用户名: 密码: 验证码:
长江口水沙运动及三维泥沙模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口的泥沙运动是河口最复杂的问题,物理模型、数学模型和原型观测是研究河口泥沙运动最重要研究手段,近几十年来,这三种研究手段都得到了长足的发展。河工物理模型试验仍然是现在河口工程中越来越重要的研究手段,能用来研究目前许多无法使用数学表达来准确描述泥沙运动过程的问题,如底沙运动、建筑物稳定性等问题。数学模型正成为研究泥沙问题的重要手段,由于自然界中,泥沙的对流、扩散、沉降、再悬浮,这些现象都是三维的物理过程,所以要准确描述泥沙运动过程,三维泥沙数值模型必然是泥沙研究的发展方向。原型观测是研究泥沙运动规律的最直接、最有说服力的研究手段,原型观测往往能够观测一些尚未被认识的水流泥沙运动规律。本文主要采用这三个研究手段研究长江口泥沙运动的一些规律。
     长江口滩槽交替,河势极为复杂。沙头冲刷后退、沙尾淤积下移是长江口沙体运动的普遍形式,底沙运动在此过程中扮演重要角色。通过现场取样,获得长江口南支、南北港的底沙资料,并且通过水槽试验选择合适模型沙,在完成水流验证的物理模型上系统地研究了长江口南支、南北港分汉口各沙体头部和主要河槽泥沙输移路径和淤积位置。结果表明南北港分汉口三个沙体冲刷下泄的泥沙,大部分进入南港,只有中央沙北侧和新浏河沙北侧少部分泥沙进入北港。沙体冲刷下泄泥沙对南港影响比对北港影响大。新浏河沙冲刷下泄泥沙对南港影响最大,接下来依次为中央沙和新浏河沙包。南北港分汉口的六条分流通道:宝山南、北水道、南沙头通道冲刷下泄泥沙进入南港,另外三条通道冲刷下泄泥沙进入北港。南沙头通道下泄泥沙对南港影响最大,接下来依次为宝山北水道、宝山南水道,分流北港的三条通道基本不对南港造成影响。
     中子活化示踪是一种高灵敏度、适用范围广、对环境无污染、能真实模拟天然沙运动的一种泥沙运动观测方法。通过中子活化示踪沙技术对拟选抛泥区的泥沙运移扩散规律进行现场试验研究,研究发现在北槽S7-S8丁坝之间航道南侧拟选抛泥区示踪砂的运移扩散方向在导堤内基本上与航道平行,近似呈长带形分布,出导堤后示踪沙向东南方向运移。示踪砂主要在与航道平行的区域内运移和沉积,在导堤内进入和越过航道的量很少,进入外航道的量亦很少,出导堤后泥沙主要向东南方向运动,而外航道向东方向伸展。
     长江口深水航道遇到了回淤强度大,回淤分布集中的问题。在深水航道回淤严重的W3节点上下游布置了4个座底式近底观测系统观测了水沙盐度过程,研究发现W3节点上下游近底层余流出现相反方向并且W3节点附近出现了一个富集区域。实测数据揭示了W3节点下游测站出现了经典的河口环流结构,并且余流的垂直剖面存在螺旋结构。上下游测站在涨急时刻存在最大的盐度梯度,证明了存在强锋面的存在,从而导致了泥沙捕集的发生。在W3节点附近的四个站点的近底层泥沙余通量产生一个富聚环流。近底悬沙通量的富集区域的出现说明了泥沙不能立即直接输移到海域。
     通过在南导堤和南滩地上开展一系列观测,研究结果表明在南导堤被淹没期间,除S3-S4丁坝段有微弱的由北槽指向九段沙的泥沙净输移运动外,其余区段均有较强的由九段沙指向北槽的泥沙净输移运动,从整个南导堤来看,指向北槽的净输沙运动占绝对优势。越堤进坝田的相对高含沙水流并不能直接输向航道。
     本文在ECOM-si模型的水动力和盐度模块的基础上,并建立了三维泥沙输移模块,采用TVD格式来计算泥沙沉降过程,从而更加准确地刻画了泥沙的沉降过程,并考虑了盐度和含沙量对絮凝沉降速度的影响,构造了便于计算使用的絮凝沉降公式,考虑了波浪对紊动的作用和对底部切应力的作用影响。采用现场座底式三角架近底观测系统观测的含沙量、流速剖面和河床冲淤变化资料计算了北槽临界起动切应力、临界淤积切应力、侵蚀率和沉积率,为计算泥沙场提供了关键性参数,通过这些工作,本泥沙模型计算的含沙量验证结果良好,可以用来进一步研究长江口泥沙运动过程。
     采用建立并验证的泥沙模型系统研究了长江口泥沙输移机制。研究结果表明长江口主槽的泥沙Eular输移通量主要指向海域,而滩地上的泥沙Eular输移通量主要指向上游或者滩面。Stocks输移在主槽削弱指向口外泥沙Eular输移,而在滩地上增强泥沙向滩面输移。Lagrange输送通量主要和泥沙Eular输移的模式相似。以长江口拦门沙以界,拦门沙以上泥沙潮泵输送主要指向河口上游,而拦门沙以外,泥沙潮泵输送主要指向东南方向。也就是说在拦门沙附近泥沙潮泵输移出现辐散的现象,这条辐散带呈现由西北往东南方向分布。垂向切变输送仅在拦门沙区域较大,其他区域要远小于Lagrange余流输送和潮泵输送。
The sediment transport is the most complex problem in estuary. The physical model, numerical model and field observation are the most important methods to research sediment transport, which have developed enormously in recent years. The physical model is still a main means for research estuarine engineering, which can be used to research some mechanisms that can't be described by numerical expression, such as bed load transport, stabilization of hydraulic engineering and et al. The numerical model has been developed to be a more and more important method to research sediment problems. These mechanisms of sediment advection, diffusion, deposition and resuspension are three dimension processes, so three dimension sediment numerical model is need to research those mechanisms. The field observation is the most direct and convincing method for research on sediment transport, which can be used to reveal some new mechanisms of sediment transport. In this paper, these three methods were used to research sediment transport in Changjiang Estuary.
