用户名: 密码: 验证码:
城市轨道交通列车节能优化驾驶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市轨道交通系统以其运量大、安全、速达、舒适的优势,已经成为城市公共交通的主要组成部分。据中国城市轨道交通协会信息,至2012年8月底我国内地已有北京、上海、天津等15个城市累计开通了63条城市轨道交通运营线路,总运营里程达到1777公里。城市轨道交通系统运量庞大,随之而来的是巨大的能量消耗。如何减少城市轨道交通系统的能耗已经成为保持城市轨道交通可持续发展亟待解决的问题。
     本文研究了城市轨道交通列车在两站之间的节能优化驾驶问题。首先通过极大值原理分析了列车在各种坡道上可能的运行状态,以及节能驾驶控制模式切换次数的上限,然后提出了节能驾驶轨迹分析方法来分析列车的节能驾驶控制模式的切换顺序,进而提出一般节能驾驶控制序列以及一般节能驾驶运行状态序列,最后在此基础上研究了新的单车节能优化驾驶方法和两车追踪节能优化驾驶方法。本文基于对列车节能驾驶轨迹的分析提出了节能驾驶轨迹优化方法,其中每个坡道上的节能驾驶轨迹最多通过4个决策变量就可以确定。鉴于城市轨道交通系统线路不长,坡道个数有限,所以建立的优化模型属于小规模非线性规划问题,非常适合采用序列二次规划方法进行快速求解。仿真算例表明本文提出的方法能够快速的生成节能驾驶曲线,在保证运行时间的情况下节约能耗。所以本文提出的方法即适用于列车节能驾驶曲线的离线规划,也适用于列车节能驾驶曲线的在线更新。
     本文的主要创新点如下:
     1.针对节能驾驶控制模式转换次数不明确的问题,基于极大值原理证明了列车在每一段坡度恒定的线路上节能驾驶时,节能控制模式切换次数的上限。同时得出了列车在某些坡道上不可能出现的节能驾驶模式。
     2.针对极大值原理难以确定列车节能驾驶控制序列的问题,提出了一种基于几何分析的列车节能驾驶轨迹分析方法来分析列车的节能驾驶控制序列。轨迹分析方法中,针对不同的坡道提出了新的能耗模型,其中能耗的大小只与一个变量相关,所以可以方便的判断这个坡道上的最优节能驾驶轨迹及其相对应的控制模式,进而得到节能驾驶控制序列。采用这种方法得到的节能驾驶控制序列符合前人通过极大值原理得到的节能控制模式转换规律,体现了轨迹分析方法的可行性。
     3.针对节能驾驶运行状态没有统一描述的问题,提出了一般节能驾驶控制序列及一般节能驾驶运行状态序列。通过轨迹分析的方法,详细分析了列车在各个子区段内的节能驾驶过程,得出了列车在每个子区段内的节能驾驶控制序列及其对应的运行状态,深入揭示了节能驾驶控制序列和运行状态变化的规律,并将他们描述为一个一般的形式。一般节能驾驶控制序列式由5种节能控制模式按顺序组成,一般节能驾驶运行状态序列由2种运行状态(变速、匀速)按顺序组成。
     4.针对单车节能优化驾驶曲线难于的在线更新的问题,提出了新的城市轨道交通单车节能优化驾驶方法。将运行区间分为若干典型的子区间,根据一般节能优化驾驶控制序列和运行状态,考虑运行时间和距离等约束,将列车节能优化驾驶问题建模为小规模非线性规划问题。最后采用序列二次规划方法进行快速求解,不仅适用于列车节能驾驶曲线的离线规划,而且适用于列车在线调整,使列车减少能耗,并准点到达。
     5.针对两车在站间追踪过程中节能驾驶问题不明确的问题,将前车的运行信息考虑到后车的节能驾驶中来,深入分析了移动闭塞条件下两车追踪的动态过程,发现了追踪运行的节能优化驾驶空间,提出了两车追踪运行情况下的节能驾驶场景。
     6.针对两车在站间追踪运行时,后车不能在保证运行时间的情况下节约能耗的问题,提出了新的城市轨道交通列车追踪节能优化驾驶方法。根据两车追踪节能驾驶场景,提出后车追踪前车节能优化驾驶的过程就是在这几个场景中不断切换的过程。然后将这些场景归类为四个节能优化问题,并根据不同场景改进一般节能驾驶轨迹,并建立非线性规划模型。最后采用序列二次规划方法进行快速求解。当前车正常行驶时,后车可以追踪前车节能准点的到达下一站;当前车运行受到干扰使后车无法准点到站的情况下,可以使后车可以尽快到站并降低能耗。
Urban Rail Transit has become the major part of Urban Rail Transportation (URT) System with its safe and comfortable feature as well as its mass rapid transportation capability. Based on the statistics from China association of URT, there are over15cities have urban rail transit system, and the total number of operation lines exceed63until the end of August2012. The operating mileage reaches1777kilometers. Therefore, reducing energy consumption is a very important problem for sustainable development of URT.
