Sludge dewatering by electrokinetic technique:effect of processing time and potential gradient. Advances in Environment Research,2003,7 (3),727-732.
    [100]Zhou, D.M., Roman, Z., Kurt, C. Electrochemical remediation of copper contaminated kaolinite by conditioning anolyte and catholyte pH simultaneously. J. Environ. Sci. (China), 2003,15,396-400.
    [101]Emerging Technologies for biosolids Management. Office of Wastewater Management, U.S. Environmental Protection Agency, Washington, D.C.,2006.
    [102]陈雄峰,荆一风,霍守亮.电渗法对太湖环保疏浚底泥脱水干化研究.环境科学研究,2006,19(5):54-58.
    [103]陈云敏,叶肖伟,张民强,柯瀚,张泉芳.多场耦合作用下重金属离子在粘土中的迁移性状试验研究.岩土工程学报,2005,27(12):1371-1375.
    [104]邓彤,赵学范译.界面电现象:原理、测量和应用.北京大学出版社,1992.
    [105]房营光,徐敏,朱忠伟.碱渣土的真空电渗联合排水固结特性试验研究.华南理工大学学报:自然科学版,2006,34(11):70-75.
    [106]龚晓南,焦丹.间歇通电下软黏土电渗固结性状试验分析.中南大学学报(自然科学版),2011,42(6):1725-1730.
    [107]何品晶,城市污泥处理与利用.科学出版社,2003.
    [108]胡俞晨,王钊,庄艳峰.电动土工合成材料加固软土地基实验研究.岩土工程学报,2005,27(5):582-586.
    [109]李金红,何群彪.欧洲污泥处理处置概况.中国给水排水,2005,21(1):101-103.
    [110]李瑛,龚晓南,卢萌盟.堆载-电渗联合作用下的耦合固结理论.岩土工程学报,2010,32(1):77-81.
    [111]陆小成,陈露洪,徐泉,毕树平,郑正.污染土壤电动修复增强方法研究进展.环境污染治理技术与设备,2005,6(1):14-24.
    [112]马德刚,张书廷,季民,刘磊磊.污泥电渗透脱水操作条件的优化研究.中国给水排水,2005,21(5).
    [113]马娜,陈玲,何培松,赵建夫.城市污泥资源化利用研究.生态学杂志,2004,23(1):86-89.
    [114]彭桂群,田光明.采用电动修复增强技术去除电镀污泥中重金属.中国环境科学,2010,30(3):349-356.
    [115]钱暑强,金卫华,刘铮.从土壤中去除Cuz+的电修复过程.化工学报,2002,53(3):236-240.
    [116]苏金强,王钊.电渗的二维固结理论.岩土力学,2001,25(1):125-131.
    [117]唐受印.废水处理工程.化学工业出版社,1998.
    [118]王洪涛.多孔介质污染物迁移动力学.高等教育出版社,2008.
    [119]汪闻韶.土工问题论文选集.中国建筑工业出版社,1999.
    [120]翁焕新.污泥无害化、减量化、资源化处理新技术.科学出版社,2009.
    [121]吴健波,刘振鸿.剩余污泥处置的减量化发展方向.中国给水排水,2001,17(11):24-26.
    [122]吴仲达,朱耀斌,吴万伟译.理论电化学.高等教育出版社,1982.
    [123]吴辉煌.应用电化学基础.厦门大学出版社,2006.
    [124]徐伟,刘斯宏,王柳江,汪俊波.真空预压联合电渗法加固软基的固结方程.河海大学学报,2011,39(2):169-175.
    [125]叶肖伟.电场、渗流场和浓度场耦合作用下污染物在粘土中的迁移机理研究.硕士学位论文.浙江大学.2005.
    [126]尹军,谭学军,廖国盘,翟佳麟,刘国栋.我国城市污水污泥的特性与处置现状.中国给水排水,2003,z1:21-24.
    [127]曾国熙,高有潮.软黏土的电化学加固.浙江大学学报,1956,8:12-35.
    [128]占达东.污泥资源化利用.中国海洋大学出版社,2009.
    [129]张义安,高定,陈同斌,郑国砥,李艳霞.城市污泥不同处理处置方式的成本和效益分析.生态环境,2006,15(2):234-238.
    [130]张光明,吴敏生,张维昊,张锡辉.城市污泥超声波处理技术.城市环境与城市生态,2003,16(6):258-259.
    [131]章梓雄,董曾南.粘性流体力学.清华大学出版社,1998.
    [132]赵由才.污泥干化与焚烧技术.冶金工业出版社,2010.
    [133]赵振国.应用胶体与界面化学.化学工业出版社,2008.
    [134]周加祥,余鹏,刘铮.水平电场污泥脱水过程.化工学报,2001,52(7):635-638.
    [135]庄艳峰,王钊.电渗固结中的界面电阻问题.岩土力学,2004,25(1):117-120.
    [136]中华人民共和国城镇建设行业标准,(CJ/T 249-2007)城镇污水处理厂污泥处置:混合填埋泥质.中国标准出版社,2007.
    [137]中华人民共和国国家标准,(GB16889-2008)生活垃圾填埋污染控制标准.国家环境保护部,2008.
    [138]浙江大学建筑设计研究院.污泥库勘察报告.成都固体废弃物卫生处置场委托项目,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700