     There are many interlaced shoals and channel and the river pattern is very complex in Changjiang Estuary. The bed load transport play a key role in the general process of erosion in shoal head and deposition in shoal tail. Based on the in-situ samples collected by sampling in field and flow flume experiment, the appropriate model sediments were selected to simulate the bed load sediments in a validated physical model. The path line and deposition of sediment from several shoal head and main channel in South Branch, North channel and South channel in Changjiang Estuary were investigated in physical model.
     To investigate the dispersal pattern and the fate of dredged material disposed in pre-selected disposal site, a field tracer experiment of simulation of dredged material dispersion was conducted in North Passage of Changjiang Estuary during 2005 flood season. Three tons dredged material and 2.792kg Sodium hexachloroiridate (Ⅳ) hexahydrate (SHH) were used to make tracer sediment. Three round sampling were carried out in pre-selected sections on the third, fourth and fifth day after the release of dredged materials. All samples were analyzed by neutron activation analysis and results showed disposed dredged material mainly dispersed and deposited between navigation channel and south dike in the North Passage, whose path line were nearly parallel to navigation channel. Only few dredged material entered or came across navigation channel and the ratio of back silting in navigation channel was about 5%. Disposed dredged material dispersed southeasterly beyond two dike heads.
     Four bottom-mounted instrument-equipped tripods were deployed at two sections spanning the region characterized by severe sedimentation rates in the Deepwater Navigation Channel (DNC) along the North Passage of Changjiang Estuary in order to observe currents, near-bed suspended sediment, and salinity. Seaward residual currents predominated in the up-estuary section. In contrast, a classical two-layered estuarine circulation pattern occurred in the down-estuary section. Flow moved seaward in the upper layer and a heavier inflow, driven by the salinity gradient, moved landward in the lower layer. The near-bed residual currents in the up-estuary section and the down-estuary section acted in opposing directions, which implies that the region is a convergence zone of near-bed residual currents that trap sediment at the bottom. The maximum salinity gradient at the maximum flood current indicates the presence of a strong front that induces sediment trapping and associated near-bottom convergence of sediment.
     Observation on south dike and shoal showed huge net sediment transport flux from Jiuduansha shoal to North Passage expect slight inverse flux from S3 to S4 groins during the south dike was submerged. The net sediment transport flux from Jiuduansha shoal to North Passage was dominant. The high SSC flow from Jiuduansha shoal can't transport directly to navigation channel in North Passage.
     A three dimensional sediment transport model was setup based on ECOM-si model. A TVD scheme was adopted to calculate the sand deposition process and a convenient flocculation formula was reduced to express the effect of salinity and SSC on sediment setting velocityso sediment deposition process can be simulated more accurately. The effect of wave on turbulent and bottom shear shtree were adopted to include wave. A bottom-mounted instrument-equipped tripods was deployed to observe near bed SSC, current and bed level to calculate several key parameter for sediment model, such as critical initial shear, critical deposition shear, erosion rate and deposition rate. Based on those work, the sediment model can be validated well, which can be used to study sediment transport in Chanjiang Estuary.
     The sediment transport process was investigated by the validated sediment model. The study results show that the sediment Eular transport flux in main channel is seaward but that on shoal is landward. The sediment Stocks transport flux decrease the seaward Eular transport flux in main channel but increase the landward sediment Eular transport flux on shoal. The sediment Lagrange transport flux pattern is similar to Eular transport pattern. The tidal pumping flux is landward at up-estuary of mouth bar but seaward at down-estuary of mouth bar. The tidal pumping flux is a divergence pattern over mouth bar. The vertical shear sediment transport flux is intensive over mouth bar and is much less than that of Lagrange flux and tidal pumping flux at other area.
引文
A.K.M. Quamrul Ahsan & Alan F. Blumberg,1999. Three-Dimensional Hydrothermal Model of Onondaga Lake, New York,Journal of Hydraulic Engineering,912-923.
    Abril, G., Etcheber, H., Le Hir, P., Bassoullet, P., Boutier, B., Frankignoulle, M.,1999. Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France). Limnology and Oceanography 44,1304-1315.
    Adams, C. E., Jr., and G. L. Weatherly,1981:Some effects of suspended sediment stratification on an oceanic bottom boundary layer. J. Geophys. Res.,86,4161-4172.
    Alan F. Blumberg et al.,1999. Three-Dimensional Hydrodynamic Model of New York Harbor Region, Journal of Hydraulic Engineering,799-816.
    Alan F.Blumbetg et al.,2000. Flow Balances in St. Andrew Bay Revealed Through Hydrodynamic Simulations, Estuarines.21-33.
    Andersn T.J., Fredsoe, J., Pejrup, M.2007, Insitu estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter(ADV), Estuarine, Coastal and Shelf Science 75,327-336
    Bartoli F., Phillipy R., Doirisse M.,1991. Structure and self2similarity in silty and sandy soils: the fractal approach [J], Journal of Soil Science, (42)
    Bijker E W.1971. Longshore transport computation. Journal of Waterway Harbor and Coastal Engineering,97(4):687-701.
    Bijker,E.W.,1971. Longshore transport computations. Journal of Waterways, Harbours and Coastal Engineering Division, American Society of Civil Engineers,97(WW4),687-701
    Blumberg, A F.,1978. The influence of density variation on estuarine tide and circulation. Estuarine and Coastal Marine Science 6,209-215.
    Blumberg, A.F., Mellor, G..L.,1987. A description of a three dimensional coastal ocean circulation model. In:N. Heaps (Eds.), Three-Dimensional Coastal Models. American Geophysical Union, Washington D. C., pp.1-16.
    Borekci O S,1982. Distribution of wave-induced momentum fluxes over depth and application within the surf zone:Dissertation. Netwark:Univ. of Delaware.
    Changjiang Water Resources Commission(CWRC),2004. Changjiang Sediment Bulletin, Changjiang Press, Wuhan,8 pp..
    Chen C., Zhu J, Ralph E, Green S A, Budd J W and Zhang F Y.,2001. Prognostic modeling studies of the Keweenaw Current in Lake Superior, Part Ⅰ:formation and evolution. Journal of Physical Oceanography 31(2),379-395.