     In order to reduce energy consumption of URT trains, in this thesis, we research on energy-efficient optimization driving methods for trains within two successive stations. First, the possible energy-efficient control modes on different grades and the number of control modes switches are proved based on the maximum principle. Then a geometrical analysis based energy-efficient driving trajectory analysis method is proposed to analyze the control switching sequence. Through the trajectory analysis for different grades, general energy-efficient driving control sequence and running status sequence are proposed. Based on these, energy-efficient optimization methods for single train and two tracking trains are proposed, respectively. In our method, the energy-efficient driving trajectory for each gradient is determined by3or4decision parameters. Since the length of the distance between two successive stations is very short and the gradients are limited, all the optimization driving models we built belong to small-scale nonlinear programming problem, thus, it is particularly suitable for solving by sequence quadratic programming (SQP) algorithm. The simulation studies demonstrate that the energy consumption could be reduced and the solving time is very short, which means our new methods are not only suitable for energy-efficient trajectory's off-line per-planning, but also suitable for energy-efficient trajectory's online updating. The innovations of the dissertation are as follows:
     1. Based on the maximum principle, the possible energy-efficient control modes on different grades and the number of control modes switches are proved.
     2. Aiming to determine train energy-efficient control sequence, a geometrical analysis based train energy-efficient driving trajectory analysis method is proposed. In this new method, new energy consumption models for different gradients are designed in which only one variable is related to energy consumption. Thus, it is easy to determine the energy-efficient trajectory and the corresponding control sequence on each gradient.
     3. Aiming to depict energy-efficient control modes and running status with a unified form, general energy-efficient driving control sequence and running status sequence are proposed. The general energy-efficient driving control sequence is composed by5control modes in order, and the general energy-efficient running status sequence is composed by2runing status (speed changing or holding) in order.
     4. Aiming to update the train's energy-efficient trajectory online, a novel energy-efficient optimization driving method for a single train is proposed. In this method, energy consumption and running time ans distance can be easily formulated based on the general energy-efficient running status sequence, therefore, the energy-efficient driving optimization problem is built to a small-scale nonlinear programming problem which could be solved by SQP algorithm quickly.
     5. The process of two trains'tracking between two stations is unclear. Aiming to solve this problem, the tracking dynamic process and the energy saving space for the following train are deeply analyzed with the consideration of the leading train's running information; energy-efficient driving scenarios for two trains'tacking are proposed.
     6. Aiming to saving energy with the guarantee of running time, a novel energy-efficient driving optimization method for two tracking trains are proposed. The tracking process of the following train can be seen as a switching process among the energy-efficient driving scenarios. Then these scenarios are classified into4energy-efficient optimization problems, and the general energy-efficient control sequence and running status sequence are improved according to the different problems. After that, the whole tracking optimization process is modeled by four small-scale nonlinear programming problems according to different situations. It is particularly suitable for solving by SQP algorithm. Simulation results demonstrate the effectiveness of the proposed method.
引文
[1]屈万英,夏小唐.苏州市轨道交通节能分析与设计[J].福建建筑,2013,(2):85-88.
    [2]Britain G. Delivering a sustainable railway [M]. Stationery Office,2007.