    Chen, J.Y., Zhu, H.F., Dong, Y.F., Sun, J.M.,1985. Development of the Changjiang Estuary and its submerged delta. Continental Shelf Research 4,47-56.
    Chen, X. and Zong, Y..1998. Coastal Erosion Along the Changjiang Deltaic Shoreline, China: History and Prospective, Estuarine, Coastal and Shelf Science 46,733-742
    Chen, Z., Yu, L., Gupta, A.,2001. The Yangtze River:an introduction. Geomorphology 41,73-75.
    Christoffersen J.B.& Jonsson I.G.,1985. Bed friction and dissipation in combined current and wave motion, Ocean Eng.,12,387-423
    Codiga, D. L. and Aurin, D. A.2007. Residual circulation in eastern long island sound:observed transverse-vertical structure and exchange transport. Continental shelf research 27:103-116
    Craig, P. D., and M. L. Banner,1994:Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr.,24,2546-2559.
    Cruz-Motta, J.J., Collins, J.,2004. Impacts of dredged material disposal on a tropical soft-bottom benthic assemblage. Marine Pollution Bulletin,48,270-280.
    Davies, A.G. Li, Z.,1997. Modeling sediment transport beneath regular symmetrical and asymmetrical waves above a plane bed. Continental Shelf Research,17(5),555-582.
    Davinroy, R. D.,1996. Sedimentation study of the Mississippi River,New Madrid Bar Reach, miles 891 to 883, hydraulic micro modelinvestigation. USACE Rep., U.S. Army Engineer District, St. Louis,Mo.
    Davinroy, R. D..1994. Physical sediment modeling of the Mississippi River on a micro scale. Ph.D. thesis, Univ. of Missouri-Rolla, Mo.
    Edith Perrier, Nigel Bird, Michel Rieu.1999. Generalizing the fractal model of soil structure: The pore-solid fractal approach, Geoderma, (88)
    Einstein H.A.,1950. The bed-load function for sediment transportation in open channel flows, Technical Bulletin 1026, U.S. Department of Agriculture, Soil Erosion Conservation Service,.
    Einstein, H. A. and Ning chien,1954. Similarity of distorted river models with movable bed. ASCE proc 80 (566) Doc.
    Ettema, R.,2000. Hydraulic Modeling:concepts and practice [M]. Reston, VA:ASCE.
    Festa,J.F., Hansen, D.V.,1978. Turbidity maxima in partially mixed estuaries:a two dimensional numerical model. Estuarine and Coastal Marine Science 7,347-359
    Fiechter, J., Steffen, K. L., Mooers, C. N.K., Haus, B.K.,2006. Hydrodynamics and sediment transport in a southeast Florida tidal inlet. Estuarine, Coastal and Shelf Science 70,297-306
    Fischer, G., Ein 1959. Numerisches verfahren aur frrechung von windstau unk gezeiten in Randmeeren, Tellus,11(1).
    Fredsoe J., Deigaard R.,1992. Mechanics of coastal sediment transport, World Scientific Publishing, Co. Pte. Ltd.,
    Friedrichs, C.T., Hamrich,J.M.,1996. Effects of channel geometry on cross-sectional variation in along-channel velocity in partially mixed tidal estuaries. In:Aubrey, D.G., Friedrichs, C.T.,(Eds.), Buoyancy Effects on Coastal and Estuarine Dynamics. American Geophysical Union, Washington, DC, pp.265-281
    Geyer, W. R.,1993. The importance of the suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries 16 (1),113-125.
    Grant W.D., Madsen O.S.,1986. The continental shelf bottom boundary layer, Annu. Rev. Fluid Mech.,18:265-305.
    Grant W.D., Madsen O.S.,1979. Combined wave and current interaction with a rough bottom, Journal of Geophysical Research 84,1797-1808.
    Hansen, W.,1956. Theorie zur Errechnung des Wasserstands under Strimungen in Randmeeren nebst Anwendugen, Tellus,8(3).
    Heaps, N.S.,1969. Linearized vertically-integrated equations for residual circulation in coastal seas. Durt. Hydrog.31(9178),147.
    Helmut, Kobus.1980. Hydraulic Modeling. Hamburg, Belin:Verlag paul parey.
    Huang W., Spaulding M.,2002. Reducing horizontal diffusion errors in σ-coordinate coastal ocean models with a second order Lagrangian-interpolation finite-difference scheme. Ocean Engineering,(29):495-512.
    Huntley, D.A., Gazen, D.G.,1988. Seabed stresses in combined wave and steady flow conditions on the Nova-Soctia continental-shelf-field measurements and predictions. Journal of Physical Oceanography 18(2),347-362
    Huthnance, J. M., Humphery, J.D., Knight, P.J., Chatwin, G., Thomsen, L., White, M.,2002. Near-bed turbulence measurements, stress estimates and sediment mobility at the continental shelf edge. Progress in Oceanography 52,171-194.
    Jay, D.A., Musiak, J.D.,1994. Internal tidal asymmetry in channel flows:origins and consequences. Mixing in estuaries and coastal Seas. In:Pattiarathi, C. (Ed.), Coastal and Estuarine Studies, Vol.50. American Geophysical Union, pp.211-249.
    Jay, D.A., Smith, J.D.,1990. Residual circulation in shallow estuaries:1. Highly stratified, narrow estuaries. Journal of Geophysical Research 95(C1),711-731.
    Johns B., Robinson, L.S.1983. Physical oceanography of coastal and shelf seas, Elsevier Science Publishers B.V., Netherlands.
    Jung, K.T. Jina,J. Y., Kanga, H.W.,Lee, H. J.,2004. An analytical solution for the local suspended sediment concentration profile in tidal sea region, Estuarine, Coastal and Shelf Science 61:657-667
    Kim, S.C., Friedrichs, C.T., et al.,2000. Estimating bottom stress in tidal boundary layer from Acoustic Doppler Velocimeter data. Journal of Hydraulic Engineering,126(6):399-406.
    King, B., and E. Wolanski,1996:Bottom friction reduction in turbid estuaries. Mixing in Estuaries and Coastal Studies, C. Pattiaratchi,Ed., Amer. Geophys. Union,325-337.