    [3]龙潭.地铁能源管理系统[J].城市轨道交通研究,2010,(2):77-79.
    [4]宋敏华.城市轨道交通节能技术发展趋势研究[J].工程建设与设计,2009,(1):15-19.
    [5]刘开国.城市轨道交通供电系统的节能措施与经济运行[J].电气时代,2009,(12):82-84.
    [6]Foiadelli F, Roscia M, Zaninelli D. Optimization of storage devices for regenerative braking energy in subway systems[C]; proceedings of the Power Engineering Society General Meeting,2006 IEEE, F,2006.
    [7]Chaiyatham T, Ngamroo I. Optimal fuzzy gain scheduling of PID controller of superconducting magnetic energy storage for power system stabilization [J]. International Journal of Innovative Computing, Information and Control,2013, (9):651-666.
    [8]Ho T, Wong K. Peak power demand reduction under moving block signalling using an expert system [J]. IEE Proceedings-Electric Power Applications,2003,150(4):471-482.
    [9]Arai Y, Seino H, Yoshizawa K, et al. Development of Superconducting Magnetic Bearing with Superconducting Coil and Bulk Superconductor for Flywheel Energy Storage System [J]. Physica C:Superconductivity,2013.
    [10]乐建迪.地铁正线节能坡设计探讨[J].铁道标准设计,2008,(8):17-19.
    [11]庞渊.线路节能坡设计方案对地铁能耗的影响[J].铁路工程造价管理,2008.
    [12]Adinolfi A, Lamedica R, Modesto C, et al. Experimental assessment of energy saving due to trains regenerative braking in an electrified subway line [J]. Power Delivery, IEEE Transactions on,1998,13(4):1536-1542.
    [13]方蕾,庞志显.城市轨道交通客流与行车组织分析[J].城市轨道交通研究,2004,7(5):42-44.
    [14]李重武.轨道交通2种车辆编组混合运行方案研究[J].现代交通技术,2010,6(024.
    [15]Albrecht T, Oettich S. A new integrated approach to dynamic schedule synchronization and energy-saving train control [J]. Publication of:WIT Press,2002.
    [16]吴洋,王月明,曾理.晚点情况下地铁列车间隔的实时调整方法[J].电力机车与城轨车辆,2003,(5):21-23.
    [17]吴洋.晚点情况下地铁列车实时运行调整及速度控制模式研究[D];成都:西南交通大 学,2004.
    [18]吴洋,罗霞.一种晚点地铁列车实时调整策略及其动态速控模式[J].中国铁道科学,2005,26(6):113-118.
    [19]张莉艳,李平,贾利民,et al.在移动闭塞条件下列车运行调整的仿真研究[J].系统仿真学报,2004,16(10):2257-2260.
    [20]宋琦,顾青,刘峰,et al.高速列车的自适应速度及位置控制[J].控制工程,2010,17(0):35-37.
    [21]罗恒钰,徐洪泽.基于参考模型的ATO自适应控制算法研究[J].铁道学报,2013,35(7):68-73.
    [22]李延建.基于自适应控制的列车自动运行仿真研究[D];北京交通大学,2013.
    [23]陈荣武,刘莉,诸昌钤.基于CBTC的列车自动驾驶控制算法[J].计算机应用,2007,27(11):2649-2651.
    [24]周家猷.模糊预测控制及其在列车自动驾驶中的应用[D];北京交通大学,2008.
    [25]康太平,王长林.基于模糊预测控制的列车自动驾驶系统研究[D];西南交通大学,2006.
    [26]杨文.基于无模型自适应控制的列车节能优化运行方法研究[D];北京交通大学,2013.
    [27]Howlett P, Cheng J. Optimal driving strategies for a train on a track with continuously varying gradient [J]. Journal of the Australian Mathematical Society-Series B,1997,38(3):388-410.
    [28]Howlett P. Optimal strategies for the control of a train [J]. Automatica,1996,32(4):519-32.
    [29]Pudney P, Howlett P. Optimal driving strategies for a train journey with speed limits [J]. Journal of the Australian Mathematical Society-Series B,1994,36(1):38-49.