    Kjerfve B,1986. Circulation and salt flux in a well mixed estuary, in Van der Kreeke (Eds.), Physics of Shallow Estuaries and Bays, Springer-Berlag, Berlin, pp.22-29.
    Kranenburg C.1994. The fractal structures of cohesive sediment aggregates, Estuarine, Coastal and Shelf Science.
    Kranenburg C.1999. Effects of floc strength on viscosity and deposition of cohesive suspensions, Continental Shelf Research, (19).
    Leedertse.J.J., A water-quality simulation model for well-mixed estuaries and coastal seas, volume I, The Rand Corporation, RM-6230--RC-(1970),38-7018.
    Leussen W van.1986.Laboratory experiments on the settling velocity of mud flocs. Third International Symposium on River Sedimentation. Mississippi:University of Mississippi.
    Li Y.S., Zhang M.Y.,1996. A semi-implicit three-dimensional hydrodynamic model incorporating the influence of flow-dependent eddy viscosity, bottom topography and wave-current interaction, Applied Ocean Research 18:173-185.
    Li, J., Shi, W., Shen, H.,1994. Sediment properties and transportation in the turbidity maximum of the Changjiang River mouth. Geographical Research 13 (1),51-59 (in Chinese).
    Li, J., Shi,W., Shen, H., Xu, H., Eisma, D.,1993. The bedload movement in the Changjiang Estuary. Chinese Ocean Engineering 7,441-450.
    Lin B. L. Falconer R A. Numerical modeling of three dimension suspended sediment for estuarine and coastal waters J Hydra Res,1996,34(4):435-456
    Longuet-Higgins M.S.,Stewart R W.1964. Radiation stresses in water waves:a physical discussion with application. Deep Sea Res,11(5):529-562.
    Lou J.& Peter V. R., Wave-current bottom shear stress and sediment resuspension in Cleveland Bay, Australia, Coastal Engineering 29(1996) 169-186
    Lou J. and Ridd P. V.,1997. Modelling of suspended sediment transport in coastal areas under waves and currents. Estuarine.Coastal and shelf science 45.1-16.
    Lou J.& Peter V. Ridd, Wave-current bottom shear stress and sediment resuspension in Cleveland Bay, Australia, Coastal Engineering 29(1996) 169-186
    Ma K S, Pierre A C.1999 Clay sediment structure formation in aqueous kaolinite suspensions, Clays and clay minerals, (47)
    Maa J. P.-Y, Lee C.-H., Chen F.J.1995, Bed shear stress measurements for VIMS Sea Carousel, Marine Geology 129,129-136.
    Mathisen P.P., Madsen O.S.,1996. Waves and currents over a fixed rippled bed:Ⅰ. Bottom roughness experienced by waves and II. Bottom and apparent roughness experienced by currents, Journal of Geophysical Research 16:533-550
    Mathisen P.P., Madsen O.S.,1999. Waves and currents over a fixed rippled bed:Ⅲ Bottom and apparent roughness for spectral waves and currents, Journal of Geophysical Research, 18447-18461.
    Mellor G., and A. F. Blumberg,2004:Wave breaking and ocean surface layer thermal response. J. Phys. Oceanogr.,34,693-698.
    Mulder, T., Syvitski, J.P.M.,1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. Journal of Geology 103,285-299.
    Myrhaug D.& Slaattelid H.A.,1990. A rational approach to wave-current friction coefficient for rough, smooth and transitional turbulent flow, Coastal Engineering,14:256-293
    Noakes, S.E., Jutte, P.C.,2006, Utilizing gamma isotope tracer to determine sediment source at reef sites near the Charlestion Ocean Dredged Material Disposal Site,52,666-673.
    Novak, P., Cabelka, J.,1981. Models in Hydraulic Engineering:physical principles and design applications [M]. London:Pitman Advanced Publisher.
    Nowell, A.R.M., Jumars, P.A., Eckman, J.E.,1981. Effects of biological activity on the entrainment of marine sediments. Marine Geology 42:133-153.
    Officer, C.B.,1981. Physical dynamics of estuarine suspended sediments. Marine Geology 40,1-14.
    Pan, D. and Sun, J.,1995. Sediment movement pattern in the Changjiang River mouth bar. Selections of the Studies of the Turbidity Maximum and Estuarine Front in the Changjiang Estuary. Journal of East China Normal University,69-76 (in Chinese).
    Postma,H.,1967. Sediment transport and sedimentation in the estuarine environment, in Estuaries, edited by G.H. Lauff, PP.158-179,Am. Assoc. Adv. Sci., Washington, D.C.
    Prandle, D.,2004. Saline intrusion in partially mixed estuaries, Estuarine, Coastal and Shelf Science 29,385-397
    Qi D., Gu F., Wang, Y.,2005.The preliminary study on reason of back silting in the node W2-W3 in the North Passage, Shanghai Estuary and Coastal Science Research Center, (in Chinese)
    Regoli, F., Pellegrini,D., Winston, G.W., Gorbi, S., Giuliani, S., Virno-Lamberti, C., Bompadre, S.,2002. application of biomarkers for assessing the biological impact of dredged materials in the Mediterranean:the relationship between antioxidant responses and susceptibility to oxidative stress in the red mullet(Mullus barbatus). Marine Pollution Bulletin 44,912-922.
    Rhoads, D.C.,1974. Organism-sediment relations on the muddy sea floor. Oceanography and Marine Biology Annual Reviews 12:263-300.
    Sanford, L.P., Halka, J.P.,1993. Assessing the paradigm of mutually exclusive erosion and deposition of mud, with examples from Chesapeake Bay. Marine Geology 114 (1-2),37-57.
    Sanford, T.B. and Lien, R.-C.,1999. Turbulent properties in a homogeneous tidal bottom boundary layer. J. Geophy. Res.,104 (C1),1245-1258.
    Schubel, J.R.,1968. Turbidity maximum of the Northern Chesapeake Bay. Science,161,1013-1015.
    Scully, M.E., Friedrichs, C.T.,2007. The important of tidal and lateral asymmetries in stratification to residual circulation in partially mixed estuaries. Journal of Physical Oceanography 37,1496-1511.
    Sharp, J. J.,1981. Hydraulic Modelling [M]. London:Butterworths,.