    [30]Liu R R, Golovitcher I M. Energy-efficient operation of rail vehicles [J]. Transportation Research Part A:Policy and Practice,2003,37(10):917-932.
    [31]付印平.列车追踪运行与节能优化建模及模拟研究[D];北京交通大学,2009.
    [32]Chang C, Sim S. Optimising train movements through coast control using genetic algorithms [C]; proceedings of the Electric Power Applications, IEE Proceedings-, F,1997.
    [33]Wong K, Ho T. Coast control of train movement with genetic algorithm [C]; proceedings of the Evolutionary Computation,2003 CEC'03 The 2003 Congress on, F,2003.
    [34]Lu S, Hillmansen S, Ho T K, et al. Single-Train Trajectory Optimization [J]. Intelligent Transportation Systems, IEEE Transactions on,2013,14(2):743-750.
    [35]Ko H, Koseki T, Miyatake M. Application of dynamic programming to optimization of running profile of a train [J]. Computers in Railways Ⅸ,2004, (15):103-112.
    [36]Ke B-R, Chen M-C, Lin C-L. Block-layout design using MAX-MIN ant system for saving energy on mass rapid transit systems [J]. Intelligent Transportation Systems, IEEE Transactions on,2009,10(2):226-235.
    [37]Ke B-R, Chen N. Analysis and optimization of maximum speed limit of train operation for saving energy in rapid transit systems [J].2010.
    [38]Ke B R, Lin C L, Yang C C. Optimisation of train energy-efficient operation for mass rapid transit systems [J]. Intelligent Transport Systems, IET,2012,6(1):58-66.
    [39]于雪松.城市轨道交通列车节能优化及能耗评估[D];北京交通大学,2012.
    [40]丁勇,周方明,柏赞,et al.自动闭塞区段追踪列车节能操纵仿真算法研究[J].系统仿真学报,2009,015):4593-4597.
    [41]石红国,彭其渊,郭寒英.城市轨道交通牵引计算算法[J].交通运输工程学报,2004,4(3):30-33.
    [42]石红国,彭其渊,郭寒英.城市轨道交通牵引计算模型[J].交通运输工程学报,2005,5(4):20-26.
    [43]刘海东,毛保华,丁勇,et al.城市轨道交通列车节能问题及方案研究[J].交通运输系统工程与信息,2007,7(5):68-73.
    [44]饶忠.列车牵引计算[M].中国铁道出版社,1999.
    [45]Ichikawa K. Application of optimization theory for bounded state variable problems to the operation of train [J]. Bulletin of JSME,1968,11(47):857-865.
    [46]Kokotovic P, Singh G. Minimum-energy control of a traction motor [J]. Automatic Control, IEEE Transactions on,1972,17(1):92-95.
    [47]Milroy I P. Aspects of automatic train control [J].1980.
    [48]Asnis I, Dmitruk A, Osmolovskii N. Solution of the problem of the energetically optimal control of the motion of a train by the maximum principle [J]. USSR Computational Mathematics and Mathematical Physics,1985,25(6):37-44.
    [49]Benjamin B, Milroy I, Pudney P. Energy-efficient operation of long-haul trains; proceedings of the Fourth International Heavy Haul Railway Conference 1989:Railways in Action; Preprints of Papers, The, F,1989 [C]. Institution of Engineers, Australia.
    [50]Jiaxin C, Howlett P. Application of critical velocities to the minimisation of fuel consumption in the control of trains [J]. Automatica,1992,28(1):165-169.
    [51]Jiaxin C, Howlett P. A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains [J]. Automatic Control, IEEE Transactions on,1993, 38(11):1730-1734.
    [52]Maksimov V. Optimal Control of Automatic Subway Trains [J]. Proceedings of Moscow Railway Engineering Institute (Trudy MIIT), Moscow,1971, (388):82-92.
    [53]Golovitcher I. Train control algorithm for energy consumption optimization [M]. Proceedings ofAll-Union Railway Research Institute. Vestnik VNIIZHT.1982:18-23.