    Shaw, W.J. and Trowbridge, J.H.,2001. The direct estimation of near-bottom turbulent fluxes in the presence of energetic wave motions. Journal of Atmospheric and Oceanic Technologies, 18,1540-1557.
    Shen, H., Mao, Z., Zhu, J.,2003, Saltwater intrusion in the Changjiang Estuary, China Ocean Press, Beijing.
    Shen, H., Pan, D.,2001. Turbidity maximum in the Yangtze River Estuary, China Ocean Press, Beijing.
    Shi, Z.,2004. Behaviour of fine suspended sediment at the North passage of the Yangtze River Estuary, China. Journal hydrology 293,180-190
    Simonini,R., Ansaloni, I., Cavallini,F., Graziosi,F., Iotti, M., Massamba N'Siala, G., Mauri, M., Montanari,G., Preti, M., Prevedelli,D.,2005. Effects of long-term dumping of harbor-dredged material on macrozoobenthos at four disposal sites along the Emilia-Romagna coast (Norther n Adiatic Sea, Italy), Marine Pollution Bulletin,50,1595-1605.
    Simpson, J.H., Brown, J., Matthew, J., allen, G.,1990. Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13,125-132.
    Smith, J. D., and S. R. McLean,1977:Spatially averaged flow over a wavy surface. J. Geophys. Res.,82,1735-1746.
    Soulsby R.L.,1997.Dynamics of Marine Sands, A manual for practical applications, Thomas Telford, London.
    Soulsby, R. L., and B. L. S. A. Wainwright,1987:A criterion for the effect of suspended sediment on near-bottom velocity profiles. J. Hydraul. Res.,25,341-356.
    Soulsby, R.L.,1995. Bed shear-stresses due to combined waves and currents, Advances in Coastal,Morphodynamics, Stive, M.J.F.et al.(eds), Delft Hydraulics,Delft.,
    Soulsby, R.L., Dyer, K.R.,1981. The form of the near-bed velocity profile in a tidally accelerating flow. Journal of Geophysical Research—Oceans and Atmospheres 86 (NC9),8067-8074.
    Stapleton, K.R., Huntley, D.A.,1995. Seabed stress determinations using the inertial dissipation method and the turbulent kinetic energy method. Earth Surface Processes and Landforms, 20(9):807-815.
    Stephen T. Maynord.2006, Evaluation of the Micromodel:An Extremely Small-Scale Movable Bed Model. Journal of Hydraulic Engineering,132(4):343-353.
    Talke, S.A., de Swart, H.E., Schuttelaars, H.M.,2009. Feedback between residual circulations and sediment distribution in highly turbid estuaries:An analytical model. Continental Shelf Research 29,119-135
    Tennekes H., Lumley J.L.,1972. A first course in turbulence. The MIT Press.
    Terray, E. A., W. M. Drennan, and M. A. Donelan,2000:The vertical structure of shear and dissipation in the ocean surface layer. Proc. Symp. on the Wind-driven Air-Sea Interface-Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, Sydney, Australia, Uni. of New South Wales, pp.239-245.
    Thompson, C.E.L., Amos, C.L., et al.,2003. The manifestation of fluid-transmitted bed shear stress in a smooth annular flume—a comparison of methods. Journal of Coastal Research,19 (4):1094-1103.
    Tolhurst, T.J., Black, K.S., Shayler, S.A., Mather, S., Black, I., Baker, K., Paterson, D.M.,1999. Measuring the in situ erosion shear stress of intertidal sediments with cohesive strength meter (CSM). Estuarine, Coastal and Shelf Science 49,281-294.
    Traykovski, P., R. Geyer, and C. Sommerfield,2004. Rapid sediment deposition and fine-scale strata formation in the Hudson estuary, J. Geophys. Res.,109, F02004, doi:10.1029/2003JF000096.
    Trouw K., Williams J.J. and Rose C. P.,2000. Modeling sand resuspension by wave over a ripple bed, Estuarine, coastal and shelf science (50):143-151
    Uncles, R. J.. Elliott, R C. A., Weston, S. A.,1985,Observed fluxes of water, salt and suspended sediment in a partly mixed estuary, Estuarine, Coastal and Shelf Science,20(2),147-167
    Uncles, R.J., Stephens, J.A., Harris, C.,2006. Runoff and tidal influences on the estuarine turbidity maximum of a highly turbid system:the upper Humber and Ouse Estuary, UK. Marine Geology 235,213-228.
    Van Rijn L.C.,1984. Sediment transport, Part Ⅰ:Bed load transport, Journal of Hydraulic Engineering,110 (10) 1431-1456.
    van Rijn, L. C.,1984:Sediment transport. Part Ⅱ:Suspended load transport. J. Hydraul. Eng., ASCE,110,1613-1641.
    Voulgaris G., Wallbridge S., Tomlinson B.N., Collins M.B.,1995. Laboratory investigations into wave period effects on sand bed erodibility under the combined action of waves and currents, Coastal Engineering 26:117-134.
    Wang S.Y. Adeff S. E.1986. Three-dimensional modeling of river sedimentation process. Proc of the 3rd Int Symp on River Sedimentation. The Univ of Mississippi.1594-1601.
    Wang S.Y., Jia Y.1995. Computational modeling and hydroscience research. Advances in Hydro-science and Engineering, Proceedings of 2nd International Conference on Hydro-Science and Engineering. Tsinghua University Press,2147-2157.
    Wang, X.H., Wang, H.,2010. Tidal straining effect on the suspended sediment transport in the Huanghe (Yellow River) Estuary, China. Ocean Dynamics, doi 10.1007/s 10236-010-0298-y.
    Wang, Y., Liu,G,2008. The report of observed sediment, current near bottom in the Passage of Yangtze River Estuary. Shanghai Estuary and Coastal Science Research Center,108-112 (in Chinese).
    Widdows, J., Brinsley, M.D., Salkeld, P.N., Lucas, C.H.,1998. Use of annular flumes to determine the influence of current velocity and bivalves on material flux at the sediment-water interface. Estuaries 21 (4A),552-559.
    Winterwerp, J.C.,2006. On the sedimentation rate of cohesive sediment. In:Maa, J.P.Y., Sanford, L.P., Schoellhamer, D.H. (Eds.), Estuarine and Coastal Fine Sediment Dynameics. Elsevier, pp.209-226.
    Wong, K.C.,1994, On the nature of transverse variability in a coastal plain estuary. Journal of Geophysical Research 99C7,14,209-14,222.
    Wu H., Guo W.,2004. The physical model study on suspend sediment back silting in navigation channel of Yangtze River Estuary[M], Shanghai estuary and coastal science research center, (in Chinese)
    Wu, J., Wang,,Y.. Cheng, H.,2009. Bedforms and bed material transport pathways in the Changjiang (Yangtze) Estuary, Geomorphology 104175-184
    Wu,,J., Liu,,J.T., Shen, H., and Zhang,S.,2006. Dispersion of disposed dredged slurry in the meso-tidal Changjiang(Yangtze River) Estuary, Estuarine, Coastal and Shelf Science, 70,663-672.
    X.H. Wang,2002. Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary, J. Phys. Oceanogr.,32,3113-3131.
    Xie L.,Wu K.,Pietrafess L., et al.,2001. A numerical study of wave-current interaction through surface and bottom stress:Wind-driven circulation in the south Atlantic Bight under uniform winds,J.Geophys.Res.,106:16841-16855.
    Xu J.P., Wright L.D., Boon J D.,1994. Estimation of bottom stress and roughness in Lower Chesapeake Bay by the inertial dissipation method. Journal of Coastal Research,10(2), 329-338.
    Yalin, M. S.,1971. Theory of Hydraulic Models [M]. London:Macmillan.
    Yalin, M. S.,1972. Mechanics of Sediment Transport [M]. Oxford; New York:Pergamon Press.
    Yalin, M. S.,1990.Physical modeling of self forming alluvial channels [A], Hydraulic Engineering. Proceeding of 1990 National Conference.
    Yalin, M.S.1982, On the similarity of physical models. Hydraulic modeling in Maritime Engineering[M], London:IEC
    Yang, S.L., Zhang, J., Dai, S.B., Li, M., Xu, X.J.,2007. Effect of deposition and erosion within the main river channel and large lakes on sediment delivery to the estuary of the Yangtze River. Journal of Geophysical Research 112, F02005. doi:10.1029/2006JF000484.
    Yin Y, Chang N., Zhong W.,1992, A study on sediment movement trends in the Tianjin port spoil ground. Oceanologia Et Limnologia Sinica,23(6):647-650 (in Chinese).
    Yin Y, Zhong, W., Chang N., Li Y, Fang Z.,1996, The study on the rule of silt moment in dredge disposal site, Port Engineering Technology,4:1-7 (in Chinese).
    Yuan Y L., Qiao F. L., Hua F, et al,1999. A numerical model for shallow water circulation I. Mixing of ocean waves and wave-current interaction, J. Hydro.(Ser.A),14(4B):1-8.
    Zhang H., Madsen O.S.,2004. Hydrodynamic model with wave-current interaction in coastal regions, Estuarine, Coastal and Shelf Science 61:317-324.
    Zhang Q.Y., Chan E.S.,2003. Sensitivity studies with the three-dimensional multi-level model for tidal motion, Ocean Engineering 30:1489-1505
    Zhang Q.Y, Gin K.Y.H,2000. Three-dimensional numerical simulation for tidal motion in Singapore's coastal waters, Coastal Engineering 39:71-92
    Zhang,H. O.S. Madsen et al., Hydrodynamic model with wave-current interaction in coastal regions, Estuarine, Coastal and Shelf Science 61 (2004) 317-324
    Zhu S., Ding P.X., Sha W.Y., Feng M., Zhang W.J.,2001. New Eulerian-Lagrangian Method for Salinity Calculation. China Ocean Engineering 15(4),553-564.
    Zhu S.X., Ding P.X., Kong Y.Z.,2001. A primary study on sea wave packet equation independent of potential function on slowly varying topography, Science in China (Series B),44,Supp. 92-98.
    Zimmerman, Z. T. F.,1981. Dynamics, diffusion and geomorphological significance of tidal residual eddies. Nature,290,549-555.
    白玉川,潮流和波浪联合输沙的理论研究及数学模型[博士论文],天津大学.1994.
    曹慧江,长江河口枯季三维流场悬沙数值模拟,华师大硕士学位论文.2005.
    曹文洪,刘青泉,波浪掀沙的动力学机理分析,水利学报,2000.(1):49-53.
    曹振轶,朱首贤,胡克林,感潮河段悬沙数学模型——以长江口为例,泥沙研究,2002,(3):64-70
    曹祖德,孔令双,焦桂英n波、流共同作用下的泥沙起动,海洋学报,2003,25(3):113-119.
    曹祖德,唐士芳,李蓓,波流共存时的床面剪切力,水道港口,2001,22:56-60.
    曹祖德,王桂芬,徐宏明,天津港抛泥区疏浚弃土对港口回淤影响的研究1989.
    曹祖德,王运洪,水动力泥沙数值模拟,天津大学出版社,1994,241-249.
    曹祖德等,三维潮流数学模型及其应用,交通部天津水运工程科学研究所,1988..
    陈邦林等,长江口南港南槽地区悬输质絮凝机理研究,上海市城市污水排放背景文献汇编,上海:华东师范大学出版社1988.
    陈洪松,邵明安,CaCl2对细颗粒泥沙静水絮凝沉降的影响,水土保持学报,2000,14(2).46-49
    陈洪松,邵明安,细颗粒泥沙絮凝分散在水土保持中的应用,灌溉排水,2000,(4):13-16.
    陈洪松等,NaCl对细颗粒泥沙静水絮凝沉降影响初探,土壤学报,2001,(1):131-134.
    程伍群,陈红,河口海岸区潮流波浪联合输沙的理论及数学模型,河北农业大学学报,1997,20(3):120-125.
    丁联臻译,Migniot C,不同的极细沙(淤泥质)物理性质的研究及其在水动力作用下的性质,La Houille Blanche,1966,No.7,北京:北京电力设计院,1977
    丁平兴,史峰岩,孔亚珍,波流共同作用下的三维悬沙扩散模型,科学通报,1999,44(12):1339-1342.