    [54]Golovitcher I. An analytical method for optimum train control computation [M]. Proceedings of State Universities, Electro-mechanics.1986a:59-66.
    [55]Golovitcher I. Control algorithms for automatic operation of rail vehicles [J]. Automated and Remote Control Journal of Russian (USSR) Academy of Science 1986b, (11):118-126.
    [56]Khmelnitsky E. On an optimal control problem of train operation [J]. Automatic Control, IEEE Transactions on,2000,45(7):1257-1266.
    [57]Vu X. Analysis of necessary conditions for the optimal control of a train [J].2006.
    [58]Cheng J. Analysis of Optimal Driving Strategies for Train Control Problems [M]. University of South Australia,1997.
    [59]Cheng J, Davydova Y, Howlett P, et al. Optimal driving strategies for a train journey with non-zero track gradient and speed limits [J]. IMA Journal of Management Mathematics,1999, 10(2):89-115.
    [60]Howlett P G, Pudney P J. Energy-efficient train control [M]. Springer,1995.
    [61]Han S H, Byen Y S, Baek J H, et al. An optimal automatic train operation (ATO) control using genetic algorithms (GA) [C]; proceedings of the TENCON 99 Proceedings of the IEEE Region 10 Conference, F,1999.
    [62]Wong K, Ho T. Dynamic coast control of train movement with genetic algorithm [J]. International journal of systems science,2004,35(13-14):835-846.
    [63]Wong K, Ho T. Coast control for mass rapid transit railways with searching methods [J]. IEE Proceedings-Electric Power Applications,2004,151(3):365-376.
    [64]王自力.列车操纵优化的离线寻优[D];成都:西南交通大学硕士学位论文,1993.
    [65]王自力.列车节能运行优化操纵的研究[J].西南交通大学学报,1994,29(3):275-279.
    [66]金炜东,王自力.列车节能操纵优化方法研究[J].铁道学报,1997,19(6):58-62.
    [67]金炜东,靳蕃,李崇维,et al.列车优化操纵速度模式曲线生成的智能计算研究[J].铁道学报,1998,20(5):47-52.
    [68]李玉生.基于遗传算法的列车节能控制研究[D];北京交通大学,2006.
    [69]李玉生,侯忠生.基于遗传算法的列车节能控制研究[J].系统仿真学报,2007,19(2):384-387.
    [70]付印平,高自友,李克平.路网中的列车节能操纵优化方法研究[J].交通运输系统工程与信息,2009,9(4):90-96.
    [71]马超云,丁勇,杜鹏,et al.基于遗传算法的列车节能运行惰行控制研究[J].铁路计算机应用,2010,(6):4-8.
    [72]丁勇,刘海东,栢赞,et al.地铁列车节能运行的两阶段优化模型算法研究[J].交通运输 系统工程与信息,2011,11(1):96-101.
    [73]Vasak M, Baotic M, Peric N, et al. Optimal rail route energy management under constraints and fixed arrival time [C]; proceedings of the Proceedings of the European Control Conference, F,2009.
    [74]石国春.关于序列二次规划(SQP)算法求解非线性规划问题的研究[D];兰州大学,2009.
    [75]Miyatake M, Matsuda K. Energy Saving Speed and Charge/Discharge Control of a Railway Vehicle with On-board Energy Storage by Means of an Optimization Model [J]. IEEJ Transactions on Electrical and Electronic Engineering,2009,4(6):771-778.
    [76]Miyatake M, Ko H. Optimization of train speed profile for minimum energy consumption [J]. IEEJ Transactions on Electrical and Electronic Engineering,2010,5(3):263-269.
    [77]Mandic M, Uglesic I, Milardic V. Method for Optimization of Energy Consumption of Electrical Trains [J]. International Review of Electrical Engineering (IREE),2011,6(1): 292-299.
    [78]汪希时.铁路区间行车方法的自动调整[M].北京铁道学院,1963.
    [79]Pearson L. Moving block signalling [D]; PhD. thesis, Loughborough University of Technology, England,1973.
    [80]纪加伦,杨肇夏.移动闭塞方式下列车运行组织及区间通过能力计算方法的探讨[J].铁道学报,1992,14(1):38-46.