    丁平兴,孔亚珍,朱守贤,朱建荣,波流共同作用下的三维悬沙输运数学模型,自然科学进展,2001,11(2):147-152.
    董礼先,苏纪兰,王康善, 黄渤海潮流场及其与沉积物搬运的关系,海洋学报,1989,11(1):493-503.
    窦国仁,全沙河工模型试验的研究.科学通报,1979,24(14):659-663.
    窦国仁,再论泥沙起动流速,泥沙研究,1999,(6):1-9.
    窦国仁,董凤武,Dou X.B.,潮流和波浪的挟沙能力,科学通报,1995,40(5):443-446.
    窦国仁、窦希萍、李提来,波浪作用下泥沙的起动规律,中国科学,2001,31(6):566-573
    窦国仁.推移质泥沙运动规律,南京:水利水运专题评述,1964.
    窦希萍,李来,窦国仁,长江口全沙数学模型研究,水利水运科学研究,1999,(2):136-145
    高亚军,刘长辉郑巧红,细颗粒煤粉的密实过程及其对起动流速的影响,河海大学学报,1999.27(4):54-59.
    高亚军,窦希萍,波浪作用下细颗粒泥沙密实起动试验,水利水运工程学报,2004,(1):49-52
    关许为,陈英祖,长江口泥沙絮凝静水沉降动力学模式的试验研究,海洋工程,1995,13(1):46-50.
    关许为,陈英祖,杜心慧.长江口絮凝机理的试验研究,水利学报,1996,(6):70-74
    何文社,.非均匀沙特性研究,四川大学博士论文.2002
    洪大林,缪国斌,邓东升,谢瑞,张思和,姬昌辉,粘性原状土起动切应力与物理力学指标的关系,水科学进展,2006,17(6):774-779.
    黄建维,粘性泥沙在静水中沉降特性的试验研究,泥沙研究,1981,(2):30-41.
    惠遇甲,王桂仙,河工模型试验.北京:中国水利水电出版社.1999
    蒋国俊,张志忠.长江口阳离子浓度与细颗粒泥沙絮凝沉积,海洋学报,1995,17(1):76-82.
    交科院河口海岸科学研究中心,长江口深水航道治理二期工程平面布置动床模型试验研究,2003
    交通部天津水运工程科学研究所,珠江口伶仃洋航道水抛区泥沙运动研究,1995.
    交通部天津水运工程科学研究所,黄骅港一期工程倾倒区疏浚物运移规律及工程经济性研究,1996
    解刚,刘兴年.非均匀沙分级起动切应力探讨,水利水电科技进展,2003.23(6):1-3.
    金德泽,吴慧文,师福东,泥沙絮凝问题,东北水利水电,1998,(11)
    金缪、谈泽炜、李文正、虞志英.长江口深水航道的回淤问题[J].中国港湾建设,2003,126(5):1-7.
    李保如,自然河工模型试验.水利科学研究所科学研究论文集(第二集)[C].北京:中国工业出版社,1963,60-68.
    李保如,我国河流泥沙物理模型的设计方法.水动力学研究与进展, (A辑第六卷,增刊):1991,58-68.
    李昌华,论动床河工模型的相似律.水利学报,1966,(4):20-26.
    李昌华,金德春.河工模型试验.北京:人民交通出版社,1981.
    李大鸣,白志刚,波流联合作用下海床的长期预报泥沙数学模型,中国港湾建设,1999,(5):33-40.
    李樟苏、程和森、曹更新等,利用放射性示踪沙定量观测长江口北槽航道抛泥区底沙运动,海洋工程,1994,11(2):59-67
    林以安,李炎, 唐仁友,.长江口絮凝聚沉特征与颗粒表面理化因素作用-Ⅰ,悬浮颗粒絮凝沉降特征.泥沙研究,1997,(1):42-47.
    林以安,李炎,唐仁友,长江口絮凝聚沉特征与颗粒表面理化因素作用-Ⅱ,颗粒表面性质对聚沉的作用,泥沙研究,1997,(4):76-84.
    林以安,关许为,长江口生源元素的生物地球化学特征与絮凝沉降的关系,海洋学报,1995,17(5):65-72.
    刘毅,温度对粘性泥沙的沉速及淤积的影响,水利水电快报,1994,(13):21-24.
    罗肇森,波、流共同作用下的近底泥沙输移及航道骤淤预报,泥沙研究,2004,(6):1-9.
    马福喜,李文新,河口水流、波浪、潮流、泥沙、河床变形二维数学模型,水利学报,1999,(5):39-43.
    南京水利科学研究院,水利水电科学研究院,水工模型试验(第二版)[M].北京:水利电力出版社,1985..
    彭瑞善,论变态动床河工模型及变率的影响.泥沙研究,1986.,(4):94-96.
    彭润泽,黄永健,蒋如琴,张振秋,颜燕,长江口泥沙静水絮凝沉速试验研究。 水利水电科学研究院科学研究论文集,北京, 水利电力出版社,1990,33:67-73.
    戚定满、顾峰峰、万远扬.北槽W2-W3区段回淤原因分析初步研究成果[M],上海河口海岸科学研究中心,2005.
    钱宁,动床动态河工模型律.北京:科学出版社,1957.
    钱宁,泥沙运动力学,北京:科学出版社,1983.
    钱宁,高含沙水流运动,北京:清华大学出版社,1989..
    屈孟浩,黄河动床模型试验相似原理及设计方法.黄科所科学研究论文集(第二集).郑州:河南科学技术出版社,1990,140-153.
    屈孟浩,黄河动床模型试验理论和方法.郑州:黄河水利出版社,2005..
    上海河口海岸科学研究中心,《长江口深水航道治理三期工程抛吹泥工艺实施效果监测与研究现场试验与监测报告(分报告一)》,2007.
    上海勘测设计研究院,国家海洋局第二海洋研究所,长江口悬浮颗粒物质絮凝现场调查研究报告,1992.
    王保栋,河口细颗粒泥沙的絮凝作用,黄渤海海洋,1994,12(1):71-76.
    王果庭,胶体稳定性,北京:科学出版社,1990.
    王元叶,细颗粒泥沙近底边界层观测及模型研究,华东师范大学博士论文,2007。
    吴华林、郭文华.长江口深水航道整治工程航道回淤悬沙物理模型验证试验报告[M],上海河口海岸科学研究中心,2004.
    武道吉,谭风训,王江清,紊流絮凝技术研究,水处理技术,1999,25(3):171-173.
    夏震寰,宋根培,离散颗粒和絮凝体相结合的沉降特性,第二次河流泥沙国际学术讨论会组织委员会,第二次河流泥沙国际学术讨论会论文集,北京:水利水电出版社,1983.
    谢鉴衡,河流模拟.北京:水利电力出版社,1990..
    辛文杰,潮流波浪综合作用下河口二维悬沙数学模型,海洋工程,1997,15(1):30-47.
    熊绍隆,.潮汐河口泥沙物理模型设计方法.水动力学研究与进展,1995,10(4):398-404.
    徐俊杰,基于底边界层研究的航道回淤机制分析,华东师范大学硕士论文,2009。
    杨陇慧,朱建荣,朱首贤,长江口杭州湾及邻近海区潮汐潮流场三维数值模拟.华东师范大学学报(自然科学版)2001,(3):74-84.
    杨美卿,细泥沙絮凝的微观结构[J],泥沙研究,1986,(3):73-78
    杨美卿,钱宁,紊动对细泥沙浆液絮凝结构的影响,水利学报,1986,(8):21-30.
    杨美卿,王桂玲,粘性细泥沙的临界起动公式,应用基础与工程科学学报,1995.99-109
    尹毅等,淇澳岛东南抛泥区对珠海九洲港航道的影响,海洋与湖沼,1992,23(3):260-263.
    恽才兴,长江河口近期演变基本规律,北京:海洋出版社,2004.
    张德茹,梁志勇.不均匀细颗粒泥沙粒径对絮凝的影响试验研究[J],水利水运科学研究,1994(1): 11-17‘
    张红武,河工动床模型相似律研究进展.水科学进展,2001,12(2):256-263.
    张红武,江恩惠,白咏梅等,黄河高含沙洪水模型的相似律.郑州:河南科学技术出版社,1994.
    张红武,刘海凌,小浪底水库下游游荡河段模型试验研究.人民黄河,2000,(9):12-13.
    张俊华,张红武.黄河河工模型研究回顾与进展.人民黄河,2000,(9):4-6.
    张俊华,张红武等,水库泥沙异重流运动相似条件的研究.应用基础与工程科学学报,1997,(3):309-316.
    张瑞瑾,河流动力学.北京:中国工业出版社,1961.
    张瑞瑾,河流泥沙动力学,北京:中国水利水电出版社,1989.
    张幸农.水流紊动对泥沙絮凝的影响[A],曾广华.全国泥沙基本理论研究学术讨论会论文集[C],北京:1992
    张修忠,王光谦,浅水流动及输运三维数学模型研究进展,水利学报,2002,(7):1-7
    张志忠,王允菊,徐志刚.长江口细颗粒泥沙絮凝若干特性探讨[A],第二次河流泥沙国际学术讨论会组织委员会,第二次河流泥沙国际学术讨论会论文集[C],北京:水利水电出版社,1983
    张志忠.长江口细颗粒泥沙基本特性研究[J],泥沙研究,1996(1):67-73.
    张志忠等.长江口细颗粒泥沙絮凝若干特性探讨[A],第二次河流泥沙国际学术讨论会论文集,1983
    赵龙保.流动盐水中细颗粒泥沙的沉降速度[J].杭州大学学报:自然科学版,1995,22(3):298-305.
    赵明,波浪作用下建筑物周围的泥沙冲刷及海床演变,大连理工大学博士学位论文,2002.
    郑金海,严以新,波浪辐射应力理论的应用和研究进展,水利水电科技进展,1999,19(6):5-7.
    郑金海,严以新,彭世银,波浪剩余动量流垂向分布研究,河海大学学报,2000,28(1):8-13.
    朱建荣,长江冲淡水扩展机制,华东师范大学出版社,1996.
    朱建荣,夏季长江口外水下河谷西侧上升流产生的动力机制.科学通报2003,48(23):2488-2492.
    朱建荣,丁平兴,朱首贤, 黄海、东海夏季环流的数值模拟.海洋学报24,增刊1,2002,123-133.
    朱建荣,傅德健,同时考虑余流和潮流的海洋模式开边界条件.华东师范大学学报(自然科学版)2003,(1):81-84.
    朱建荣,胡松,河口形状对河口环流和盐水入侵的影响.华东师范大学学报(自然科学版)2003,(2)68-73.
    朱建荣,胡松,傅得建,吴辉,河口环流和盐水入侵Ⅰ——模式及控制数值试验.青岛海洋大学学报2003,33(2):180-184.
    朱建荣,戚定满,吴辉,吕泗上升流观测和动力机制模拟分析.华东师范大学学报(自然科学版),2004,(2):87-91.
    朱建荣,戚定满,肖成猷,吴辉,径流量和海平面变化对河口最大浑浊带的影响.海洋学报2004,25(5):12-22.
    朱建荣,吴辉,张衡,肖成猷,包括潮流作用的黄东海环流模式的开边界条件研究.自然科学进展,2004,14(6):689-693.
    朱建荣,杨陇慧,朱首贤,预估修正法对河口海岸海洋模式稳定性的提高.海洋与湖沼,2002,33(1):15-22.
    朱建荣,朱首贤,ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用.海洋与湖沼,2003,34(4):364-388.
    朱建荣、沈焕庭、朱首贤,三维陆架模式及其应用---一个三维陆架模拟及其在长江口外海区的应用,青岛海洋大学学报,1997,146-156
    朱建荣、朱首贤,ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用,海洋与湖沼,2003,364-374.
    朱鹏程,论变态动床河工模型及变率的影响.泥沙研究,1986,(1):14-29.
    朱首贤,流、浪摸式和物质长期输运分离研究,博士论文,华东师范大学,2005.
    朱首贤,丁平兴,史峰岩,朱建荣,杭州湾、长江口余流及其物质输运作用的模拟研究Ⅱ:冬季余流及其对物质的输运作用.海洋学报,2000,22(6):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700