    [81]汪希时,丁正庭.论提高区间通过能力的最优化闭塞系统——移动自动闭塞系统[J].北京交通大学学报,1989,13(1):44-49.
    [82]张勇,赵明,汪希时.基于移动自动闭塞条件的列车运行仿真系统[J].系统仿真学报,1999,11(3):198-204.
    [83]刘海东,袁振洲.移动自动闭塞仿真系统列车追踪过程的探讨[J].交通与计算机,1999,17(1):46-48.
    [84]路飞,宋沐民,李晓磊.基于移动闭塞原理的地铁列车追踪运行控制研究[J].系统仿真学报,2005,17(8):1944-1947.
    [85]路飞.移动闭塞条件下地铁列车的运行优化[D];山东大学,2007.
    [86]赵明,汪希时.移动自动闭塞条件下列车追踪运行控制研究[J].铁道学报,1997,19(3):61-68.
    [87]张勇.新型列控系统-移动自动闭塞条件下线路通过能力的理论分析及计算机仿真[D];北京:北方交通大学,1998.
    [88]刘英,汪希时.移动自动闭塞条件下列车区间运行延误影响分析[J].北方交通大学学报,1998,22(5):7-11.
    [89]张济民,吴汶麒,张树京.准移动闭塞列车安全间隔时间的计算[J].铁道学报,1999,21(3):6-10.
    [90]刘海东,毛保华,何天健,et al.不同闭塞方式下城轨列车追踪运行过程及其仿真系统的研究[J].铁道学报,2005,27(2):120-125.
    [91]Takeuchi H, Goodman C. Simulation study of peak demand reduction strategies when starting under moving block signalling [C]; proceedings of the The 1996 5 th International Conference on Computer Aided Design, Manufacture and Operation in the Railway and other Advanced Mass Transit Systems, COMPRAIL Part 2(of 2), F,1996.
    [92]Takeuchi H, Goodman C. A simulation study of peak demand reduction strategies when starting under moving block signalling [M]. International conference on developments in mass transit systems.1996:187-196.
    [93]Takeuchi H, Goodman C, Sone S. Peak demand reduction techniques when starting under moving block signalling [J].1998.
    [94]Takeuchi H, Goodman C, Sone S. Moving block signalling dynamics:performance measures and re-starting queued electric trains [J]. IEE Proceedings-Electric Power Applications,2003, 150(4):483-492.
    [95]Albrecht T. Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control [J]. Publication of:WIT Press,2004.
    [96]宁滨.轨道交通系统中的列车运行追踪模型及交通流特性研究[J].北京:北京交通大学,2005,62-79.
    [97]周华亮,高自友,李克平.准移动闭塞系统的元胞自动机模型及列车延迟传播规律的研究[J].物理学报,2006,55(4):1706-1710.
    [98]Li K, Gao Z, Ning B. Cellular automaton model for railway traffic [J]. Journal of Computational Physics,2005,209(1):179-192.
    [99]Li K-P, Gao Z-Y, Ning B. Modeling the railway traffic using cellular automata model [J]. International Journal of Modern Physics C,2005,16(6):921-932.
    [100]荀径,宁滨,郜春海.列车追踪运行仿真系统的研究与实现[J].北京交通大学学报,2007.
    [101]荀径,宁滨,李克平.网络条件下列车追踪模型及延迟传播的研究[J].物理学报,2007,56(9):5158-5164.
    [102]荀径.基于智能体和元胞自动机的列车协同控制研究[D];北京交通大学,2011.
    [103]Howlett P. An optimal strategy for the control of a train [J]. J Austral Math Soc, Ser B,1990, (31):454-471.
    [104]李波.基于遗传算法的列车节能操纵曲线寻优[D];西南交通大学,2007.
    [105]文孝霞,杜子学,杨林.基于遗传算法的跨坐式单轨列车牵引曲线优化研究[J].铁道机车车辆,2011,31(4):83-87.
    [106]Nocedal J, Wright S J. Numerical optimization [M]. Springer Science+ Business Media,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700